1
|
Torpy H, Chau TH, Chatterjee S, Chernykh A, Torpy DJ, Meyer EJ, Thaysen-Andersen M. Impact of different pathogen classes on the serum N-glycome in septic shock. BBA ADVANCES 2025; 7:100138. [PMID: 39877544 PMCID: PMC11773048 DOI: 10.1016/j.bbadva.2025.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The morbidity and mortality of sepsis remain high. Clinicians lack effective markers to rapidly diagnose sepsis and identify the underlying pathogen infection particularly for patients with candidaemia or cases of culture-negative sepsis where culture-based diagnostics are inadequate. In our search for new lines of potential sepsis biomarkers, we here explore the impact of various classes of infectious agents on the serum N-glycome in a septic shock cohort. Comparative N-glycomics was performed on sera collected from 49 septic shock patients infected with viral (n = 9), bacterial (n = 37) or fungal (n = 3) pathogens using an established PGC-LC-MS/MS method. Aberrant serum N-glycosylation features were observed in patients with fungal infection relative to the other infection sub-groups including i) altered expression of prominent α2,6-sialylated biantennary N-glycan isomers, ii) elevated levels of IgG-type N-glycosylation and iii) a global shift in the serum N-glycome involving altered glycan type distribution and considerable changes in core fucosylation and α2,6-sialylation. Septic shock patients infected with bacterial and viral pathogens exhibited similar global serum N-glycome features and therefore could not be stratified based on their serum N-glycosylation. Subtle and less consistent serum N-glycome differences were observed between septic shock patients infected with different bacterial pathogens. In conclusion, our study has tested the impact of different pathogen classes on the serum N-glycome in a septic shock cohort, and reports that fungal infection impacts the host serum N-glycome differently compared to bacterial or viral infections thus potentially opening avenues for glycan-based biomarkers to better diagnose patients with candidaemia.
Collapse
Affiliation(s)
- Helena Torpy
- Infectious Diseases Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - The Huong Chau
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Anastasia Chernykh
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - David J. Torpy
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Emily J. Meyer
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Institute for Glyco-core Research, Nagoya University, Nagoya, Aichi 464-0813, Japan
| |
Collapse
|
2
|
Štambuk T, Kifer D, Greto VL, Dempster NJ, Cvetko A, Gillies RS, Tomlinson JW, Sgromo B, Mineo C, Shaul PW, Lauc G, Lingvay I, Geremia A, Arancibia-Cárcamo CV. Alterations in plasma protein N-glycosylation after caloric restriction and bariatric surgery. Surg Obes Relat Dis 2024; 20:587-596. [PMID: 38383247 DOI: 10.1016/j.soard.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Protein glycosylation is an enzymatic process known to reflect an individual's physiologic state and changes thereof. The impact of metabolic interventions on plasma protein N-glycosylation has only been sparsely investigated. OBJECTIVE To examine alterations in plasma protein N-glycosylation following changes in caloric intake and bariatric surgery. SETTING University of Texas Southwestern Medical Center, US and Oxford University Hospitals, UK. METHODS This study included 2 independent patient cohorts that recruited 10 and 37 individuals with obesity undergoing a period of caloric restriction followed by bariatric surgery. In both cohorts, clinical data were collated, and the composition of plasma protein N-glycome was analyzed chromatographically. Linear mixed models adjusting for age, sex, and multiple testing (false discovery rate <.05) were used to investigate longitudinal changes in glycosylation features and metabolic clinical markers. RESULTS A low-calorie diet resulted in a decrease in high-branched trigalactosylated and trisialylated plasma N-glycans and a concomitant increase in low-branched N-glycans in both cohorts. Participants from one cohort additionally underwent a washout period during which caloric intake and body weight increased, resulting in reversal of the initial low-calorie diet-related changes in the plasma N-glycome. Immediate postoperative follow-up revealed the same pattern of N-glycosylation changes in both cohorts-an increase in complex, high-branched, antennary fucosylated, extensively galactosylated and sialylated N-glycans and a substantial decline in simpler, low-branched, core fucosylated, bisected, agalactosylated, and asialylated glycans. A 12-month postoperative monitoring in one cohort showed that N-glycan complexity declines while low branching increases. CONCLUSIONS Plasma protein N-glycosylation undergoes extensive alterations following caloric restriction and bariatric surgery. These comprehensive changes may reflect the varying inflammatory status of the individual following dietary and surgical interventions and subsequent weight loss.
Collapse
Affiliation(s)
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Valentina L Greto
- Translational Gastroenterology Unit and NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Niall J Dempster
- Oxford Centre for Diabetes and NIHR Oxford Biomedical Research Centre, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Richard S Gillies
- Department of Upper GI Surgery, Oxford University Hospitals, Oxford, United Kingdom
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes and NIHR Oxford Biomedical Research Centre, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bruno Sgromo
- Department of Upper GI Surgery, Oxford University Hospitals, Oxford, United Kingdom
| | - Chieko Mineo
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip W Shaul
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ildiko Lingvay
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alessandra Geremia
- Translational Gastroenterology Unit and NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Carolina V Arancibia-Cárcamo
- Translational Gastroenterology Unit and NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Dojcsák D, Kardos Z, Szabó M, Oláh C, Körömi Z, Viskolcz B, Váradi C. The Alterations of Serum N-glycome in Response to SARS-CoV-2 Vaccination. Int J Mol Sci 2023; 24:ijms24076203. [PMID: 37047177 PMCID: PMC10093923 DOI: 10.3390/ijms24076203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global concern since its outbreak in 2019, with one of the main solutions being vaccination. Altered glycosylation has been described in patients after SARS-CoV-2 infection, while the effect of vaccination on serum glycoproteins remained unexplored. In this study, total serum glycosylation was analyzed in patients after SARS-CoV-2 infection and/or mRNA vaccination in order to identify potential glycosylation-based alterations. Enzyme-linked immunosorbent assay was applied to identify post-COVID-19 and post-Vaccinated patients and rule out potential outliers. Serum samples were deglycosylated by PNGase F digestion, and the released glycans were fluorescently derivatized using procainamide labeling. Solid-phase extraction was used to purify the labeled glycans followed by the analysis of hydrophilic-interaction liquid chromatography with fluorescence and mass-spectrometric detection. Alterations of serum N-glycome in response to SARS-CoV-2 infection and mRNA vaccination were revealed by linear discriminant analysis.
Collapse
Affiliation(s)
- Dalma Dojcsák
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Zsófia Kardos
- Borsod Academic County Hospital, 3526 Miskolc, Hungary
| | - Miklós Szabó
- Borsod Academic County Hospital, 3526 Miskolc, Hungary
| | - Csaba Oláh
- Borsod Academic County Hospital, 3526 Miskolc, Hungary
| | - Zsolt Körömi
- Borsod Academic County Hospital, 3526 Miskolc, Hungary
| | - Béla Viskolcz
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Csaba Váradi
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
- Correspondence: ; Tel.: +36-30-894-7730
| |
Collapse
|
4
|
Tudor L, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Uzun S, Kozumplik O, Mimica N, Lauc G, Svob Strac D, Pivac N. The Association of the Polymorphisms in the FUT8-Related Locus with the Plasma Glycosylation in Post-Traumatic Stress Disorder. Int J Mol Sci 2023; 24:ijms24065706. [PMID: 36982780 PMCID: PMC10056189 DOI: 10.3390/ijms24065706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The molecular underpinnings of post-traumatic stress disorder (PTSD) are still unclear due to the complex interactions of genetic, psychological, and environmental factors. Glycosylation is a common post-translational modification of proteins, and different pathophysiological states, such as inflammation, autoimmune diseases, and mental disorders including PTSD, show altered N-glycome. Fucosyltransferase 8 (FUT8) is the enzyme that catalyzes the addition of core fucose on glycoproteins, and mutations in the FUT8 gene are associated with defects in glycosylation and functional abnormalities. This is the first study that investigated the associations of plasma N-glycan levels with FUT8-related rs6573604, rs11621121, rs10483776, and rs4073416 polymorphisms and their haplotypes in 541 PTSD patients and control participants. The results demonstrated that the rs6573604 T allele was more frequent in the PTSD than in the control participants. Significant associations of plasma N-glycan levels with PTSD and FUT8-related polymorphisms were observed. We also detected associations of rs11621121 and rs10483776 polymorphisms and their haplotypes with plasma levels of specific N-glycan species in both the control and PTSD groups. In carriers of different rs6573604 and rs4073416 genotypes and alleles, differences in plasma N-glycan levels were only found in the control group. These molecular findings suggest a possible regulatory role of FUT8-related polymorphisms in glycosylation, the alternations of which could partially explain the development and clinical manifestation of PTSD.
Collapse
Affiliation(s)
- Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Glycobiology Laboratory, Genos Ltd., 10000 Zagreb, Croatia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- Correspondence: (D.S.S.); (N.P.)
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
- Correspondence: (D.S.S.); (N.P.)
| |
Collapse
|
5
|
Kudelka MR, Lasanajak Y, Smith DF, Song X, Hossain MS, Owonikoko TK. Serum glycomic profile as a predictive biomarker of recurrence in patients with differentiated thyroid cancer. Cancer Med 2022; 12:6768-6777. [PMID: 36437732 PMCID: PMC10067050 DOI: 10.1002/cam4.5465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Thyroid cancer recurrence following curative thyroidectomy is associated with increased morbidity and mortality, but current surveillance strategies are inadequate for early detection. Prior studies indicate that tissue glycosylation is altered in thyroid cancer, but the utility of serum glycosylation in thyroid cancer surveillance remains unexplored. We therefore assessed the potential utility of altered serum glycomic profile as a tumor-specific target for disease surveillance in recurrent thyroid cancer. EXPERIMENTAL DESIGN We employed banked serum samples from patients with recurrent thyroid cancer post thyroidectomy and healthy controls. N-glycans were enzymatically released from serum glycoproteins, labeled via permethylation, and analyzed by MALDI-TOF mass spectrometry. Global level and specific subtypes of glycan structures were compared between patients and controls. RESULTS We evaluated 28 independent samples from 13 patients with cancer recurrence and 15 healthy controls. Global features of glycosylation, including N-glycan class and terminal glycan modifications were similar between groups, but three of 35 individual glycans showed significant differences. The three glycans were biosynthetically related biantennary core fucosylated N-glycans that only varied by the degree of galactosylation (G0F, G1F, and G2F; G: galactose, F: fucose). The ratio of G0F:G1F that captures reduced galactosylation was observed in patients samples but not in healthy controls (p = 0.004) and predicted thyroid cancer recurrence (AUC = 0.82, CI 95% = 0.64-0.99). CONCLUSIONS Altered N-glycomic profile was associated with thyroid cancer recurrence. This serum-based biomarker would be useful as an effective surveillance tool to improve the care and prognosis of thyroid cancer after prospective validation.
Collapse
Affiliation(s)
- Matthew R. Kudelka
- Department of Medicine Memorial Sloan Kettering Cancer Center New York City New York USA
| | - Yi Lasanajak
- Department of Biochemistry Emory University School of Medicine Atlanta Georgia USA
| | - David F. Smith
- Department of Biochemistry Emory University School of Medicine Atlanta Georgia USA
| | - Xuezheng Song
- Department of Biochemistry Emory University School of Medicine Atlanta Georgia USA
| | - Mohammad S. Hossain
- Department of Hematology and Medical Oncology Emory University Winship Cancer Institute Atlanta Georgia USA
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology Emory University Winship Cancer Institute Atlanta Georgia USA
| |
Collapse
|
6
|
Zhang Z, Cao Z, Liu R, Li Z, Wu J, Liu X, Wu M, Xu X, Liu Z. Nomograms Based on Serum N-glycome for Diagnosis of Papillary Thyroid Microcarcinoma and Prediction of Lymph Node Metastasis. Curr Oncol 2022; 29:6018-6034. [PMID: 36135043 PMCID: PMC9497917 DOI: 10.3390/curroncol29090474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Non-invasive biomarkers for the diagnosis and prognosis of papillary thyroid microcarcinoma (PTMC) are still urgently needed. We aimed to characterize the N-glycome of PTMC, and establish nomograms for the diagnosis of PTMC and the prediction of lymph node metastasis (LNM). N-glycome of PTMC (LNM vs. non-LNM, capsular invasion (CI) vs. non-CI (NCI)) and matched healthy controls (HC) were quantitatively analyzed based on mass spectrometry. N-glycan traits associated with PTMC/LNM were used to create binomial logistic regression models and were visualized as nomograms. We found serum N-glycome differed between PTMC and HC in high-mannose, complexity, fucosylation, and bisection, of which, four N-glycan traits (TM, CA1, CA4, and A2Fa) were significantly associated with PTMC. The nomogram based on four traits achieved good performance for the identification of PTMC. Two N-glycan traits (CA4 and A2F0S0G) showed strong associations with LNM. The nomogram based on two traits showed relatively good performance in predicting LNM. We also found differences between CI and NCI in several N-glycan traits, which were not the same as that associated with LNM. This study reported serum N-glycosylation signatures of PTMC for the first time. Nomograms constructed from aberrant glycans could be useful tools for PTMC diagnosis and stratification.
Collapse
Affiliation(s)
- Zejian Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zepeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoli Liu
- Department of Hernia and Abdominal Wall Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiequn Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (X.X.); (Z.L.); Tel.: +86-010-69152620 (X.X.); +86-010-69152620 (Z.L.)
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (X.X.); (Z.L.); Tel.: +86-010-69152620 (X.X.); +86-010-69152620 (Z.L.)
| |
Collapse
|
7
|
Genetic and Epigenetic Association of Hepatocyte Nuclear Factor-1α with Glycosylation in Post-Traumatic Stress Disorder. Genes (Basel) 2022; 13:genes13061063. [PMID: 35741825 PMCID: PMC9223288 DOI: 10.3390/genes13061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a complex trauma-related disorder, the etiology and underlying molecular mechanisms of which are still unclear and probably involve different (epi)genetic and environmental factors. Protein N-glycosylation is a common post-translational modification that has been associated with several pathophysiological states, including inflammation and PTSD. Hepatocyte nuclear factor-1α (HNF1A) is a transcriptional regulator of many genes involved in the inflammatory processes, and it has been identified as master regulator of plasma protein glycosylation. The aim of this study was to determine the association between N-glycan levels in plasma and immunoglobulin G, methylation at four CpG positions in the HNF1A gene, HNF1A antisense RNA 1 (HNF1A-AS1), rs7953249 and HNF1A rs735396 polymorphisms in a total of 555 PTSD and control subjects. We found significant association of rs7953249 and rs735396 polymorphisms, as well as HNF1A gene methylation at the CpG3 site, with highly branched, galactosylated and sialyated plasma N-glycans, mostly in patients with PTSD. HNF1A-AS1 rs7953249 polymorphism was also associated with PTSD; however, none of the polymorphisms were associated with HNF1A gene methylation. These results indicate a possible regulatory role of the investigated HNF1A polymorphisms with respect to the abundance of complex plasma N-glycans previously associated with proinflammatory response, which could contribute to the clinical manifestation of PTSD and its comorbidities.
Collapse
|
8
|
Kawahara R, Chernykh A, Alagesan K, Bern M, Cao W, Chalkley RJ, Cheng K, Choo MS, Edwards N, Goldman R, Hoffmann M, Hu Y, Huang Y, Kim JY, Kletter D, Liquet B, Liu M, Mechref Y, Meng B, Neelamegham S, Nguyen-Khuong T, Nilsson J, Pap A, Park GW, Parker BL, Pegg CL, Penninger JM, Phung TK, Pioch M, Rapp E, Sakalli E, Sanda M, Schulz BL, Scott NE, Sofronov G, Stadlmann J, Vakhrushev SY, Woo CM, Wu HY, Yang P, Ying W, Zhang H, Zhang Y, Zhao J, Zaia J, Haslam SM, Palmisano G, Yoo JS, Larson G, Khoo KH, Medzihradszky KF, Kolarich D, Packer NH, Thaysen-Andersen M. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 2021; 18:1304-1316. [PMID: 34725484 DOI: 10.1101/2021.03.14.435332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 05/18/2023]
Abstract
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anastasia Chernykh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | | | - Weiqian Cao
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Robert J Chalkley
- UCSF, School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
| | - Kai Cheng
- State University of New York, Buffalo, NY, USA
| | - Matthew S Choo
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nathan Edwards
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Radoslav Goldman
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Yingwei Hu
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | | | - Benoit Liquet
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
- CNRS, Laboratoire de Mathématiques et de leurs Applications de PAU, E2S-UPPA, Pau, France
| | - Mingqi Liu
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Bo Meng
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | | | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska academy, University of Gothenburg, Gothenburg, Sweden
| | - Adam Pap
- BRC, Laboratory of Proteomics Research, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gun Wook Park
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Benjamin L Parker
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Markus Pioch
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Enes Sakalli
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Miloslav Sanda
- Clinical and Translational Glycoscience Research Center (CTGRC), Georgetown University, Washington, DC, USA
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, QLD, Australia
| | - Nichollas E Scott
- Deparment of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Georgy Sofronov
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
| | - Johannes Stadlmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pengyuan Yang
- Institutes of Biomedical Sciences, and the NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Yong Zhang
- State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, China
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Joseph Zaia
- Department of Biochemistry, Boston University Medical Campus, Boston, MA, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jong Shin Yoo
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kai-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Katalin F Medzihradszky
- UCSF, School of Pharmacy, Department of Pharmaceutical Chemistry, San Francisco, CA, USA
- BRC, Laboratory of Proteomics Research, Szeged, Hungary
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Institute for Glycomics, Griffith University Gold Coast Campus, Southport, QLD, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Stupin A, Cvetko A, Kralik G, Mihalj M, Šušnjara P, Kolobarić N, Ćurić ŽB, Lukinac AM, Kibel A, Selthofer-Relatić K, Jukić I, Stupin M, Kolar L, Kralik Z, Grčević M, Galović O, Mihaljević Z, Matić A, Juranić B, Gornik O, Lauc G, Drenjančević I. The effect of n-3 polyunsaturated fatty acids enriched hen eggs consumption on IgG and total plasma protein N-glycosylation in healthy individuals and cardiovascular patients. Glycobiology 2021; 31:1163-1175. [PMID: 34132788 DOI: 10.1093/glycob/cwab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE This study determined the effect of n-3 PUFAs enriched hen eggs consumption on IgG and total plasma protein N-glycan profiles and inflammatory biomarkers level in healthy individuals (N = 33) and cardiovascular (CV) patients (N = 21). MATERIALS AND METHODS Subjects were divided to Control-Healthy and Control-CV subgroups (consumed three regular hens' eggs/daily (249 mg n-3 PUFAs/day)), and n-3-PUFAs-Healthy and n-3-PUFAs-CV subgroups (consumed three n-3 PUFAs enriched hen eggs/daily (1053 mg n-3 PUFAs/day)) for 3 weeks. Serum free fatty acids profile and high-sensitivity C reactive protein (hsCRP), interleukin 6 and 10 (IL-6, IL-10) and tumor necrosis factor alpha were measured. Total plasma protein and IgG N-glycome have been profiled before and after dietary protocols. RESULTS Serum n-3 PUFAs concentration significantly increased following n-3 PUFAs hen eggs consumption in both n-3-PUFAs-Healthy and n-3-PUFAs-CV. IL-10 significantly increased in both Healthy subgroups, while no change occurred in CV subgroups. Derived IgG N-glycan traits: bisecting GlcNAc (B) significantly decreased in n-3-PUFAs-Healthy, while agalactosylation (G0) and core fucosylation (CF) significantly increased in Control-Healthy. Derived total plasma protein N-glycan traits: high branching glycans (HB), trigalactosylation (G3), tetragalactosylation (G4), trisialylation (S3), tetrasialylation (S4) and antennary fucosylation (AF) significantly decreased, while G0, monogalactosylation (G1), neutral glycans (S0), B, CF and oligomannose structures (OM) significantly increased in n-3 PUFAs-CV. Digalactosylation (G2) significantly decreased, and G0, G1, S0, disialylation (S2), B and CF significantly increased in Control-CV. CONCLUSIONS n-3 PUFAs consumption alters IgG N-glycan traits and IL-10 in healthy individuals, and total plasma protein N-glycan traits in CV patients, by shifting them toward less inflammatory N-glycosylation profile.
Collapse
Affiliation(s)
- Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
| | - Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Nutricin j.d.o.o. Darda, HR-31326 Darda, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Željka Breškić Ćurić
- Department of Internal Medicine, General Hospital Vinkovci, Zvonarska ulica 57, HR-32100 Vinkovci, Croatia
| | - Ana Marija Lukinac
- Department of Rheumatology, Clinical Immunology and Allergology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Aleksandar Kibel
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia.,Department of Internal Medicine, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Luka Kolar
- Department of Internal Medicine, National Memorial Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Zlata Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Manuela Grčević
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Olivera Galović
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| | - Brankica Juranić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia.,Departments of Nursing and Palliative Medicine, Faculty of Dental Medicine and Health Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia.,Genos Glycoscience Research Laboratory, HR-10000, Zagreb, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia.,Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia
| |
Collapse
|
10
|
Flexible and hierarchical metal-organic framework composite as solid-phase media for facile affinity-tip fabrication to selectively enrich glycopeptides and phosphopeptides. Talanta 2021; 233:122576. [PMID: 34215068 DOI: 10.1016/j.talanta.2021.122576] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
Micro-tip-based solid-phase microextraction is considered as one of the green and powerful analytical sample preparation techniques, but its efficiency is severely hampered by some basic issues such as tedious fabrication, instability of sorbent bed, and blocking of the tip, especially for biological samples due to low permeability. These issues are tackled by introducing a flexible and hierarchical substrate in the microtip, having good mechanical strength and specific functionality to capture the desired biomolecules. Considering the well-ordered and flexible structure of melamine foam, it was used as a substrate and for hydrophilic interaction chromatography (HILIC). Metal-organic framework, due to its excellent characteristics, was grafted on its surface anchored by self-assembling polydopamine. The resulting material was characterized and packed in the tip by just pressing the material in the conical structure of the tip. This affinity tip established good and tunable permeability and was used to selectively enrich glycopeptides as well as phosphopeptides. The affinity tip demonstrated excellent performance to enrich glycopeptides and phosphopeptides with a low limit of detection up to 0.5 fmol μL-1 from tryptic digests of horseradish peroxidase and β-Casein, respectively, and was stable up to 5 rounds of enrichment. Moreover, this affinity-tip also exhibited high selectivity up to up to 1:1000 (HRP digest to BSA digest) for glycopeptides and 1:200 (β-Casein digest to BSA digest) for phosphopeptides and demonstrated several other fascinating characteristics such as; excellent size exclusion effect for the omission of large-sized proteins, modest backpressure, reproducibility, reusability, smooth enrichment, and successfully applied to a human saliva sample.
Collapse
|
11
|
Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat Methods 2021; 18:1304-1316. [PMID: 34725484 PMCID: PMC8566223 DOI: 10.1038/s41592-021-01309-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Collapse
|
12
|
Nikolac Perkovic M, Sagud M, Tudor L, Konjevod M, Svob Strac D, Pivac N. A Load to Find Clinically Useful Biomarkers for Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:175-202. [PMID: 33834401 DOI: 10.1007/978-981-33-6044-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is heterogeneous and complex disease with diverse symptoms. Its neurobiological underpinning is still not completely understood. For now, there are still no validated, easy obtainable, clinically useful noninvasive biomarker(s) or biomarker panel that will be able to confirm a diagnosis of depression, its subtypes and improve diagnostic procedures. Future multimodal preclinical and clinical research that involves (epi)genetic, molecular, cellular, imaging, and other studies is necessary to advance our understanding of the role of monoamines, GABA, HPA axis, neurotrophins, metabolome, and glycome in the pathogenesis of depression and their potential as diagnostic, prognostic, and treatment response biomarkers. These studies should be focused to include the first-episode depression and antidepressant drug-naïve patients with large sample sizes to reduce variability in different biological and clinical parameters. At present, metabolomics study revealed with high precision that a neurometabolite panel consisting of plasma metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) might represent clinically useful biomarkers of MDD.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| |
Collapse
|
13
|
Mealer RG, Jenkins BG, Chen CY, Daly MJ, Ge T, Lehoux S, Marquardt T, Palmer CD, Park JH, Parsons PJ, Sackstein R, Williams SE, Cummings RD, Scolnick EM, Smoller JW. The schizophrenia risk locus in SLC39A8 alters brain metal transport and plasma glycosylation. Sci Rep 2020; 10:13162. [PMID: 32753748 PMCID: PMC7403432 DOI: 10.1038/s41598-020-70108-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
A common missense variant in SLC39A8 is convincingly associated with schizophrenia and several additional phenotypes. Homozygous loss-of-function mutations in SLC39A8 result in undetectable serum manganese (Mn) and a Congenital Disorder of Glycosylation (CDG) due to the exquisite sensitivity of glycosyltransferases to Mn concentration. Here, we identified several Mn-related changes in human carriers of the common SLC39A8 missense allele. Analysis of structural brain MRI scans showed a dose-dependent change in the ratio of T2w to T1w signal in several regions. Comprehensive trace element analysis confirmed a specific reduction of only serum Mn, and plasma protein N-glycome profiling revealed reduced complexity and branching. N-glycome profiling from two individuals with SLC39A8-CDG showed similar but more severe alterations in branching that improved with Mn supplementation, suggesting that the common variant exists on a spectrum of hypofunction with potential for reversibility. Characterizing the functional impact of this variant will enhance our understanding of schizophrenia pathogenesis and identify novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA.
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Bruce G Jenkins
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark J Daly
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sylvain Lehoux
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Münster, Germany
| | - Christopher D Palmer
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Julien H Park
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Münster, Germany
| | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Robert Sackstein
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sarah E Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward M Scolnick
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| |
Collapse
|
14
|
Singh SS, Naber A, Dotz V, Schoep E, Memarian E, Slieker RC, Elders PJM, Vreeker G, Nicolardi S, Wuhrer M, Sijbrands EJG, Lieverse AG, 't Hart LM, van Hoek M. Metformin and statin use associate with plasma protein N-glycosylation in people with type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001230. [PMID: 32616483 PMCID: PMC7333804 DOI: 10.1136/bmjdrc-2020-001230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Recent studies revealed N-glycosylation signatures of type 2 diabetes, inflammation and cardiovascular risk factors. Most people with diabetes use medication to reduce cardiovascular risk. The association of these medications with the plasma N-glycome is largely unknown. We investigated the associations of metformin, statin, ACE inhibitor/angiotensin II receptor blocker (ARB), sulfonylurea (SU) derivatives and insulin use with the total plasma N-glycome in type 2 diabetes. RESEARCH DESIGN AND METHODS After enzymatic release from glycoproteins, N-glycans were measured by matrix-assisted laser desorption/ionization mass spectrometry in the DiaGene (n=1815) and Hoorn Diabetes Care System (n=1518) cohorts. Multiple linear regression was used to investigate associations with medication, adjusted for clinical characteristics. Results were meta-analyzed and corrected for multiple comparisons. RESULTS Metformin and statins were associated with decreased fucosylation and increased galactosylation and sialylation in glycans unrelated to immunoglobulin G. Bisection was increased within diantennary fucosylated non-sialylated glycans, but decreased within diantennary fucosylated sialylated glycans. Only few glycans were associated with ACE inhibitor/ARBs, while none associated with insulin and SU derivative use. CONCLUSIONS We conclude that metformin and statins associate with a total plasma N-glycome signature in type 2 diabetes. Further studies are needed to determine the causality of these relations, and future N-glycomic research should consider medication a potential confounder.
Collapse
Affiliation(s)
- Sunny S Singh
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Internal Medicine, Maxima Medical Centre, Eindhoven, Noord-Brabant, The Netherlands
| | - Annemieke Naber
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Internal Medicine, Maxima Medical Centre, Eindhoven, Noord-Brabant, The Netherlands
| | - Viktoria Dotz
- Center for Proteomics and Metabolomics, LUMC, Leiden, Zuid-Holland, The Netherlands
| | - Emma Schoep
- Cell and Chemical Biology, LUMC, Leiden, Zuid-Holland, The Netherlands
| | - Elham Memarian
- Center for Proteomics and Metabolomics, LUMC, Leiden, Zuid-Holland, The Netherlands
- Research Laboratory, Genos Glycoscience, Zagreb, Croatia
| | - Roderick C Slieker
- Cell and Chemical Biology, LUMC, Leiden, Zuid-Holland, The Netherlands
- Department of Epidemiology and Biostatistics, VUMC, Amsterdam, Noord-Holland, The Netherlands
| | - Petra J M Elders
- Department of General Practice and Elderly Care, Amsterdam Public Health Research Institute, Amsterdam UMC-Locatie VUMC, Amsterdam, Noord-Holland, The Netherlands
| | - Gerda Vreeker
- Center for Proteomics and Metabolomics, LUMC, Leiden, Zuid-Holland, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, LUMC, Leiden, Zuid-Holland, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, LUMC, Leiden, Zuid-Holland, The Netherlands
| | | | - Aloysius G Lieverse
- Internal Medicine, Maxima Medical Centre, Eindhoven, Noord-Brabant, The Netherlands
| | - Leen M 't Hart
- Cell and Chemical Biology, LUMC, Leiden, Zuid-Holland, The Netherlands
- Department of Epidemiology and Biostatistics, VUMC, Amsterdam, Noord-Holland, The Netherlands
| | - Mandy van Hoek
- Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Tijardović M, Marijančević D, Bok D, Kifer D, Lauc G, Gornik O, Keser T. Intense Physical Exercise Induces an Anti-inflammatory Change in IgG N-Glycosylation Profile. Front Physiol 2019; 10:1522. [PMID: 31920720 PMCID: PMC6933519 DOI: 10.3389/fphys.2019.01522] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Exercise is known to improve many aspects of human health, including modulation of the immune system and inflammatory status. It is generally understood that exercise reduces inflammation, but there are missing links in terms of understanding the mechanisms as well as the differences between exercise modalities. N-glycosylation of immunoglobulin G (IgG) and total plasma proteins was previously shown to reflect changes in inflammatory pathways, which could provide valuable information to further clarify exercise effects. In order to further expand the understanding of the relationship between physical activity and inflammation, we examined the effect of intense exercise, in the form of repeated sprint training (RST), on IgG and total plasma proteins N-glycosylation in combination with traditionally used inflammation markers: C-reactive protein (CRP), interleukin 6 (IL-6), and leukocyte count. Twenty-nine male physical education students were separated into treatment (RST, N = 15) and control (N = 14) groups. The RST group completed a 6-week exercise protocol while the control group was instructed to refrain from organized physical activity for the duration of the study. Three blood samples were taken at different time points: prior to start of the training program, the final week of the exercise intervention (EXC), and at the end of the 4-week recovery period (REC). Following the end of the recovery period IgG N-glycosylation profiles showed anti-inflammatory changes in RST group compared to the control group, which manifested as a decrease in agalactosylated (p = 0.0473) and an increase in digalactosylated (p = 0.0473), and monosialylated (p = 0.0339) N-glycans. Plasma protein N-glycans didn’t change significantly, while traditional inflammatory markers also didn’t show significant change in inflammatory status. Observed results demonstrate the potential of intense physical exercise to reduce levels of systemic basal inflammation as well as the potential for IgG N-glycosylation to serve as a sensitive longitudinal systemic inflammation marker.
Collapse
Affiliation(s)
- Marko Tijardović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Domagoj Marijančević
- Endocrinology Laboratory, Department of Oncology and Nuclear Medicine, University Hospital Centre Sestre Milosrdnice, Zagreb, Croatia
| | - Daniel Bok
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
N-glycomic Profile in Combat Related Post-Traumatic Stress Disorder. Biomolecules 2019; 9:biom9120834. [PMID: 31817821 PMCID: PMC6995522 DOI: 10.3390/biom9120834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/17/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) develops in a portion of individuals exposed to extreme trauma. Glycosylation is a post-translational modification that affects protein functions and is altered in various pathophysiological states and aging. There are still no validated biomarkers of PTSD. The aim of this study was to evaluate the N-glycomic profile in 543 male Caucasian individuals (299 veterans with PTSD and 244 control subjects). The study included discovery (N = 233) and replication (N = 310) cohort. Hydrophilic interaction HPLC and ultra-performance liquid chromatography were used to separate and detect 39 plasma and 24 IgG N-glycan species, respectively. All results were corrected for the effects of age and multiple testing. Significant results included only significantly altered N-glycans in cases/controls in both cohorts, in the same direction. Results showed that six plasma N-glycans (four increased and two decreased) were altered in PTSD vs. controls in both cohorts, but IgG N-glycans were similar between groups. The severity of PTSD was not associated with different plasma N-glycans. This is the first study detecting alterations in plasma N-glycans in PTSD. These N-glycans are also associated with other neuropsychiatric disorders and inflammation, suggesting possible shared glycosylation mechanisms.
Collapse
|
17
|
Metabolomic and glycomic findings in posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:181-193. [PMID: 30025792 DOI: 10.1016/j.pnpbp.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 01/10/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a stressor-related disorder that develops in a subset of individuals exposed to a traumatic experience. Factors associated with vulnerability to PTSD are still not fully understood. PTSD is frequently comorbid with various psychiatric and somatic disorders, moderate response to treatment and remission rates. The term "theranostics" combines diagnosis, prognosis, and therapy and offers targeted therapy based on specific analyses. Theranostics, combined with novel techniques and approaches called "omics", which integrate genomics, transcriptomic, proteomics and metabolomics, might improve knowledge about biological underpinning of PTSD, and offer novel therapeutic strategies. The focus of this review is on metabolomic and glycomic data in PTSD. Metabolomics evaluates changes in the metabolome of an organism by exploring the set of small molecules (metabolites), while glycomics studies the glycome, a complete repertoire of glycan structures with their functional roles in biological systems. Both metabolome and glycome reflect the physiological and pathological conditions in individuals. Only a few studies evaluated metabolic and glycomic changes in patients with PTSD. The metabolomics studies in PTSD patients uncovered different metabolites that might be associated with psychopathological alterations in PTSD. The glycomics study in PTSD patients determined nine N-glycan structures and found accelerated and premature aging in traumatized subjects and subjects with PTSD based on a GlycoAge index. Therefore, further larger studies and replications are needed. Better understanding of the biological basis of PTSD, including metabolomic and glycomic data, and their integration with other "omics" approaches, might identify new molecular targets and might provide improved therapeutic approaches.
Collapse
|
18
|
Paving the way for precision medicine v2.0 in intensive care by profiling necroinflammation in biofluids. Cell Death Differ 2018; 26:83-98. [PMID: 30201975 PMCID: PMC6294775 DOI: 10.1038/s41418-018-0196-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/16/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Current clinical diagnosis is typically based on a combination of approaches including clinical examination of the patient, clinical experience, physiologic and/or genetic parameters, high-tech diagnostic medical imaging, and an extended list of laboratory values mostly determined in biofluids such as blood and urine. One could consider this as precision medicine v1.0. However, recent advances in technology and better understanding of molecular mechanisms underlying disease will allow us to better characterize patients in the future. These improvements will enable us to distinguish patients who have similar clinical presentations but different cellular and molecular responses. Treatments will be able to be chosen more “precisely”, resulting in more appropriate therapy, precision medicine v2.0. In this review, we will reflect on the potential added value of recent advances in technology and a better molecular understanding of necrosis and inflammation for improving diagnosis and treatment of critically ill patients. We give a brief overview on the mutual interplay between necrosis and inflammation, which are two crucial detrimental factors in organ and/or systemic dysfunction. One of the challenges for the future will thus be the cellular and molecular profiling of necroinflammation in biofluids. The huge amount of data generated by profiling biomolecules and single cells through, for example, different omic-approaches is needed for data mining methods to allow patient-clustering and identify novel biomarkers. The real-time monitoring of biomarkers will allow continuous (re)evaluation of treatment strategies using machine learning models. Ultimately, we may be able to offer precision therapies specifically designed to target the molecular set-up of an individual patient, as has begun to be done in cancer therapeutics. Critical care mostly implies life-threatening situations involving systemic infection, inflammation and necrosis. Biofluids are an easily accessible source of liquid biopsies that can be used to monitor the evolution of the patient’s critical illness. The cellular and molecular profiling of necrosis and inflammation in biofluids using cutting-edge technologies such as realtime immunodiagnostics, next-generation sequencing and mass spectrometry will pave the way for precision medicine v2.0 in critical care. This is needed for data mining approaches to allow patientclustering, identify novel biomarkers and develop novel intervention strategies controlling necrosis and inflammation. The real-time monitoring of biomarkers will allow continued (re)evaluation of treatment strategies using machine learning models. ![]()
Collapse
|
19
|
Dotz V, Lemmers RFH, Reiding KR, Hipgrave Ederveen AL, Lieverse AG, Mulder MT, Sijbrands EJG, Wuhrer M, van Hoek M. Plasma protein N-glycan signatures of type 2 diabetes. Biochim Biophys Acta Gen Subj 2018; 1862:2613-2622. [PMID: 30251656 DOI: 10.1016/j.bbagen.2018.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Little is known about enzymatic N-glycosylation in type 2 diabetes, a common posttranslational modification of proteins influencing their function and integrating genetic and environmental influences. We sought to gain insights into N-glycosylation to uncover yet unexplored pathophysiological mechanisms in type 2 diabetes. METHODS Using a high-throughput MALDI-TOF mass spectrometry method, we measured N-glycans in plasma samples of the DiaGene case-control study (1583 cases and 728 controls). Associations were investigated with logistic regression and adjusted for age, sex, body mass index, high-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol, and smoking. Findings were replicated in a nested replication cohort of 232 cases and 108 controls. RESULTS Eighteen glycosylation features were significantly associated with type 2 diabetes. Fucosylation and bisection of diantennary glycans were decreased in diabetes (odds ratio (OR) = 0.81, p = 1.26E-03, and OR = 0.87, p = 2.84E-02, respectively), whereas total and, specifically, alpha2,6-linked sialylation were increased (OR = 1.38, p = 9.92E-07, and OR = 1.40, p = 5.48E-07). Alpha2,3-linked sialylation of triantennary glycans was decreased (OR = 0.60, p = 6.38E-11). CONCLUSIONS While some glycosylation changes were reflective of inflammation, such as increased alpha2,6-linked sialylation, our finding of decreased alpha2,3-linked sialylation in type 2 diabetes patients is contradictory to reports on acute and chronic inflammation. Thus, it might have previously unreported immunological implications in type 2 diabetes. GENERAL SIGNIFICANCE This study provides new insights into N-glycosylation patterns in type 2 diabetes, which can fuel studies on causal mechanisms and consequences of this complex disease.
Collapse
Affiliation(s)
- Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Roosmarijn F H Lemmers
- Department of Internal Medicine, ErasmusMC, University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Máxima Medical Center, Eindhoven, the Netherlands.
| | - Karli R Reiding
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Aloysius G Lieverse
- Department of Internal Medicine, Máxima Medical Center, Eindhoven, the Netherlands.
| | - Monique T Mulder
- Department of Internal Medicine, ErasmusMC, University Medical Center, Rotterdam, the Netherlands.
| | - Eric J G Sijbrands
- Department of Internal Medicine, ErasmusMC, University Medical Center, Rotterdam, the Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Mandy van Hoek
- Department of Internal Medicine, ErasmusMC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Plasma N-glycome composition associates with chronic low back pain. Biochim Biophys Acta Gen Subj 2018; 1862:2124-2133. [PMID: 29981899 DOI: 10.1016/j.bbagen.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Low back pain (LBP) is the symptom of a group of syndromes with heterogeneous underlying mechanisms and molecular pathologies, making treatment selection and patient prognosis very challenging. Moreover, symptoms and prognosis of LBP are influenced by age, gender, occupation, habits, and psychological factors. LBP may be characterized by an underlying inflammatory process. Previous studies indicated a connection between inflammatory response and total plasma N-glycosylation. We wanted to identify potential changes in total plasma N-glycosylation pattern connected with chronic low back pain (CLBP), which could give an insight into the pathogenic mechanisms of the disease. METHODS Plasma samples of 1128 CLBP patients and 760 healthy controls were collected in clinical centers in Italy, Belgium and Croatia and used for N-glycosylation profiling by hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) after N-glycans release, fluorescent labeling and clean-up. Observed N-glycosylation profiles have been compared with a cohort of 126 patients with acute inflammation that underwent abdominal surgery. RESULTS We have found a statistically significant increase in the relative amount of high-branched (tri-antennary and tetra-antennary) N-glycan structures on CLBP patients' plasma glycoproteins compared to healthy controls. Furthermore, relative amounts of disialylated and trisialylated glycan structures were increased, while high-mannose and glycans containing bisecting N-acetylglucosamine decreased in CLBP. CONCLUSIONS Observed changes in CLBP on the plasma N-glycome level are consistent with N-glycosylation changes usually seen in chronic inflammation. GENERAL SIGNIFICANCE To our knowledge, this is a first large clinical study on CLBP patients and plasma N-glycome providing a new glycomics perspective on potential disease pathology.
Collapse
|
21
|
Doherty M, Theodoratou E, Walsh I, Adamczyk B, Stöckmann H, Agakov F, Timofeeva M, Trbojević-Akmačić I, Vučković F, Duffy F, McManus CA, Farrington SM, Dunlop MG, Perola M, Lauc G, Campbell H, Rudd PM. Plasma N-glycans in colorectal cancer risk. Sci Rep 2018; 8:8655. [PMID: 29872119 PMCID: PMC5988698 DOI: 10.1038/s41598-018-26805-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant glycosylation has been associated with a number of diseases including cancer. Our aim was to elucidate changes in whole plasma N-glycosylation between colorectal cancer (CRC) cases and controls in one of the largest cohorts of its kind. A set of 633 CRC patients and 478 age and gender matched controls was analysed. Additionally, patients were stratified into four CRC stages. Moreover, N-glycan analysis was carried out in plasma of 40 patients collected prior to the initial diagnosis of CRC. Statistically significant differences were observed in the plasma N-glycome at all stages of CRC, this included a highly significant decrease in relation to the core fucosylated bi-antennary glycans F(6)A2G2 and F(6)A2G2S(6)1 (P < 0.0009). Stage 1 showed a unique biomarker signature compared to stages 2, 3 and 4. There were indications that at risk groups could be identified from the glycome (retrospective AUC = 0.77 and prospective AUC = 0.65). N-glycome biomarkers related to the pathogenic progress of the disease would be a considerable asset in a clinical setting and it could enable novel therapeutics to be developed to target the disease in patients at risk of progression.
Collapse
Affiliation(s)
- Margaret Doherty
- National Institute for Bioprocessing Research & Training, Dublin, Ireland.
- Institute of Technology Sligo, Department of Life Sciences, Sligo, Ireland.
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Barbara Adamczyk
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henning Stöckmann
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| | - Felix Agakov
- Pharmatics Limited, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, UK
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | | | | | - Fergal Duffy
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| | - Ciara A McManus
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| | - Susan M Farrington
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Markus Perola
- Department of Health, The National Institute for Health and Welfare, Helsinki, Finland
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Pauline M Rudd
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| |
Collapse
|
22
|
Protein N-Glycosylation in Cardiovascular Diseases and Related Risk Factors. CURRENT CARDIOVASCULAR RISK REPORTS 2018. [DOI: 10.1007/s12170-018-0579-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Vadrevu SK, Trbojevic-Akmacic I, Kossenkov AV, Colomb F, Giron LB, Anzurez A, Lynn K, Mounzer K, Landay AL, Kaplan RC, Papasavvas E, Montaner LJ, Lauc G, Abdel-Mohsen M. Frontline Science: Plasma and immunoglobulin G galactosylation associate with HIV persistence during antiretroviral therapy. J Leukoc Biol 2018; 104:461-471. [PMID: 29633346 DOI: 10.1002/jlb.3hi1217-500r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/26/2022] Open
Abstract
Global antibody glycosylation is dynamic and plays critical roles in shaping different immunological outcomes and direct antibody functionality during HIV infection. However, the relevance of global antibody or plasma glycosylation patterns to HIV persistence after antiretroviral therapy (ART) has not been characterized. First, we compared glycomes of total plasma and isolated immunoglobulin G (IgG) from HIV+ ART-suppressed, HIV+ viremic, and HIV-negative individuals. Second, in ART-suppressed individuals, we examined the associations between glycomes and (1) levels of cell-associated HIV DNA and RNA in PBMCs and isolated CD4+ T cells, (2) CD4 count and CD4%, and (3) expression of CD4+ T-cell activation markers. HIV infection is associated with persistent alterations in the IgG glycome including decreased levels of disialylated glycans, which is associated with a lower anti-inflammatory activity, and increased levels of fucosylated glycans, which is associated with lower antibody-dependent cell-mediated cytotoxicity (ADCC). We also show that levels of certain mono- and digalactosylated nonfucosylated glycomic traits (A2G1, A2G2, and A2BG2), which have been reported to be associated with higher ADCC and higher anti-inflammatory activities, exhibit significant negative correlations with levels of cell-associated total HIV DNA and HIV RNA in ART-suppressed individuals. Finally, levels of certain circulating anti-inflammatory glycans are associated with higher levels of CD4 T cells and lower levels of T-cell activation. Our findings represent the first proof-of-concept evidence that glycomic alterations, known to be associated with differential states of inflammation and ADCC activities, are also associated with levels of HIV persistence in the setting of ART suppression.
Collapse
Affiliation(s)
| | | | | | | | - Leila B Giron
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Kenneth Lynn
- The Wistar Institute, Philadelphia, Pennsylvania, USA.,Department of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Karam Mounzer
- Jonathan Lax Center, Philadelphia FIGHT, Pennsylvania, USA
| | - Alan L Landay
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
24
|
Gudelj I, Salo PP, Trbojević-Akmačić I, Albers M, Primorac D, Perola M, Lauc G. Low galactosylation of IgG associates with higher risk for future diagnosis of rheumatoid arthritis during 10 years of follow-up. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2034-2039. [PMID: 29572115 DOI: 10.1016/j.bbadis.2018.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Antibodies are known to have an important role in the development of rheumatoid arthritis (RA), one of the most prevalent chronic inflammatory diseases which primarily involves the joints. Most RA patients develop autoantibodies against immunoglobulin G (IgG) and changes in IgG glycosylation have been associated with RA. We undertook this study to determine whether altered IgG glycosylation precedes the disease diagnosis. We studied IgG glycosylation in RA in two prospective cohorts (N = 14,749) by measuring 28 IgG glycan traits in 179 subjects who developed RA within 10-years follow-up and 358 matched controls. Ultra-performance liquid chromatography method based on hydrophilic interactions (HILIC-UPLC) was used to analyse IgG glycans. Future RA diagnosis associated with traits related to lower galactosylation and sialylation of IgG when comparing the cases to the matched controls. In RA cases, these traits did not correlate with the time between being recruited to the study and being diagnosed with RA (median time 4.31 years). The difference in IgG glycosylation was relatively stable and present years before diagnosis. This indicates that long-acting factors affecting IgG glycome composition are among the underlying mechanisms of RA and that decreased galactosylation is a pre-existing risk factor involved in the disease development.
Collapse
Affiliation(s)
- Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Perttu P Salo
- National Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | | | - Malena Albers
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Dragan Primorac
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; St. Catherine Specialty Hospital, Zabok, Zagreb, Croatia; JJ Strossmayer University of Osijek, School of Medicine, Osijek, Croatia; University of Split, School of Medicine, Split, Croatia; Eberly College of Science, The Pennsylvania State University, University Park, PA, USA; Children's Hospital Srebrnjak, Zagreb, Croatia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland; University of Tartu, Estonian Genome Center, Tartu, Estonia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| |
Collapse
|
25
|
Kosicek M, Gudelj I, Horvatic A, Jovic T, Vuckovic F, Lauc G, Hecimovic S. N-glycome of the Lysosomal Glycocalyx is Altered in Niemann-Pick Type C Disease (NPC) Model Cells. Mol Cell Proteomics 2018; 17:631-642. [PMID: 29367433 DOI: 10.1074/mcp.ra117.000129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence implicates lysosomal dysfunction in the pathogenesis of neurodegenerative diseases, including the rare inherited lysosomal storage disorders (LSDs) and the most common neurodegenerative diseases, such as Alzheimer's and Parkinson's disease (AD and PD). Although the triggers of the lysosomal impairment may involve the accumulated macromolecules or dysfunction of the lysosomal enzymes, the role of the lysosomal glycocalyx in the lysosomal (dys)function has not been studied. The goal of this work was to analyze whether there are changes in the lysosomal glycocalyx in a cellular model of a LSD Niemann-Pick type C disease (NPC). Using the ferrofluid nanoparticles we isolated lysosomal organelles from NPC1-null and CHOwt cells. The magnetically isolated lysosomal fractions were enriched with the lysosomal marker protein LAMP1 and showed the key features of NPC disease: 3-fold higher cholesterol content and 4-5 fold enlarged size of the particles compared with the lysosomal fractions of wt cells. These lysosomal fractions were further processed to isolate lysosomal membrane proteins using Triton X-114 and their N-glycome was analyzed by HILIC-UPLC. N-glycans presented in each chromatographic peak were elucidated using MALDI-TOF/TOF-MS. We detected changes in the N-glycosylation pattern of the lysosomal glycocalyx of NPC1-null versus wt cells which involved high-mannose and sialylated N-glycans. To the best of our knowledge this study is the first to report N-glycome profiling of the lysosomal glycocalyx in NPC disease cellular model and the first to report the specific changes in the lysosomal glycocalyx in NPC1-null cells. We speculate that changes in the lysosomal glycocalyx may contribute to lysosomal (dys)function. Further glycome profiling of the lysosomal glycocalyx in other LSDs as well as the most common neurodegenerative diseases, such as AD and PD, is necessary to better understand the role of the lysosomal glycocalyx and to reveal its potential contribution in lysosomal dysfunction leading to neurodegeneration.
Collapse
Affiliation(s)
- Marko Kosicek
- From the ‡Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Gudelj
- §Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Anita Horvatic
- ¶ERA Chair team, Internal Diseases Clinic, University of Zagreb, Faculty of Veterinary Medicine, Heinzelova 55, 10000 Zagreb, Croatia
| | - Tanja Jovic
- From the ‡Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.,‖University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Frano Vuckovic
- §Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- §Genos Glycoscience Research Laboratory, Zagreb, Croatia.,‖University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Silva Hecimovic
- From the ‡Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia;
| |
Collapse
|
26
|
Designed synthesis of a "One for Two" hydrophilic magnetic amino-functionalized metal-organic framework for highly efficient enrichment of glycopeptides and phosphopeptides. Sci Rep 2017; 7:1162. [PMID: 28442774 PMCID: PMC5430903 DOI: 10.1038/s41598-017-01341-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
Highly efficient enrichment of glycopeptides or phosphopeptides from complex biological samples is indispensable for high-throughput mass spectrometry analysis. In this study, for the first time, a "one for two" hydrophilic magnetic amino-functionalized metal-organic framework (MOF) was designed and synthesized for selective enrichment of both glycopeptides and phosphopeptides. A well-known solvo-thermal reaction was adopted to prepare a magnetic core Fe3O4, followed by self- polymerization of dopamine, creating a polydopamine (PDA) onto Fe3O4. Thanks to the hydroxyl and amino group of PDA, Zr3+ was easily adhered to the surface, inducing the following one-pot MOF reaction with amino ligand. After characterization of the as-prepared MOFs (denoted as Fe3O4@PDA@UiO-66-NH2), its ultrahigh surface area, excellent hydrophilicity and strong magnetic responsiveness were highly confirmed. Based on hydrophilic interaction, it was applied to glycopeptide enrichment, while based on strong binding between Zr and phosphopeptides, it was applied to phosphopeptide enrichment, both exhibiting excellent performance in standard proteins and human serum with high sensitivity and selectivity. These results showed the as-prepared MOFs had great potential in proteomics research.
Collapse
|