1
|
Casarcia N, Rogers P, Guld E, Iyer S, Li Y, Burcher JT, DeLiberto LK, Banerjee S, Bishayee A. Phytochemicals for the prevention and treatment of pancreatic cancer: Current progress and future prospects. Br J Pharmacol 2025; 182:2181-2234. [PMID: 37740585 DOI: 10.1111/bph.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States, owing to its aggressive nature and suboptimal treatment options, emphasizing the need for novel therapeutic approaches. Emerging studies have exhibited promising results regarding the therapeutic utility of plant-derived compounds (phytochemicals) in pancreatic cancer. The purpose of this review is to evaluate the potential of phytochemicals in the treatment and prevention of pancreatic cancer. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses was applied to collect articles for this review. Scholarly databases, including PubMed, Scopus and ScienceDirect, were queried for relevant studies using the following keywords: phytochemicals, phenolics, terpenoids, alkaloids, sulfur-containing compounds, in vitro, in vivo, clinical studies, pancreatic cancer, tumour, treatment and prevention. Aggregate results pooled from qualified studies indicate phytochemicals can inhibit pancreatic cancer cell growth or decrease tumour size and volume in animal models. These effects have been attributed to various mechanisms, such as increasing proapoptotic factors, decreasing antiapoptotic factors, or inducing cell death and cell cycle arrest. Notable signalling pathways modulated by phytochemicals include the rat sarcoma/mitogen activated protein kinase, wingless-related integration site/β-catenin and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signal transduction pathways. Clinically, phytochemicals have been found to increase survival while being well-tolerated and safe, though research is scarce. While these promising results have produced great interest in this field, further in-depth studies are required to characterize the anticancer activities of phytochemicals before they can be utilized to prevent or treat pancreatic cancer in clinical practice. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Patrick Rogers
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Emma Guld
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Samvit Iyer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Yutong Li
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
2
|
Mendonça BS, Nascimento LMM, Ferro JNDS, Dos Santos Reis MD. The effect of plant-derived polyphenols on the immune system during aging: a systematic review. Immunopharmacol Immunotoxicol 2024; 46:604-617. [PMID: 39069754 DOI: 10.1080/08923973.2024.2384911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Polyphenols are organic compounds with diverse biological activities such as anti-inflammatory and antioxidant effects, making them important candidates for the development of anti-aging drugs. In this systematic review, we aimed to answer the question: can plant-derived polyphenols have an immunomodulatory effect in experimental models of aging? METHODS We systematically searched Web of Science, MEDLINE/Pubmed, and Embase to select articles using the following combinations of terms and synonyms: polyphenols, phenols, senescence, aging, and immune. The selected articles were evaluated for reporting quality and risk-of-bias according to standard guidelines. RESULTS The most used polyphenol was resveratrol, followed by curcumin, salidroside, and gallic acid. These molecules demonstrated an ability to restore immune function both in vitro and in vivo. The mechanism of action was not completely elucidated in these studies, but inhibition of NF-kB signaling, and antioxidant properties seemed to account for the anti-aging effects. All articles included in the review had good quality of reporting but failed to describe an adequate sample size, criteria for inclusion/exclusion, randomization, and blinding. CONCLUSION We conclude that polyphenols are promising immunomodulatory substances for use in anti-aging therapies. However, more research with standardized analysis is needed to understand the role of these molecules in the prevention or reduction of damage associated with the aging process, as well as to determine the safety profile and consequences of systemic action.
Collapse
Affiliation(s)
- Beatriz Santana Mendonça
- Laboratory of Cell Biology, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceió
| | | | | | | |
Collapse
|
3
|
Chang WL, Yang KC, Peng JY, Hong CL, Li PC, Chye SM, Lu FJ, Shih CW, Chen CH. Parecoxib Enhances Resveratrol against Human Colorectal Cancer Cells through Akt and TXNDC5 Inhibition and MAPK Regulation. Nutrients 2024; 16:3020. [PMID: 39275334 PMCID: PMC11397307 DOI: 10.3390/nu16173020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
In this study, we discovered the mechanisms underlying parecoxib and resveratrol combination's anti-cancer characteristics against human colorectal cancer DLD-1 cells. We studied its anti-proliferation and apoptosis-provoking effect by utilizing cell viability 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence microscope, gene overexpression, Western blot, and flow cytometry analyses. Parecoxib enhanced the ability of resveratrol to inhibit cell viability and increase apoptosis. Parecoxib in combination with resveratrol strongly enhanced apoptosis by inhibiting the expression of thioredoxin domain containing 5 (TXNDC5) and Akt phosphorylation. Parecoxib enhanced resveratrol-provoked c-Jun N-terminal kinase (JNK) and p38 phosphorylation. Overexpression of TXNDC5 and repression of JNK and p38 pathways significantly reversed the inhibition of cell viability and stimulation of apoptosis by the parecoxib/resveratrol combination. This study presents evidence that parecoxib enhances the anti-cancer power of resveratrol in DLD-1 colorectal cancer cells via the inhibition of TXNDC5 and Akt signaling and enhancement of JNK/p38 MAPK pathways. Parecoxib may be provided as an efficient drug to sensitize colorectal cancer by resveratrol.
Collapse
Affiliation(s)
- Wan-Ling Chang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Chiayi County, Puzi City 613016, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100233, Taiwan;
| | - Jyun-Yu Peng
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Chiayi County, Puzi City 613016, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Chain-Lang Hong
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Chiayi County, Puzi City 613016, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Pei-Ching Li
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Chiayi County, Puzi City 613016, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Soi Moi Chye
- School of Health Science, Division of Applied Biomedical Science and Biotechnology, IMU University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung City 402306, Taiwan;
| | - Ching-Wei Shih
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, A25-303 Room, Life Sciences Hall, No. 300, Syuefu Road, Chiayi City 600355, Taiwan;
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, A25-303 Room, Life Sciences Hall, No. 300, Syuefu Road, Chiayi City 600355, Taiwan;
| |
Collapse
|
4
|
Dong Q, Zheng A, Zhai H, Zhang T. Resveratrol mediated the proliferation and apoptosis of gastric cancer cells by modulating the PI3K/Akt/P53 signaling pathway. Biochem Biophys Res Commun 2024; 723:150186. [PMID: 38830298 DOI: 10.1016/j.bbrc.2024.150186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The aim of this study was to investigate the anti-cancer effects of resveratrol (RES) against gastric cancer (GC) and explore the potential mechanisms. We first measured the anti-cancer effects of RES on GC cell lines (i.e. AGS and HGC-27). Then protein-protein interaction (PPI) network was constructed, followed by GO and KEGG analysis to screen the possible targets. Molecular docking analysis was given to visualize the pharmacological effects of RES on GC cell lines. For the in vivo experiments, xenograft tumor model was established, and Western blot analysis was performed to determine the expression of protein screened by network pharmacology. Our results showed that RES could promote the apoptosis of GC cells. Five hub targets were identified by network pharmacology, including AKT1, TP53, JUN, ESR1 and MAPK14. GO and KEGG analyses revealed the PI3K/Akt/P53 signaling pathway was the most related signaling pathway. Molecular docking analysis indicated that RES could form 3 hydrogen bonds with AKT1 and 3 hydrogen bonds with TP53. The inhibitory effects of RES on the proliferation and promoting effects of RES on the apoptosis of AGS and HGC-27 cells were significantly reversed when blocking the PI3K-Akt signaling pathway using the LY294002. In vivo results showed that RES induced significant decrease of tumor volume and tumor weight without changing the body weight, or inducing significant cytotoxicities. Western blot analysis proved that RES could induce down-regulation of p-Akt and up-regulation of P53 in vivo. In conclusion, RES showed anti-cancer effects in GC by regulating the PI3K/Akt/P53 signaling pathway.
Collapse
Affiliation(s)
- Qihao Dong
- Department of Neurology, Zibo Central Hospital, Zibo, 255000, China
| | - Aixi Zheng
- Department of Emergency Medicine, Zibo Central Hospital, Zibo, 255000, China
| | - Heng Zhai
- Department of Emergency Medicine, Zibo Central Hospital, Zibo, 255000, China
| | - Tongtong Zhang
- Department of Medical Laboratory, Zibo Central Hospital, Zibo, 255000, China.
| |
Collapse
|
5
|
Li J, Qi Z, Yang P, Tang Q, Duan J. Air-fabricated CsPbIBr 2 perovskite film for efficient and stable solar cells by a triacetyl resveratrol additive. Chem Commun (Camb) 2024; 60:8617-8620. [PMID: 39046254 DOI: 10.1039/d4cc02293a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Herein, we demonstrate that triacetyl resveratrol (TRES) can be employed as an antioxidant additive to suppress the formation of oxidation-induced defects in air-fabricated perovskite films. When assembling into carbon-based CsPbIBr2 and CsPbI2Br cells, an enhanced efficiency of 10.38% and 14.98% has been achieved, with nearly unchanged efficiency after 1128 h of shelf storage in air and 86% of the initial efficiency after >1000 h aging at 85 °C.
Collapse
Affiliation(s)
- Jiabao Li
- Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, P. R. China.
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| | - Ziting Qi
- Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, P. R. China.
| | - Peizhi Yang
- Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, P. R. China.
| | - Qunwei Tang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| | - Jialong Duan
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| |
Collapse
|
6
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhang Y, Xu H, Li Y, Sun Y, Peng X. Advances in the treatment of pancreatic cancer with traditional Chinese medicine. Front Pharmacol 2023; 14:1089245. [PMID: 37608897 PMCID: PMC10440824 DOI: 10.3389/fphar.2023.1089245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Pancreatic cancer is a common malignancy of the digestive system. With a high degree of malignancy and poor prognosis, it is called the "king of cancers." Currently, Western medicine treats pancreatic cancer mainly by surgical resection, radiotherapy, and chemotherapy. However, the curative effect is not satisfactory. The application of Traditional Chinese Medicine (TCM) in the treatment of pancreatic cancer has many advantages and is becoming an important facet of comprehensive clinical treatment. In this paper, we review current therapeutic approaches for pancreatic cancer. We also review the protective effects shown by TCM in different models and discuss the potential molecular mechanisms of these.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hui Xu
- Department of Internal Medicine, Southern Medical University, Guangzhou, China
| | - Yue Li
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yang Sun
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Kmetič I, Murati T, Kovač V, Jurčević IL, Šimić B, Radošević K, Miletić M. Novel ferrocene-containing triacyl derivative of resveratrol improves viability parameters in ovary cells. J Appl Toxicol 2023. [PMID: 36823762 DOI: 10.1002/jat.4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Besides the use of resveratrol as a drug candidate, there are obstacles mainly due to its poor pharmacokinetic properties. Numerous studies are being conducted on the synthesis of resveratrol derivatives that exhibit enhanced biological activity. The aim of our research was to investigate activity of the newly synthesized ferrocene-containing triacyl derivative of resveratrol to achieve cell protection from endo/exogenous ROS and reduction in cell death by assessing multiple endpoints. Our research showed that both resveratrol and the resveratrol derivatives (1-100 μM) lower the levels of ROS in CHO-K1 cells. Resveratrol at doses <20 μM had little or no effect on cell proliferation, while at higher doses, a significant inhibitory effect on cell proliferation and viability has been noticed. The activity of the new derivative was significantly altered compared to resveratrol-cellular viability was not suppressed regardless of the concentration applied, and the extent of apoptosis was low. In summary, the new ferrocene-resveratrol derivative has the potential to protect cells from oxidative stress due to its low cytotoxicity and retained antioxidant properties, whereas caution should be exercised with resveratrol at higher doses, as it significantly impairs cell viability and induces cell death. By linking ROS to specific diseases (relevance in neurodegenerative, cardiovascular, and neoplastic diseases), we can assume that the new resveratrol derivative can prevent or alleviate the mentioned disorders. Furthermore, recognition of the resveratrol derivative as an anti-apoptotic chemical could be useful in the cultivation of various cell lines on a large scale in the industrial biotechnology.
Collapse
Affiliation(s)
- Ivana Kmetič
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Teuta Murati
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Veronika Kovač
- Laboratory for Organic Chemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Irena Landeka Jurčević
- Laboratory for Food Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Branimir Šimić
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Kristina Radošević
- Laboratory for Cell Culture Technology and Biotransformations, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Marina Miletić
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| |
Collapse
|
9
|
Florio R, De Filippis B, Veschi S, di Giacomo V, Lanuti P, Catitti G, Brocco D, di Rienzo A, Cataldi A, Cacciatore I, Amoroso R, Cama A, De Lellis L. Resveratrol Derivative Exhibits Marked Antiproliferative Actions, Affecting Stemness in Pancreatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24031977. [PMID: 36768301 PMCID: PMC9916441 DOI: 10.3390/ijms24031977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies, with an increasing incidence and limited response to current therapeutic options. Therefore, more effective and low-toxic agents are needed to improve PC patients' outcomes. Resveratrol (RSV) is a natural polyphenol with multiple biological properties, including anticancer effects. In this study, we explored the antiproliferative activities of newly synthetized RSV analogues in a panel of PC cell lines and evaluated the physicochemical properties of the most active compound. This derivative exhibited marked antiproliferative effects in PC cells through mechanisms involving DNA damage, apoptosis induction, and interference in cell cycle progression, as assessed using flow cytometry and immunoblot analysis of cell cycle proteins, PARP cleavage, and H2AX phosphorylation. Notably, the compound induced a consistent reduction in the PC cell subpopulation with a CD133+EpCAM+ stem-like phenotype, paralleled by dramatic effects on cell clonogenicity. Moreover, the RSV derivative had negligible toxicity against normal HFF-1 cells and, thus, good selectivity index values toward PC cell lines. Remarkably, its higher lipophilicity and stability in human plasma, as compared to RSV, might ensure a better permeation along the gastrointestinal tract. Our results provide insights into the mechanisms of action contributing to the antiproliferative activity of a synthetic RSV analogue, supporting its potential value in the search for effective and safe agents in PC treatment.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Viviana di Giacomo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa di Rienzo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| | - Laura De Lellis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| |
Collapse
|
10
|
Triacetyl Resveratrol Inhibits PEDV by Inducing the Early Apoptosis In Vitro. Int J Mol Sci 2022; 23:ijms232314499. [PMID: 36498827 PMCID: PMC9737061 DOI: 10.3390/ijms232314499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
PEDV represents an ancient Coronavirus still causing huge economic losses to the porcine breeding industry. Resveratrol has excellent antiviral effects. Triacetyl resveratrol (TCRV), a novel natural derivative of resveratrol, has been recently discovered, and its pharmacological effects need to be explored further. This paper aims to explore the relationship between PEDV and TCRV, which offers a novel strategy in the research of antivirals. In our study, Vero cells and IPEC-J2 cells were used as an in vitro model. First, we proved that TCRV had an obvious anti-PEDV effect and a strong inhibitory effect at different time points. Then, we explored the mechanism of inhibition of PEDV infection by TCRV. Our results showed that TCRV could induce the early apoptosis of PEDV-infected cells, in contrast to PEDV-induced apoptosis. Moreover, we observed that TCRV could promote the expression and activation of apoptosis-related proteins and release mitochondrial cytochrome C into cytoplasm. Based on these results, we hypothesized that TCRV induced the early apoptosis of PEDV-infected cells and inhibited PEDV infection by activating the mitochondria-related caspase pathway. Furthermore, we used the inhibitors Z-DEVD-FMK and Pifithrin-α (PFT-α) to support our hypothesis. In conclusion, the TCRV-activated caspase pathway triggered early apoptosis of PEDV-infected cells, thereby inhibiting PEDV infections.
Collapse
|
11
|
Jang JY, Im E, Kim ND. Mechanism of Resveratrol-Induced Programmed Cell Death and New Drug Discovery against Cancer: A Review. Int J Mol Sci 2022; 23:13689. [PMID: 36430164 PMCID: PMC9697740 DOI: 10.3390/ijms232213689] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in grapes, red wine, peanuts, and apples, has been reported to exhibit a wide range of biological and pharmacological properties. In addition, resveratrol has been reported to intervene in multiple stages of carcinogenesis. It has also been known to kill several human cancer cells through programmed cell death (PCD) mechanisms such as apoptosis, autophagy, and necroptosis. However, resveratrol has limitations in its use as an anticancer agent because it is susceptible to photoisomerization owing to its unstable double bond, short half-life, and is rapidly metabolized and eliminated. Trans-(E)-resveratrol is nontoxic, and has several biological and pharmacological activities. However, little is known about the pharmacological properties of the photoisomerized cis-(Z)-resveratrol. Therefore, many studies on resveratrol derivatives and analogues that can overcome the shortcomings of resveratrol and increase its anticancer activity are underway. This review comprehensively summarizes the literature related to resveratrol-induced PCD, such as apoptosis, autophagy, necroptosis, and the development status of synthetic resveratrol derivatives and analogues as novel anticancer drugs.
Collapse
Affiliation(s)
| | | | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea
| |
Collapse
|
12
|
The Effects of Nutrient Signaling Regulators in Combination with Phytocannabinoids on the Senescence-Associated Phenotype in Human Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23158804. [PMID: 35955938 PMCID: PMC9368899 DOI: 10.3390/ijms23158804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Identifying effective anti-aging compounds is a cornerstone of modern longevity, aging, and skin-health research. There is considerable evidence of the effectiveness of nutrient signaling regulators such as metformin, resveratrol, and rapamycin in longevity and anti-aging studies; however, their potential protective role in skin aging is controversial. In light of the increasing appearance of phytocannabinoids in beauty products without rigorous research on their rejuvenation efficacy, we decided to investigate the potential role of phytocannabinoids in combination with nutrient signaling regulators in skin rejuvenation. Utilizing CCD-1064Sk skin fibroblasts, the effect of metformin, triacetylresveratrol, and rapamycin combined with phytocannabinoids on cellular viability, functional activity, metabolic function, and nuclear architecture was tested. We found triacetylresveratrol combined with cannabidiol increased the viability of skin fibroblasts (p < 0.0001), restored wound-healing functional activity (p < 0.001), reduced metabolic dysfunction, and ameliorated nuclear eccentricity and circularity in senescent fibroblasts (p < 0.01). Conversely, metformin with or without phytocannabinoids did not show any beneficial effects on functional activity, while rapamycin inhibited cell viability (p < 0.01) and the speed of wound healing (p < 0.001). Therefore, triacetylresveratrol and cannabidiol can be a valuable source of biologically active substances used in aging and more studies using animals to confirm the efficacy of cannabidiol combined with triacetylresveratrol should be performed.
Collapse
|
13
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Navarro-Orcajada S, Conesa I, Vidal-Sánchez FJ, Matencio A, Albaladejo-Maricó L, García-Carmona F, López-Nicolás JM. Stilbenes: Characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Crit Rev Food Sci Nutr 2022; 63:7269-7287. [PMID: 35234546 DOI: 10.1080/10408398.2022.2045558] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stilbenes are phenolic compounds naturally synthesized as secondary metabolites by the shikimate pathway in plants. Research on them has increased in recent years due to their therapeutic potential as antioxidant, antimicrobial, anti-inflammatory, anticancer, cardioprotective and anti-obesity agents. Amongst them, resveratrol has attracted the most attention, although there are other natural and synthesized stilbenes with enhanced properties. However, stilbenes have some physicochemical and pharmacokinetic problems that need to be overcome before considering their applications. Human clinical evidence of their bioactivity is still controversial due to this fact and hence, exhaustive basis science on stilbenes is needed before applied science. This review gathers the main physicochemical and biological properties of natural stilbenes, establishes structure-activity relationships among them, emphasizing the current problems that limit their applications and presenting some promising approaches to overcome these issues: the encapsulation in different agents and the structural modification to obtain novel stilbenes with better features. The bioactivity of stilbenes should move from promising to evident.
Collapse
Affiliation(s)
- Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Irene Conesa
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco José Vidal-Sánchez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | | | - Lorena Albaladejo-Maricó
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
15
|
Li M, Tang D, Yang T, Qian D, Xu R. Apoptosis Triggering, an Important Way for Natural Products From Herbal Medicines to Treat Pancreatic Cancers. Front Pharmacol 2022; 12:796300. [PMID: 35222011 PMCID: PMC8863938 DOI: 10.3389/fphar.2021.796300] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer, a poor prognosis and high morbidity and mortality cancer, is a malignant tumor occurring in pancreatic exocrine glands. Currently, surgery and gemcitabine (Gem) are commonly used to treat pancreatic cancers. However, the high recurrence rate and resistance makes the therapeutic effects still unsatisfied. Apoptosis is comprehensively recognized as one of the major ways of the programmed cell death, refers to the autonomous and orderly death process of cells in order to maintain the stability of the body's environment after receiving a certain signal or stimulation. Currently, it has also been proven to be a promising way for the treatment of pancreatic cancer. Nowadays, some active ingredients from herbal medicine have been reported to be effective for the treatment of pancreatic cancer via inducing cells apoptosis. Therefore, this article reviews the current references regarding anti pancreatic cancer effects of natural products derived from herbal medicines via triggering apoptosis, and summarizes the related potential signal pathways, including death receptors mediated apoptotic pathway, mitochondrial dependent apoptotic pathway, NF-κB mediated apoptotic pathways, MAPK mediated apoptotic pathway, ERS mediated apoptotic pathway, PI3K-Akt mediated apoptotic pathway, and other pathways such as JAK-STAT signal pathway, which can lay a certain foundation for the research and development of new natural products against pancreatic cancer.
Collapse
Affiliation(s)
- Meiyan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Yee YJ, Benson HA, Dass CR, Chen Y. Evaluation of novel conjugated resveratrol polymeric nanoparticles in reduction of plasma degradation, hepatic metabolism and its augmentation of anticancer activity in vitro and in vivo. Int J Pharm 2022; 615:121499. [DOI: 10.1016/j.ijpharm.2022.121499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
|
17
|
Inbaraj BS, Hua LH, Chen BH. Comparative Study on Inhibition of Pancreatic Cancer Cells by Resveratrol Gold Nanoparticles and a Resveratrol Nanoemulsion Prepared from Grape Skin. Pharmaceutics 2021; 13:1871. [PMID: 34834286 PMCID: PMC8622665 DOI: 10.3390/pharmaceutics13111871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023] Open
Abstract
Resveratrol, a phenolic compound possessing vital biological activities such as anti-cancer, is present abundantly in grape skin, a waste produced during the processing of grape juice. The objectives of this study were to prepare resveratrol-gold nanoparticles and a resveratrol nanoemulsion from grape skin and study their inhibition effects on pancreatic cancer cells BxPC-3. The spherical-shaped citrate gold nanoparticles (GNPs) and resveratrol-gold nanoparticles (R-GNPs) were, respectively, prepared with a surface plasmon resonance peak at 528 and 538 nm, mean particle size of 20.8 and 11.9 nm, and zeta-potential at -32.7 and -66.7 mV, by controlling an appropriate concentration of citrate/resveratrol and gold chloride as well as stirring time and temperature. The resveratrol nanoemulsion, composed of soybean oil, Tween 80, and sucrose fatty acid ester in glycerol and water, possessed a high storage stability with a mean particle size of 14.1 nm, zeta-potential of -49.7 mV, and encapsulation efficiency of 95.5%. An antiproliferation study revealed that both R-GNPs and resveratrol nanoemulsion could effectively inhibit the growth of pancreatic cancer cells BxPC-3, with the latter showing a higher inhibition effect. Western blot analysis implied that both can down-regulate expressions of cyclin A, cyclin B, CDK1, and CDK2 and up-regulate expressions of p53 and p21, accompanied by enhancing cytochrome C expression, decreasing BcL-2 expression, increasing Bax expression, and leading to the elevation of caspase-8, caspase-9, and caspase-3 activities for cell apoptosis execution. Future research is needed to study the inhibition of pancreatic tumors in vivo by R-GNPs and resveratrol nanoemulsions.
Collapse
Affiliation(s)
- Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (B.S.I.); (L.-H.H.)
| | - Leng-Huei Hua
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (B.S.I.); (L.-H.H.)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (B.S.I.); (L.-H.H.)
- Department of Nutrition, China Medical University, Taichung 40401, Taiwan
| |
Collapse
|
18
|
A Natural Botanical Product, Resveratrol, Effectively Suppresses Vesicular Stomatitis Virus Infection In Vitro. PLANTS 2021; 10:plants10061231. [PMID: 34204270 PMCID: PMC8234721 DOI: 10.3390/plants10061231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Numerous natural phytochemicals such as resveratrol are acknowledged as potent botanical agents in regulating immune responses. However, it is less understood whether such immunomodulatory phytochemicals are appropriate for use as direct treatments in veterinary viral diseases. In the present study, we investigated the efficacy of resveratrol in suppressing vesicular stomatitis virus (VSV) infection. Outbreaks of VSV can cause massive economic loss in poultry and livestock husbandry farming, and VSV treatment is in need of therapeutic development. We utilized a recombinant VSV that expresses green fluorescent protein (GFP) to measure viral replication in cells treated with resveratrol. Our findings revealed that resveratrol treatment affords a protective effect, shown by increased viability and reduced viral replication, as indicated by a reduction in fluorescent signals. Additionally, we found that resveratrol inhibition of VSV infection occurs via suppression of the caspase cascade. Structural analysis also indicated that resveratrol potentially interacts with the active sites of caspase-3 and -7, facilitating antiviral activity. The potential effect of resveratrol on reducing VSV infection in vitro suggests that resveratrol should be further investigated as a potential veterinary therapeutic or prophylactic agent.
Collapse
|
19
|
Barman S, Fatima I, Singh AB, Dhawan P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22094765. [PMID: 33946266 PMCID: PMC8124621 DOI: 10.3390/ijms22094765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence:
| |
Collapse
|
20
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
21
|
Spevakova I, Fernandez-Cruz ML, Tokarova K, Greifova H, Capcarova M. The protective effect of stilbenes resveratrol and pterostilbene individually and combined with mycotoxin citrinin in human adenocarcinoma HT-29 cell line in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:75-88. [PMID: 33112704 DOI: 10.1080/10934529.2020.1839279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
This study was focused to determine an individual and combined effect of mycotoxin citrinin (CIT) and two compounds of the stilbene family- resveratrol (RES) and his dimethyl ether analogue pterostilbene (PTE) which have many health benefits. As a model the human adenocarcinoma cell line HT-29 was used which may exhibits the properties of small intestine cells. Viability, plasma membrane integrity, lysosomal functionality, intracellular production of superoxide anions and superoxide dismutase activity were examined. The results indicate that concentrations of 50 and 100 μg/mL of the tested compounds were cytotoxic in mostly monitored parameters and probably caused apoptosis. HT-29 cells were more sensitive to PTE than to RES with a higher antioxidant effect of PTE than RES, which may be caused by its chemical structure. Both stilbenes at medium doses act as effective superoxide anions scavengers leading to reduction of oxidative stress and consequent cell damage. The nontoxic concentration of RES (25 µg/mL) protects the HT-29 cell line faced to the toxicity of CIT at 25 µg/mL by increasing viability of cells and by reducing the superoxide production induced by CIT concentrations of 12.5 µg/mL and 25 µg/mL.
Collapse
Affiliation(s)
- Ivana Spevakova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Maria-Luisa Fernandez-Cruz
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Katarina Tokarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Hana Greifova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marcela Capcarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
22
|
Sun X, Xu Q, Zeng L, Xie L, Zhao Q, Xu H, Wang X, Jiang N, Fu P, Sang M. Resveratrol suppresses the growth and metastatic potential of cervical cancer by inhibiting STAT3 Tyr705 phosphorylation. Cancer Med 2020; 9:8685-8700. [PMID: 33040485 PMCID: PMC7666735 DOI: 10.1002/cam4.3510] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/17/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Aberrant signal transducer and activator of transcription 3 (STAT3) signaling promotes the initiation and progression of cancer in humans by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis. The role of resveratrol(RES)in inhibiting the STAT3 signaling pathway in vivo, particularly in cervical cancer is still unknown. This study aims to investigate the role of STAT3 and its phosphorylation in RES‐mediated suppression of cervical cancer. The effects of RES on cervical cancer were determined by examining tumor tissues, their histological changes, and the volume and weight of tumor tissues grown from HeLa cells injected in female athymic BALB/C nude mice. The structure and target interaction of RES were virtually screened using the molecular docking program Autodock Vina. The status of phosphorylated STAT3, protein levels of epithelial‐mesenchymal transition molecular markers and extracellular matrix degradation enzymes were determined through Western blot. We demonstrated that RES could suppress the proliferation and metastatic potential of cervical cancer cells by inactivating phosphorylation of STAT3 at Tyr705 but not Ser727. This effect was intensified by inhibition of the STAT3 signal pathway.
Collapse
Affiliation(s)
- Xiaodong Sun
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Qianqian Xu
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Lian Zeng
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Lixia Xie
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Qiang Zhao
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Hongxia Xu
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Xuanbin Wang
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Nan Jiang
- Hubei Province Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, People's Republic of China
| | - Pan Fu
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Ming Sang
- Hubei Institute of Parkinson's Disease at Xiangyang No. 1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
23
|
Tse C, Warner A, Farook R, Cronin JG. Phytochemical Targeting of STAT3 Orchestrated Lipid Metabolism in Therapy-Resistant Cancers. Biomolecules 2020; 10:biom10081118. [PMID: 32731620 PMCID: PMC7464013 DOI: 10.3390/biom10081118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids are critical for maintaining homeostasis and cellular metabolism. However, the dysregulation of lipid metabolism contributes to the pathogenesis of chronic inflammatory diseases and is a hallmark of several cancer types. Tumours exist in a microenvironment of poor vascularization-depleted oxygen and restricted nutrients. Under these conditions, tumours have been shown to increasingly depend on the metabolism of fatty acids for sustained proliferation and survival. Signal transducer and activator of transcription 3 (STAT3) plays a key role in cellular processes such as cell growth, apoptosis and lipid metabolism. Aberrant STAT3 activity, as seen in several cancer types, is associated with tumour progression and malignancy, in addition to propagating crosstalk between tumour cells and the microenvironment. Furthermore, STAT3-regulated lipid metabolism is critical for cancer stem cell self-renewal and therapy resistance. Plant-derived compounds known as phytochemicals are a potential source for novel cancer therapeutic drugs. Dietary phytochemicals are known to modulate key cellular signalling pathways involved in lipid homeostasis and metabolism, including the STAT3 signalling pathways. Targeting STAT3 orchestrated lipid metabolism has shown therapeutic promise in human cancer models. In this review, we summarize the antitumour activity of phytochemicals with an emphasis placed on their effect on STAT3-regulated lipid metabolism and their role in abrogating therapy resistance.
Collapse
|
24
|
Gašić U, Ćirić I, Pejčić T, Radenković D, Djordjević V, Radulović S, Tešić Ž. Polyphenols as Possible Agents for Pancreatic Diseases. Antioxidants (Basel) 2020; 9:antiox9060547. [PMID: 32585831 PMCID: PMC7346180 DOI: 10.3390/antiox9060547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is very aggressive and it is estimated that it kills nearly 50% of patients within the first six months. The lack of symptoms specific to this disease prevents early diagnosis and treatment. Today, gemcitabine alone or in combination with other cytostatic agents such as cisplatin (Cis), 5-fluorouracil (5-FU), irinotecan, capecitabine, or oxaliplatin (Oxa) is used in conventional therapy. Outgoing literature provides data on the use of polyphenols, biologically active compounds, in the treatment of pancreatic cancer and the prevention of acute pancreatitis. Therefore, the first part of this review gives a brief overview of the state of pancreatic disease as well as the procedures for its treatment. The second part provides a detailed overview of the research regarding the anticancer effects of both pure polyphenols and their plant extracts. The results regarding the antiproliferative, antimetastatic, as well as inhibitory effects of polyphenols against PC cell lines as well as the prevention of acute pancreatitis are presented in detail. Finally, particular emphasis is given to the polyphenolic profiles of apples, berries, cherries, sour cherries, and grapes, given the fact that these fruits are rich in polyphenols and anthocyanins. Polyphenolic profiles, the content of individual polyphenols, and their relationships are discussed. Based on this, significant data can be obtained regarding the amount of fruit that should be consumed daily to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Ivanka Ćirić
- Innovation Center, University of Belgrade—Faculty of Chemistry, P.O. Box 51, 11158 Belgrade, Serbia;
| | - Tomislav Pejčić
- Clinic of Urology, Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia;
| | - Dejan Radenković
- University of Belgrade—Faculty of Medicine, dr Subotića 8, 11000 Belgrade, Serbia;
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Vladimir Djordjević
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 6, 11000 Belgrade, Serbia;
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Živoslav Tešić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, P.O. Box 51, 11158 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113336733
| |
Collapse
|
25
|
Qian W, Xiao Q, Wang L, Qin T, Xiao Y, Li J, Yue Y, Zhou C, Duan W, Ma Q, Ma J. Resveratrol slows the tumourigenesis of pancreatic cancer by inhibiting NFκB activation. Biomed Pharmacother 2020; 127:110116. [PMID: 32428833 DOI: 10.1016/j.biopha.2020.110116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumour with an extremely poor prognosis due to its insidious initiation and a lack of therapeutic strategies. Resveratrol suppresses pancreatic cancer progression and attenuates pancreatitis by modulating multiple targets, including nuclear factor kappa B (NFκB) signalling pathways. However, the effect of resveratrol on pancreatic cancer initiation and its mechanisms remain unclear. In this study, we utilised the LSL-KrasG12D/+; Pdx1-Cre (KC) spontaneous pancreatic precancerous lesion mouse model to explore the anti-tumourigenesis mechanisms of resveratrol in vivo. In vitro acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasias (PanINs) formation assays were performed by pancreatic acinar cell 3-dimensional (3D) culture. Histopathological analysis was used to examine the pathological morphology of pancreatic tissues. Resveratrol prevented the progression of pancreatic precancerous lesions and inhibited the activation of NFκB signalling pathway-related molecules in KC mouse pancreatic tissues. In addition, resveratrol reduced the severity of cerulein-induced pancreatitis and the formation of ADM/PanINs in vivo and in vitro, which may be related to its effect on NFκB inactivation. Furthermore, pancreatic acinar 3D culture demonstrated that activation of the NFκB signalling pathway promoted the formation of ADM/PanINs in vitro, and this initiating effect of NFκB was blocked by resveratrol. Resveratrol slowed the tumourigenesis of pancreatic cancer by inhibiting NFκB activation.
Collapse
Affiliation(s)
- Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qigui Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Tao Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ying Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yangyang Yue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jiguang Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
26
|
|
27
|
Sajid M, Yan C, Li D, Merugu SB, Negi H, Khan MR. Potent anti-cancer activity of Alnus nitida against lung cancer cells; in vitro and in vivo studies. Biomed Pharmacother 2018; 110:254-264. [PMID: 30508737 DOI: 10.1016/j.biopha.2018.11.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 01/04/2023] Open
Abstract
Alnus nitida is used for multiple disorders in norther areas of Pakistan. In this study we have evaluated methanol extract of leaf (ANL) and stem bark (ANB) of A. nitida against two lung cancer cell lines; A-549 and H460 (Human non-small lung cancer cell lines) during in vitro assays for growth inhibition. Treatment with ANL and ANB markedly inhibited the growth of both cancer cell lines. Exposure of A-549 and H460 cancer cell lines to ANL and ANB inhibited cell survival, colony growth and migration of cells. Further, treatment of A-549 and H460 with ANL and ANB indicated alteration in actin fibers after staining with rhodamine-phalloidin. Both extracts cause shrinkage and cell cycle arrest during G1 phase. Treatment of A-549 and H460 cancer cells with ANL and ANB repressed the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL along with downregulation of NFκB, cyclin D1 and PI3-K protein. In addition, intraperitoneal injection of ANL and ANB (10 mg/kg bw and 20 mg/kg bw) to C57BL/6 J mice implanted with B16F10 (Mouse melanoma cancer cell line) cells significantly (p < 0.01) decreased the number of nodules per lung and the level of various proteins reciprocating the in vitro studies. These results suggest that ANL and ANB be explored further for therapeutic use in lung cancer.
Collapse
Affiliation(s)
- Moniba Sajid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Chao Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | | | - Hema Negi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
28
|
Veschi S, De Lellis L, Florio R, Lanuti P, Massucci A, Tinari N, De Tursi M, di Sebastiano P, Marchisio M, Natoli C, Cama A. Effects of repurposed drug candidates nitroxoline and nelfinavir as single agents or in combination with erlotinib in pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:236. [PMID: 30241558 PMCID: PMC6151049 DOI: 10.1186/s13046-018-0904-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023]
Abstract
Background Pancreatic cancer (PC) is the fourth most common cause of cancer death. Combination therapies with classical chemotherapeutic agents improved treatment of advanced PC at the cost of a relevant toxicity, but the 5-year survival rate remains below 5%. Consequently, new therapeutic options for this disease are urgently needed. In this study, we explored the effect of two repurposed drug candidates nelfinavir and nitroxoline, approved for non-anticancer human use, in PC cell lines. Nelfinavir and nitroxoline were tested as single agents, or in combinations with or without erlotinib, a targeted drug approved for PC treatment. Methods The effects of the drugs on the viability of AsPC-1, Capan-2 and BxPC-3 PC cell lines were assessed by MTT. The impact of the treatments on cell cycle distribution and apoptosis was analyzed by flow cytometry. The effects of treatments on proteins relevant in cell cycle regulation and apoptosis were evaluated by western blot. Self-renewal capacity of PC cell lines after drug treatments was assessed using a clonogenic assay. Results When used as single agents, nelfinavir and nitroxoline decreased viability, affected cell cycle and reduced the expression of relevant cell cycle proteins. The effects on apoptosis were variable among PC cell lines. Moreover, these agents drastically impaired clonogenic activity of the three PC cell lines. Combinations of nelfinavir and nitroxoline, with or without erlotinib, resulted in dose- and cell-dependent synergistic effects on cell viability. These effects were paralleled by cell cycle alterations and more consistent apoptosis induction as compared to single agents. Treatments with drug combinations induced drastic impairment of clonogenic activity in the three cell lines. Conclusions This study shows that two non-antitumor drugs, nelfinavir and nitroxoline, as single agents or in combination have antitumor effects that appear comparable, or in some case more pronounced than those of erlotinib in three PC cell lines. Our results support repurposing of these approved drugs as single agents or in combination for PC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-0904-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Serena Veschi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy. .,Unit of General Pathology, Center on Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Rosalba Florio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Paola Lanuti
- Center on Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alberto Massucci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center on Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele De Tursi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Marco Marchisio
- Center on Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clara Natoli
- Department of Medical, Oral and Biotechnological Sciences, Center on Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy. .,Unit of General Pathology, Center on Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
29
|
Subramaniam D, Kaushik G, Dandawate P, Anant S. Targeting Cancer Stem Cells for Chemoprevention of Pancreatic Cancer. Curr Med Chem 2018; 25:2585-2594. [PMID: 28137215 DOI: 10.2174/0929867324666170127095832] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest cancers worldwide and the fourth leading cause of cancer-related deaths in United States. Regardless of the advances in molecular pathogenesis and consequential efforts to suppress the disease, this cancer remains a major health problem in United States. By 2030, the projection is that pancreatic cancer will be climb up to be the second leading cause of cancer-related deaths in the United States. Pancreatic cancer is a rapidly invasive and highly metastatic cancer, and does not respond to standard therapies. Emerging evidence supports that the presence of a unique population of cells called cancer stem cells (CSCs) as potential cancer inducing cells and efforts are underway to develop therapeutic strategies targeting these cells. CSCs are rare quiescent cells, and with the capacity to self-renew through asymmetric/symmetric cell division, as well as differentiate into various lineages of cells in the cancer. Studies have been shown that CSCs are highly resistant to standard therapy and also responsible for drug resistance, cancer recurrence and metastasis. To overcome this problem, we need novel preventive agents that target these CSCs. Natural compounds or phytochemicals have ability to target these CSCs and their signaling pathways. Therefore, in the present review article, we summarize our current understanding of pancreatic CSCs and their signaling pathways, and the phytochemicals that target these cells including curcumin, resveratrol, tea polyphenol EGCG (epigallocatechin- 3-gallate), crocetinic acid, sulforaphane, genistein, indole-3-carbinol, vitamin E δ- tocotrienol, Plumbagin, quercetin, triptolide, Licofelene and Quinomycin. These natural compounds or phytochemicals, which inhibit cancer stem cells may prove to be promising agents for the prevention and treatment of pancreatic cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States.,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Gaurav Kaushik
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Prasad Dandawate
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Shrikant Anant
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States.,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
30
|
Kubatka P, Uramova S, Kello M, Kajo K, Kruzliak P, Mojzis J, Vybohova D, Adamkov M, Jasek K, Lasabova Z, Zubor P, Fialova S, Dokupilova S, Solar P, Pec M, Adamicova K, Danko J, Adamek M, Busselberg D. Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J Cell Mol Med 2017; 21:2837-2851. [PMID: 28524540 PMCID: PMC5661249 DOI: 10.1111/jcmm.13197] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022] Open
Abstract
It is supposed that plant functional foods, rich in phytochemicals, may potentially have preventive effects in carcinogenesis. In this study, the anticancer effects of cloves in the in vivo and in vitro mammary carcinoma model were assessed. Dried flower buds of cloves (CLOs) were used at two concentrations of 0.1% and 1% through diet during 13 weeks after the application of chemocarcinogen. After autopsy, histopathological and immunohistochemical analyses of rat mammary carcinomas were performed. Moreover, in vitro evaluation using MCF‐7 cells was carried out. Dietary administered CLO caused the dose‐dependent decrease in tumour frequency by 47.5% and 58.5% when compared to control. Analysis of carcinoma cells in animals showed bcl‐2, Ki67, VEGFA, CD24 and CD44 expression decrease and Bax, caspase‐3 and ALDH1 expression increase after high‐dose CLO administration. MDA levels were substantially decreased in rat carcinomas in both CLO groups. The evaluation of histone modifications revealed increase in lysine trimethylations and acetylations (H4K20me3, H4K16ac) in carcinomas after CLO administration. TIMP3 promoter methylation levels of CpG3, CpG4, CpG5 islands were altered in treated cancer cells. An increase in total RASSF1A promoter methylation (three CpG sites) in CLO 1 group was found. In vitro studies showed antiproliferative and pro‐apoptotic effects of CLO extract in MCF‐7 cells (analyses of cytotoxicity, Brdu, cell cycle, annexin V/PI, caspase‐7, Bcl‐2 and mitochondrial membrane potential). This study showed a significant anticancer effect of clove buds in the mammary carcinoma model in vivo and in vitro.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.,Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Sona Uramova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, Slovak Medical University and St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Desanka Vybohova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Karina Jasek
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Silvia Fialova
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Svetlana Dokupilova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Toxicological and Antidoping Center, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Solar
- Institute of Biology and Ecology, Faculty of Science, Laboratory of Cell Biology, P. J. Safarik University, Kosice, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Katarina Adamicova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Danko
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Dietrich Busselberg
- Qatar Foundation-Education City, Weill Cornell Medicine in Qatar, Doha, Qatar
| |
Collapse
|
31
|
Perrone D, Fuggetta MP, Ardito F, Cottarelli A, De Filippis A, Ravagnan G, De Maria S, Lo Muzio L. Resveratrol (3,5,4'-trihydroxystilbene) and its properties in oral diseases. Exp Ther Med 2017; 14:3-9. [PMID: 28672886 DOI: 10.3892/etm.2017.4472] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Health promotion strategies and lifestyle changes are important in disease prevention. Oral health has received a large amount of attention previously as it is a fundamental component of general health and it contributes to the quality of life. Therefore, the study of associations between diet, health and the presence of bioactive compounds in food is receiving a substantial amount of attention. In the present review the effects and targets of a natural polyohenolic stilbenoid compound; resveratrol (3,5,4'-trihydroxystilbene; RSV) is assessed, and the future prospects for RSV in promoting oral health are considered. RSV is a phytoalexin, synthesized by a wide range of plants and abundantly extracted in grape skin, it has been purported to exert a multiplicity of anti-inflammatory, anti-viral, anti-microbial, estrogenic, anticancer, cardioprotective, neuroprotective and immunomodulatory functions. In this review, following an introduction documenting the biochemistry of RSV and RSV glucosides, the bioavailability and pharmacokinetics of RSV are described. Considering its multiple properties, the present review has focused on the potential benefits of RSV as an antioxidant and chemopreventive agent.
Collapse
Affiliation(s)
- Donatella Perrone
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, CNR-Area Torvergata, I-00133 Rome, Italy
| | - Fatima Ardito
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| | - Andrea Cottarelli
- Institute of Translational Pharmacology, CNR-Area Torvergata, I-00133 Rome, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, Second University of Napoli, Napoli, I-80131 Naples, Italy
| | - Giampietro Ravagnan
- Glures srl. Operative Unit-Biochemical and Biophysical Department, I-80138 Naples, Italy
| | - Salvatore De Maria
- Glures srl. Operative Unit-Biochemical and Biophysical Department, I-80138 Naples, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, I-71122 Foggia, Italy
| |
Collapse
|
32
|
He M, Xue Y. MicroRNA-148a suppresses proliferation and invasion potential of non-small cell lung carcinomas via regulation of STAT3. Onco Targets Ther 2017; 10:1353-1361. [PMID: 28280370 PMCID: PMC5338933 DOI: 10.2147/ott.s123518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer has the highest morbidity and mortality in the world, and non-small cell lung carcinomas (NSCLC) account for 80% of cases of lung cancer. The mechanism of NSCLC is still largely unknown, and finding novel targets is of great importance for the treatment of NSCLC. The current study was designed to evaluate the role of miR-148a in NSCLC cell proliferation and invasion and to investigate the possible molecular mechanisms. We found that miR-148a expression was decreased in NSCLC tissues and cell lines. Upregulation of miR-148a significantly decreased A549 cell proliferation, and downregulation of miR-148a significantly increased A549 cell proliferation. Upregulation of miR-148a markedly increased apoptotic cell death and inhibited cell invasion potential. Upregulation of miR-148a significantly decreased signal transducer and activator of transcription 3 (STAT3) expression and 3′-untranslated region luciferase activity. Downregulation of miR-148a significantly increased STAT3 expression. Overexpression of STAT3 significantly inhibited the effect of miR-148a on cell viability and invasion potential. In conclusion, we found that miR-148a inhibited NSCLC cell proliferation and invasion potential through the inhibition of STAT3. Our findings highlight miR-148a/STAT3 axis as a novel therapeutic target for the inhibition of NSCLC growth.
Collapse
Affiliation(s)
- Mei He
- Department of Respiratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yan Xue
- Department of Respiratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|