1
|
Sun X, Gao F, Fan C, Yang S, Zhao T, Tu T, Luo H, Yao B, Huang H, Su X. Sub-genomic RNAi-assisted strain evolution of filamentous fungi for enhanced protein production. Appl Environ Microbiol 2024; 90:e0208223. [PMID: 38899886 PMCID: PMC11267940 DOI: 10.1128/aem.02082-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic engineering at the genomic scale provides a rapid means to evolve microbes for desirable traits. However, in many filamentous fungi, such trials are daunted by low transformation efficiency. Differentially expressed genes under certain conditions may contain important regulatory factors. Accordingly, although manipulating these subsets of genes only can largely reduce the time and labor, engineering at such a sub-genomic level may also be able to improve the microbial performance. Herein, first using the industrially important cellulase-producing filamentous fungus Trichoderma reesei as a model organism, we constructed suppression subtractive hybridization (SSH) libraries enriched with differentially expressed genes under cellulase induction (MM-Avicel) and cellulase repression conditions (MM-Glucose). The libraries, in combination with RNA interference, enabled sub-genomic engineering of T. reesei for enhanced cellulase production. The ability of T. reesei to produce endoglucanase was improved by 2.8~3.3-fold. In addition, novel regulatory genes (tre49304, tre120391, and tre123541) were identified to affect cellulase expression in T. reesei. Iterative manipulation using the same strategy further increased the yield of endoglucanase activity to 75.6 U/mL, which was seven times as high as that of the wild type (10.8 U/mL). Moreover, using Humicola insolens as an example, such a sub-genomic RNAi-assisted strain evolution proved to be also useful in other industrially important filamentous fungi. H. insolens is a filamentous fungus commonly used to produce catalase, albeit with similarly low transformation efficiency and scarce knowledge underlying the regulation of catalase expression. By combining SSH and RNAi, a strain of H. insolens producing 28,500 ± 288 U/mL of catalase was obtained, which was 1.9 times as high as that of the parent strain.IMPORTANCEGenetic engineering at the genomic scale provides an unparalleled advantage in microbial strain improvement, which has previously been limited only to the organisms with high transformation efficiency such as Saccharomyces cerevisiae and Escherichia coli. Herein, using the filamentous fungus Trichoderma reesei as a model organism, we demonstrated that the advantage of suppression subtractive hybridization (SSH) to enrich differentially expressed genes and the convenience of RNA interference to manipulate a multitude of genes could be combined to overcome the inadequate transformation efficiency. With this sub-genomic evolution strategy, T. reesei could be iteratively engineered for higher cellulase production. Intriguingly, Humicola insolens, a fungus with even little knowledge in gene expression regulation, was also improved for catalase production. The same strategy may also be expanded to engineering other microorganisms for enhanced production of proteins, organic acids, and secondary metabolites.
Collapse
Affiliation(s)
- Xianhua Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Fan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Shuyan Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Li J, Wang X, Zou J, Yang K, Wang X, Wang Y, Zhang H, Huang H, Su X, Yao B, Luo H, Qin X. Identification and Characterization of the Determinants of Copper Resistance in the Acidophilic Fungus Acidomyces richmondensis MEY-1 Using the CRISPR/Cas9 System. Appl Environ Microbiol 2023; 89:e0210722. [PMID: 36912653 PMCID: PMC10056952 DOI: 10.1128/aem.02107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Copper (Cu) homeostasis has not been well documented in filamentous fungi, especially extremophiles. One of the main obstacles impeding their characterization is the lack of a powerful genome-editing tool. In this study, we applied a CRISPR/Cas9 system for efficient targeted gene disruption in the acidophilic fungus Acidomyces richmondensis MEY-1, formerly known as Bispora sp. strain MEY-1. Using this system, we investigated the basis of Cu tolerance in strain MEY-1. This strain has extremely high Cu tolerance among filamentous fungi, and the transcription factor ArAceA (A. richmondensis AceA) has been shown to be involved in this process. The ArAceA deletion mutant (ΔArAceA) exhibits specific growth defects at Cu concentrations of ≥10 mM and is transcriptionally more sensitive to Cu than the wild-type strain. In addition, the putative metallothionein ArCrdA was involved in Cu tolerance only under high Cu concentrations. MEY-1 has no Aspergillus nidulans CrpA homologs, which are targets of AceA-like transcription factors and play a role in Cu tolerance. Instead, we identified the Cu-transporting P-type ATPase ArYgA, homologous to A. nidulans YgA, which was involved in pigmentation rather than Cu tolerance. When the ΔArYgA mutant was grown on medium supplemented with Cu ions, the black color was completely restored. The lack of CrpA homologs in A. richmondensis MEY-1 and its high tolerance to Cu suggest that a novel Cu detoxification mechanism differing from the AceA-CrpA axis exists. IMPORTANCE Filamentous fungi are widely distributed worldwide and play an important ecological role as decomposers. However, the mechanisms of their adaptability to various environments are not fully understood. Various extremely acidophilic filamentous fungi have been isolated from acidic mine drainage (AMD) with extremely low pH and high heavy metal and sulfate concentrations, including A. richmondensis. The lack of genetic engineering tools, particularly genome-editing tools, hinders the study of these acidophilic and heavy metal-resistant fungi at the molecular level. Here, we first applied a CRISPR/Cas9-mediated gene-editing system to A. richmondensis MEY-1. Using this system, we identified and characterized the determinants of Cu resistance in A. richmondensis MEY-1. The conserved roles of the Cu-binding transcription factor ArAceA in Cu tolerance and the Cu-transporting P-type ATPase ArYgA in the Cu-dependent production of pigment were confirmed. Our findings provide insights into the molecular basis of Cu tolerance in the acidophilic fungus A. richmondensis MEY-1. Furthermore, the CRISPR/Cas9 system used here would be a powerful tool for studies of the mechanisms of adaptability of acidophilic fungi to extreme environments.
Collapse
Affiliation(s)
- Jinyang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahuan Zou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Fan C, Zhang W, Su X, Ji W, Luo H, Zhang Y, Liu B, Yao B, Huang H, Xu X. CRISPR/Cas9-mediated genome editing directed by a 5S rRNA-tRNA Gly hybrid promoter in the thermophilic filamentous fungus Humicola insolens. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:206. [PMID: 34688310 PMCID: PMC8542335 DOI: 10.1186/s13068-021-02057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Humicola insolens is a filamentous fungus with high potential of producing neutral and heat- and alkali-resistant cellulase. However, the genetic engineering tools, particularly the genome-editing tool, are scarce, hindering the study of cellulase expression regulation in this organism. RESULTS Herein, a CRISPR/Cas9 genome-editing system was established in H. insolens based on a hybrid 5S rRNA-tRNAGly promoter. This system is superior to the HDV (hepatitis delta virus) system in genome editing, allowing highly efficient single gene destruction in H. insolens with rates of deletion up to 84.1% (37/44). With this system, a putative pigment synthesis gene pks and the transcription factor xyr1 gene were disrupted with high efficiency. Moreover, the extracellular protein concentration and cellulase activity largely decreased when xyr1 was deleted, demonstrating for the first time that Xyr1 plays an important role in cellulase expression regulation. CONCLUSIONS The established CRISPR/Cas9 system is a powerful genetic operation tool for H. insolens, which will accelerate studies on the regulation mechanism of cellulase expression and engineering of H. insolens for higher cellulase production.
Collapse
Affiliation(s)
- Chao Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Xiaoyun Su
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Huiying Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Huoqing Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China.
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun St., Haidian District, Beijing, 100081, China.
| |
Collapse
|
4
|
Xian HQ, Liu L, Li YH, Yang YN, Yang S. Molecular tagging of biocontrol fungus Trichoderma asperellum and its colonization in soil. J Appl Microbiol 2019; 128:255-264. [PMID: 31541488 DOI: 10.1111/jam.14457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022]
Abstract
AIMS To conduct molecular tagging of the biocontrol fungus Trichoderma asperellum strain T4 and elucidate its colonization patterns in soil. METHODS AND RESULTS We constructed an expression vector harbouring a hygromycin B-resistant gene (hph) and an efficient green fluorescent protein (egfp) gene. By applying Agrobacterium AGL-1-mediated genetic transformation technology, we conducted molecular tagging of T. asperellum and monitored the colonization dynamics of T. asperellum in soil. The results of tracking five independent transformants of T. asperellum indicated that its expansion rates ranged from 4·7 to 6·8 cm week-1 . After inoculation in soil, the quantities of T. asperellum could be maintained at over 10 × 104 CFU per gram soil in the first year. In the third year after inoculation, the quantities of T. asperellum in soil were still higher than 1 × 103 CFU per gram soil. In addition, molecularly tagged T. asperellum in soil in the second year (i.e. 12 months) after inoculation could still reach the biocontrol effect on cucumber Rhizoctonia rot by more than 74%. CONCLUSION Trichoderma asperellum strain T4 is capable of effectively colonizing in soil and surviving for more than 1 year. SIGNIFICANCE AND IMPACT OF THE STUDY This study has provided the scientific basis for applying T. asperellum as the biocontrol fungus for prevention and control of plant diseases.
Collapse
Affiliation(s)
- H-Q Xian
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China.,Shandong Province Key Laboratory of Applied Mycology, Shandong Province, China
| | - L Liu
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China
| | - Y-H Li
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China
| | - Y-N Yang
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China
| | - S Yang
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China.,Shandong Province Key Laboratory of Applied Mycology, Shandong Province, China.,Qingdao International Center on Microbes Utilizing Biogas, Qingdao, Shandong Province, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Xu X, Fan C, Song L, Li J, Chen Y, Zhang Y, Liu B, Zhang W. A Novel CreA-Mediated Regulation Mechanism of Cellulase Expression in the Thermophilic Fungus Humicola insolens. Int J Mol Sci 2019; 20:ijms20153693. [PMID: 31357701 PMCID: PMC6696435 DOI: 10.3390/ijms20153693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
The thermophilic fungus Humicola insolens produces cellulolytic enzymes that are of great scientific and commercial interest; however, few reports have focused on its cellulase expression regulation mechanism. In this study, we constructed a creA gene (carbon catabolite repressor gene) disruption mutant strain of H. insolens that exhibited a reduced radial growth rate and stouter hyphae compared to the wild-type (WT) strain. The creA disruption mutant also expressed elevated pNPCase (cellobiohydrolase activities), pNPGase (β-glucosidase activities), and xylanase levels in non-inducing fermentation with glucose. Unlike other fungi, the H. insolenscreA disruption mutant displayed lower FPase (filter paper activity), CMCase (carboxymethyl cellulose activity), pNPCase, and pNPGase activity than observed in the WT strain when fermentation was induced using Avicel, whereas its xylanase activity was higher than that of the parental strain. These results indicate that CreA acts as a crucial regulator of hyphal growth and is part of a unique cellulase expression regulation mechanism in H. insolens. These findings provide a new perspective to improve the understanding of carbon catabolite repression regulation mechanisms in cellulase expression, and enrich the knowledge of metabolism diversity and molecular regulation of carbon metabolism in thermophilic fungi.
Collapse
Affiliation(s)
- Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Chao Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Liya Song
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Jinyang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Yuan Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
| |
Collapse
|
6
|
Li X, Xia W, Bai Y, Ma R, Yang H, Luo H, Shi P. A Novel Thermostable GH3 β-Glucosidase from Talaromyce leycettanus with Broad Substrate Specificity and Significant Soybean Isoflavone Glycosides-Hydrolyzing Capability. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4794690. [PMID: 30426008 PMCID: PMC6218797 DOI: 10.1155/2018/4794690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
A novel β-glucosidase gene (Bgl3B) of glycoside hydrolase (GH) family 3 was cloned from the thermophilic fungus Talaromyce leycettanus JM12802 and successfully expressed in Pichia pastoris. The deduced Bgl3B contains 860 amino acid residues with a calculated molecular mass of 91.2 kDa. The purified recombinant Bgl3B exhibited maximum activities at pH 4.5 and 65°C and remained stable at temperatures up to 60°C and pH 3.0-9.0, respectively. The enzyme exhibited broad substrate specificities, showing β-glucosidase, glucanase, cellobiase, xylanase, and isoflavone glycoside hydrolase activities, and its activities were stimulated by short-chain alcohols. The catalytic efficiencies of Bgl3B were 693 and 104/mM/s towards pNPG and cellobiose, respectively. Moreover, Bgl3B was highly effective in converting isoflavone glycosides to aglycones at 37°C within 10 min, with the hydrolysis rates of 95.1%, 76.0%, and 75.3% for daidzin, genistin, and glycitin, respectively. These superior properties make Bgl3B potential for applications in the food, animal feed, and biofuel industries.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xia
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
The use of Agrobacterium-mediated insertional mutagenesis sequencing to identify novel genes of Humicola insolens involved in cellulase production. 3 Biotech 2018; 8:153. [PMID: 29492372 DOI: 10.1007/s13205-018-1166-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/09/2018] [Indexed: 10/17/2022] Open
Abstract
A transfer DNA (T-DNA)-tagged mutant library of Humicola insolens was screened for mutants with altered cellulase production using the plate-clearing zone assay. Three selected mutants (5-A7, 5-C6, and 13-B7) exhibited significantly depressed FPase, CMCase and xylanase activities compared with the wild-type strain upon shake-flask fermentation, while the pNPCase and pNPGase activities of the three mutants were relatively higher than those of the parental strain. Combined with the results of SDS-PAGE and mass spectrometry, we suggest that expression of the CMCases Cel6B, Cel7B, CMC3, and XynA/B/C was reduced in the mutant strains. Twelve putative T-DNA insertion sites were identified in the three mutants via Agrobacterium-mediated insertional mutagenesis sequencing (AIM-Seq). Bioinformatics analysis suggested that a putative dolichyl pyrophosphate phosphatase, two hypothetical proteins encoding genes of unknown function, and/or nine intergenic fragments may be involved in cellulase and hemicellulase production by H. insolens. This provides promising new candidate genes relevant to cellulase production by the fungus, which will be crucial not only for our understanding of the molecular mechanism underlying cellulase production, but also for strain improvement.
Collapse
|
8
|
Debode J, De Tender C, Cremelie P, Lee AS, Kyndt T, Muylle H, De Swaef T, Vandecasteele B. Trichoderma-Inoculated Miscanthus Straw Can Replace Peat in Strawberry Cultivation, with Beneficial Effects on Disease Control. FRONTIERS IN PLANT SCIENCE 2018; 9:213. [PMID: 29515613 PMCID: PMC5826379 DOI: 10.3389/fpls.2018.00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 05/30/2023]
Abstract
Peat based growing media are not ecologically sustainable and often fail to support biological control. Miscanthus straw was (1) tested to partially replace peat; and (2) pre-colonized with a Trichoderma strain to increase the biological control capacity of the growing media. In two strawberry pot trials (denoted as experiment I & II), extruded and non-extruded miscanthus straw, with or without pre-colonization with T. harzianum T22, was used to partially (20% v/v) replace peat. We tested the performance of each mixture by monitoring strawberry plant development, nutrient content in the leaves and growing media, sensitivity of the fruit to the fungal pathogen Botrytis cinerea, rhizosphere community and strawberry defense responses. N immobilization by miscanthus straw reduced strawberry growth and yield in experiment II but not in I. The pre-colonization of the straw with Trichoderma increased the post-harvest disease suppressiveness against B. cinerea and changed the rhizosphere fungal microbiome in both experiments. In addition, defense-related genes were induced in experiment II. The use of miscanthus straw in growing media will reduce the demand for peat and close resource loops. Successful pre-colonization of this straw with biological control fungi will optimize crop cultivation, requiring fewer pesticide applications, which will benefit the environment and human health.
Collapse
Affiliation(s)
- Jane Debode
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Caroline De Tender
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Pieter Cremelie
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Ana S. Lee
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Epigenetics & Defence Research Group, Department Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Tina Kyndt
- Epigenetics & Defence Research Group, Department Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Tom De Swaef
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Bart Vandecasteele
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
9
|
Gao F, Hao Z, Sun X, Qin L, Zhao T, Liu W, Luo H, Yao B, Su X. A versatile system for fast screening and isolation of Trichoderma reesei cellulase hyperproducers based on DsRed and fluorescence-assisted cell sorting. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:261. [PMID: 30258495 PMCID: PMC6151939 DOI: 10.1186/s13068-018-1264-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/19/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND In the biofuel industry, cellulase plays an indispensable role in hydrolyzing cellulose into fermentable glucose. Trichoderma reesei is a popular filamentous fungus with prominent ability to produce cellulase. While classical mutagenesis and modern multiplex genome engineering are both effective ways to improve cellulase production, successful obtaining of strains with improved cellulase-producing ability requires screening a large number of strains, which is time-consuming and labor intensive. RESULTS Herein, we developed a versatile method coupling expression of the red fluorescence protein (DsRed) in T. reesei and fluorescence-assisted cell sorting (FACS) of germinated spores. This method was first established by expressing DsRed intracellularly under the control of the major cellulase cbh1 promoter in T. reesei, which allowed us to rapidly isolate cellulase hyperproducers from T. reesei progenies transformed with a dedicated transcriptional activator ace3 and from an atmospheric and room temperature plasma-created mutant T. reesei library. Since intracellularly expressed DsRed was expected to isolate mutations mainly affecting cellulase transcription, this method was further improved by displaying DsRed on the T. reesei cell surface, enabling isolation of strains with beneficial genetic alterations (overexpressing hac1 and bip1) affecting regulatory stages beyond transcription. Using this method, T. reesei cellulase hyperproducers were also successfully isolated from an Agrobacterium-mediated random insertional mutant library. CONCLUSIONS The coupled DsRed-FACS high-throughput screening method proved to be an effective strategy for fast isolation of T. reesei cellulase hyperproducers and could also be applied in other industrially important filamentous fungi.
Collapse
Affiliation(s)
- Fei Gao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
- College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Zhenzhen Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Lina Qin
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Tong Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Weiquan Liu
- College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| |
Collapse
|
10
|
Meleiro LP, Salgado JCS, Maldonado RF, Carli S, Moraes LAB, Ward RJ, Jorge JA, Furriel RPM. Engineering the GH1 β-glucosidase from Humicola insolens: Insights on the stimulation of activity by glucose and xylose. PLoS One 2017; 12:e0188254. [PMID: 29145480 PMCID: PMC5690678 DOI: 10.1371/journal.pone.0188254] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022] Open
Abstract
The activity of the GH1 β-glucosidase from Humicola insolens (Bglhi) against p-nitrophenyl-β-D-glucopyranoside (pNP-Glc) and cellobiose is enhanced 2-fold by glucose and/or xylose. Kinetic and transglycosylation data showed that hydrolysis is preferred in the absence of monosaccharides. Stimulation involves allosteric interactions, increased transglycosylation and competition of the substrate and monosaccharides for the -1 glycone and the +1/+2 aglycone binding sites. Protein directed evolution has been used to generate 6 mutants of Bglhi with altered stimulation patterns. All mutants contain one of three substitutions (N235S, D237V or H307Y) clustered around the +1/+2 aglycone binding sites. Two mutants with the H307Y substitution preferentially followed the transglycosylation route in the absence of xylose or glucose. The strong stimulation of their pNP-glucosidase and cellobiase activities was accompanied by increased transglycosylation and higher monosaccharide tolerance. The D237V mutation favoured hydrolysis over transglycosylation and the pNP-glucosidase activity, but not the cellobiase activity, was stimulated by xylose. The substitution N235S abolished the preference for hydrolysis or transglycosylation; the cellobiase, but not the pNP-glucosidase activity of the mutants was strongly inhibited by xylose. Both the D237V and N235S mutations lowered tolerance to the monosaccharides. These results provide evidence that the fine modulation of the activity of Bglhi and mutants by glucose and/or xylose is regulated by the relative affinities of the glycone and aglycone binding sites for the substrate and the free monosaccharides.
Collapse
Affiliation(s)
- Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- * E-mail:
| | - José Carlos Santos Salgado
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Raquel Fonseca Maldonado
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São José dos Campos, São Paulo, Brasil
| | - Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Luiz Alberto Beraldo Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - João Atílio Jorge
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Rosa Prazeres Melo Furriel
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| |
Collapse
|