3
|
Feher K, Graus MS, Coelho S, Farrell MV, Goyette J, Gaus K. K-Neighbourhood Analysis: A Method for Understanding SMLM Images as Compositions of Local Neighbourhoods. FRONTIERS IN BIOINFORMATICS 2021; 1:724127. [PMID: 36303786 PMCID: PMC9581049 DOI: 10.3389/fbinf.2021.724127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
Single molecule localisation microscopy (SMLM) is a powerful tool that has revealed the spatial arrangement of cell surface signalling proteins, producing data of enormous complexity. The complexity is partly driven by the convolution of technical and biological signal components, and partly by the challenge of pooling information across many distinct cells. To address these two particular challenges, we have devised a novel algorithm called K-neighbourhood analysis (KNA), which emphasises the fact that each image can also be viewed as a composition of local neighbourhoods. KNA is based on a novel transformation, spatial neighbourhood principal component analysis (SNPCA), which is defined by the PCA of the normalised K-nearest neighbour vectors of a spatially random point pattern. Here, we use KNA to define a novel visualisation of individual images, to compare within and between groups of images and to investigate the preferential patterns of phosphorylation. This methodology is also highly flexible and can be used to augment existing clustering methods by providing clustering diagnostics as well as revealing substructure within microclusters. In summary, we have presented a highly flexible analysis tool that presents new conceptual possibilities in the analysis of SMLM images.
Collapse
Affiliation(s)
- Kristen Feher
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Matthew S. Graus
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Simao Coelho
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Megan V. Farrell
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Neguembor MV, Martin L, Castells-García Á, Gómez-García PA, Vicario C, Carnevali D, AlHaj Abed J, Granados A, Sebastian-Perez R, Sottile F, Solon J, Wu CT, Lakadamyali M, Cosma MP. Transcription-mediated supercoiling regulates genome folding and loop formation. Mol Cell 2021; 81:3065-3081.e12. [PMID: 34297911 PMCID: PMC9482096 DOI: 10.1016/j.molcel.2021.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 03/27/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
The chromatin fiber folds into loops, but the mechanisms controlling loop extrusion are still poorly understood. Using super-resolution microscopy, we visualize that loops in intact nuclei are formed by a scaffold of cohesin complexes from which the DNA protrudes. RNA polymerase II decorates the top of the loops and is physically segregated from cohesin. Augmented looping upon increased loading of cohesin on chromosomes causes disruption of Lamin at the nuclear rim and chromatin blending, a homogeneous distribution of chromatin within the nucleus. Altering supercoiling via either transcription or topoisomerase inhibition counteracts chromatin blending, increases chromatin condensation, disrupts loop formation, and leads to altered cohesin distribution and mobility on chromatin. Overall, negative supercoiling generated by transcription is an important regulator of loop formation in vivo.
Collapse
Affiliation(s)
- Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Álvaro Castells-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Pablo Aurelio Gómez-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Chiara Vicario
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Davide Carnevali
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | | | - Alba Granados
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Francesco Sottile
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Jérôme Solon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
9
|
Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, Vallejos CA, Campbell KR, Beerenwinkel N, Mahfouz A, Pinello L, Skums P, Stamatakis A, Attolini CSO, Aparicio S, Baaijens J, Balvert M, Barbanson BD, Cappuccio A, Corleone G, Dutilh BE, Florescu M, Guryev V, Holmer R, Jahn K, Lobo TJ, Keizer EM, Khatri I, Kielbasa SM, Korbel JO, Kozlov AM, Kuo TH, Lelieveldt BP, Mandoiu II, Marioni JC, Marschall T, Mölder F, Niknejad A, Rączkowska A, Reinders M, Ridder JD, Saliba AE, Somarakis A, Stegle O, Theis FJ, Yang H, Zelikovsky A, McHardy AC, Raphael BJ, Shah SP, Schönhuth A. Eleven grand challenges in single-cell data science. Genome Biol 2020; 21:31. [PMID: 32033589 PMCID: PMC7007675 DOI: 10.1186/s13059-020-1926-6] [Citation(s) in RCA: 688] [Impact Index Per Article: 137.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023] Open
Abstract
The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands-or even millions-of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.
Collapse
Affiliation(s)
- David Lähnemann
- Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Paediatric Oncology, Haematology and Immunology, Medical Faculty, Heinrich Heine University, University Hospital, Düsseldorf, Germany
- Computational Biology of Infection Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Johannes Köster
- Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Ewa Szczurek
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warszawa, Poland
| | - Davis J. McCarthy
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, Australia
- Melbourne Integrative Genomics, School of BioSciences–School of Mathematics & Statistics, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD USA
| | - Mark D. Robinson
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Catalina A. Vallejos
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- The Alan Turing Institute, British Library, London, UK
| | - Kieran R. Campbell
- Department of Statistics, University of British Columbia, Vancouver, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
- Data Science Institute, University of British Columbia, Vancouver, Canada
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ahmed Mahfouz
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Luca Pinello
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital Research Institute, Charlestown, USA
- Department of Pathology, Harvard Medical School, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Pavel Skums
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jasmijn Baaijens
- Life Sciences and Health, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Marleen Balvert
- Life Sciences and Health, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Buys de Barbanson
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Quantitative biology, Hubrecht Institute, Utrecht, The Netherlands
| | - Antonio Cappuccio
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
| | - Giacomo Corleone
- Department of Surgery and Cancer, The Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Florescu
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Quantitative biology, Hubrecht Institute, Utrecht, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rens Holmer
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Katharina Jahn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Thamar Jessurun Lobo
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emma M. Keizer
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Indu Khatri
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M. Kielbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan O. Korbel
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexey M. Kozlov
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Tzu-Hao Kuo
- Computational Biology of Infection Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Boudewijn P.F. Lelieveldt
- PRB lab, Delft University of Technology, Delft, The Netherlands
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ion I. Mandoiu
- Computer Science & Engineering Department, University of Connecticut, Storrs, USA
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Tobias Marschall
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Felix Mölder
- Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Amir Niknejad
- Computation molecular design, Zuse Institute Berlin, Berlin, Germany
- Mathematics Department, Mount Saint Vincent, New York, USA
| | - Alicja Rączkowska
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warszawa, Poland
| | - Marcel Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Jeroen de Ridder
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Antonios Somarakis
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Oliver Stegle
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center–DKFZ, Heidelberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Huan Yang
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research–LACDR–Leiden University, Leiden, The Netherlands
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, USA
- The Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alice C. McHardy
- Computational Biology of Infection Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Sohrab P. Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Alexander Schönhuth
- Life Sciences and Health, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|