1
|
Pohl S, Akamp T, Smeda M, Uderhardt S, Besold D, Krastl G, Galler KM, Buchalla W, Widbiller M. Understanding dental pulp inflammation: from signaling to structure. Front Immunol 2024; 15:1474466. [PMID: 39534600 PMCID: PMC11554472 DOI: 10.3389/fimmu.2024.1474466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
The pulp is a unique tissue within each tooth that is susceptible to painful inflammation, known as pulpitis, triggered by microbial invasion from carious lesions or trauma that affect many individuals. The host response involves complex immunological processes for pathogen defense and dentin apposition at the site of infection. The interplay of signaling between the immune and non-immune cells via cytokines, chemokines, neuropeptides, proteases, and reactive nitrogen and oxygen species leads to tissue reactions and structural changes in the pulp that escalate beyond a certain threshold to irreversible tissue damage. If left untreated, the inflammation, which is initially localized, can progress to pulpal necrosis, requiring root canal treatment and adversely affecting the prognosis of the tooth. To preserve pulp vitality and dental health, a deeper understanding of the molecular and cellular mechanisms of pulpitis is imperative. In particular, elucidating the links between signaling pathways, clinical symptoms, and spatiotemporal spread is essential to develop novel therapeutic strategies and push the boundaries of vital pulp therapy.
Collapse
Affiliation(s)
- Sandra Pohl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Akamp
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Martyna Smeda
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Uderhardt
- Medical Department 3, Rheumatology and Immunology, University Hospital Erlangen, Erlangen, Germany
| | - David Besold
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Gabriel Krastl
- Department of Conservative Dentistry and Periodontology, University Hospital Würzburg, Würzburg, Germany
| | - Kerstin M. Galler
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Cotten A, Jeanneau C, Decherchi P, About I. Complement C5a Implication in Axonal Growth After Injury. Cells 2024; 13:1729. [PMID: 39451247 PMCID: PMC11506376 DOI: 10.3390/cells13201729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Complement C5a protein has been shown to play a major role in tissue regeneration through interaction with its receptor (C5aR) on target cells. Expression of this receptor has been reported in the nervous system which, upon injury, has no treatment to restore the lost functions. This work aimed at investigating the Complement C5a effect on axonal growth after axotomy in vitro. Primary hippocampal neurons were isolated from embryonic Wistar rats. Cell expression of C5aR mRNA was verified by RT-PCR while its membrane expression, localization, and phosphorylation were investigated by immunofluorescence. Then, the effects of C5a on injured axonal growth were investigated using a 3D-printed microfluidic device. Immunofluorescence demonstrated that the primary cultures contained only mature neurons (93%) and astrocytes (7%), but no oligodendrocytes or immature neurons. Immunofluorescence revealed a co-localization of NF-L and C5aR only in the mature neurons where C5a induced the phosphorylation of its receptor. C5a application on injured axons in the microfluidic devices significantly increased both the axonal growth speed and length. Our findings highlight a new role of C5a in regeneration demonstrating an enhancement of axonal growth after axotomy. This may provide a future therapeutic tool in the treatment of central nervous system injury.
Collapse
Affiliation(s)
| | | | | | - Imad About
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France; (A.C.); (C.J.); (P.D.)
| |
Collapse
|
3
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
4
|
Washio A, Kérourédan O, Tabata Y, Kokabu S, Kitamura C. Effect of Bioactive Glasses and Basic Fibroblast Growth Factor on Dental Pulp Cells. J Funct Biomater 2023; 14:568. [PMID: 38132822 PMCID: PMC10744375 DOI: 10.3390/jfb14120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Ideal regeneration of hard tissue and dental pulp has been reported with the use of a combination of bioactive glass and basic fibroblast growth factor (bFGF). However, no previous study has investigated the molecular mechanisms underlying the processes induced by this combination in dental pulp cells. This study aimed to examine the cellular phenotype and transcriptional changes induced by the combination of bioactive glass solution (BG) and bFGF in dental pulp cells using phase-contrast microscopy, a cell counting kit-8 assay, alkaline phosphatase staining, and RNA sequence analysis. bFGF induced elongation of the cell process and increased the number of cells. Whereas BG did not increase ALP activity, it induced extracellular matrix-related genes in the dental pulp. In addition, the combination of BG and bFGF induces gliogenesis-related genes in the nervous system. This is to say, bFGF increased the viability of dental pulp cells, bioactive glass induced odontogenesis, and a dual stimulation with bioactive glass and bFGF induced the wound healing of the nerve system in the dental pulp. Taken together, bioactive glass and bFGF may be useful for the regeneration of the dentin-pulp complex.
Collapse
Affiliation(s)
- Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| | - Olivia Kérourédan
- National Institute of Health and Medical Research (INSERM), U1026 BIOTIS, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France;
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| |
Collapse
|
5
|
Israr F, Masood Ul Hasan S, Hussain M, Qazi FUR, Hasan A. Investigating In Situ Expression of Neurotrophic Factors and Partner Proteins in Irreversible Pulpitis. J Endod 2023; 49:1668-1675. [PMID: 37660765 DOI: 10.1016/j.joen.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION In situ assessments of neurotrophic factors and their associated molecular partners have not been explored to date, particularly in humans. The present investigation aimed to explore the expressional dysregulation of neurotrophic factors (nerve growth factor [NGF], brain derived neurotrophic factor [BDNF], and NT4/5), their receptors (TrkA and TrkB), and their modulators (USP36 and Nedd4-2) directly in irreversibly inflamed human pulp tissues. METHODS Forty samples each of healthy and irreversibly inflamed pulp were extirpated for the study. Immunohistochemical examinations were carried out for the anatomic changes and expression of neurotrophic factors and partner proteins. Expression was digitally quantified using the IHC profiler module of ImageJ and deduced as optical density. Statistical analyses were carried out by GraphPad Prism. RESULTS Decrease in nuclear and vessel diameters was observed in irreversibly inflamed pulp tissues. NGF and BDNF were found to be significantly upregulated in symptomatic irreversible pulpitis (SIP), whereas no significant difference was observed in the expression of TrkA and TrkB. Expression of Nedd4-2, USP36, and TrkA was found positively correlated with the NGF in healthy pulp tissues. However, in SIP, positive correlation was only observed between the expression of USP36 and NGF. Among the ligands, BDNF expression was found positively correlated with NGF in healthy pulp but not with NT4/5. In the case of SIP, no correlation was observed between any neurotrophic factors. CONCLUSIONS Upregulation of NGF, BDNF, USP36 and Nedd4-2 in SIP indicates dysregulation in the molecular events underlying the disease biology and could be exploited as potential markers for the disease diagnosis.
Collapse
Affiliation(s)
- Fatima Israr
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Masood Ul Hasan
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
| | - Fazal Ur Rehman Qazi
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Arshad Hasan
- Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
6
|
Irfan M, Chung S. C5L2 modulates BDNF production in human dental pulp stem cells via p38α pathway. Sci Rep 2023; 13:74. [PMID: 36593314 PMCID: PMC9807628 DOI: 10.1038/s41598-022-27320-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Tissue injury affects nerve fibers and triggers an immune response, leading to inflammation. The complement system gets activated during inflammatory conditions and has been reported to be involved in the regeneration process. We have demonstrated that the C5a receptor (C5aR) has crucial roles in regeneration and healing processes including nerve sprouting and hard tissue formation. Another C5a-like 2 receptor (C5AR2; C5L2) has been cloned which is still considered controversial due to limited studies. We previously established that C5L2 regulates brain-derived neurotrophic factor (BDNF) secretion in pulp fibroblasts. However, there is no study available on human dental pulp stem cells (DPSCs), especially in the inflammatory context. Stem cell therapy is an emerging technique to treat and prevent several diseases. DPSCs are a great option to be considered due to their great ability to differentiate into a variety of cells and secrete nerve regeneration factors. Here, we demonstrated that C5L2 modulates BDNF secretion in DPSCs. Our results stated that C5L2 silencing through siRNA could increase BDNF production, which could accelerate the nerve regeneration process. Moreover, stimulation with lipopolysaccharide (LPS) enhanced BDNF production in C5L2 silenced DPSCs. Finally, we quantified BDNF secretion in supernatant and cell lysates using ELISA. Our results showed enhanced BDNF production in C5L2 silenced DPSCs and hampered by the p38MAPKα inhibitor. Taken together, our data reveal that C5L2 modulates BDNF production in DPSCs via the p38MAPKα pathway.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA
| | - Seung Chung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Neural Regulations in Tooth Development and Tooth-Periodontium Complex Homeostasis: A Literature Review. Int J Mol Sci 2022; 23:ijms232214150. [PMID: 36430624 PMCID: PMC9698398 DOI: 10.3390/ijms232214150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The tooth-periodontium complex and its nerves have active reciprocal regulation during development and homeostasis. These effects are predominantly mediated by a range of molecules secreted from either the nervous system or the tooth-periodontium complex. Different strategies mimicking tooth development or physiological reparation have been applied to tooth regeneration studies, where the application of these nerve- or tooth-derived molecules has been proven effective. However, to date, basic studies in this field leave many vacancies to be filled. This literature review summarizes the recent advances in the basic studies on neural responses and regulation during tooth-periodontium development and homeostasis and points out some research gaps to instruct future studies. Deepening our understanding of the underlying mechanisms of tooth development and diseases will provide more clues for tooth regeneration.
Collapse
|
8
|
Nerve Growth Factor and Burn Wound Healing: Update of Molecular Interactions with Skin Cells. Burns 2022:S0305-4179(22)00282-0. [DOI: 10.1016/j.burns.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
9
|
Pasiewicz R, Valverde Y, Narayanan R, Kim JH, Irfan M, Lee NS, George A, Cooper LF, Alapati SB, Chung S. C5a complement receptor modulates odontogenic dental pulp stem cell differentiation under hypoxia. Connect Tissue Res 2022; 63:339-348. [PMID: 34030523 PMCID: PMC8611100 DOI: 10.1080/03008207.2021.1924696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Alterations in the microenvironment change the phenotypes of dental pulp stem cells (DPSCs). The role of complement component C5a in the differentiation of DPSCs is unknown, especially under oxygen-deprived conditions. The aim of this study was to determine the effect of C5a on the odontogenic differentiation of DPSCs under normoxia and hypoxia. MATERIAL AND METHODS Human DPSCs were subjected to odontogenic differentiation in osteogenic media and treated with the C5a receptor antagonist-W54011 under normal and hypoxic conditions (2% oxygen). Immunochemistry, western blot, and PCR analysis for the various odontogenic differentiation genes/proteins were performed. RESULTS Our results demonstrated that C5a plays a positive role in the odontogenic differentiation of DPSCs. C5a receptor inhibition resulted in a significant decrease in odontogenic differentiation genes, such as DMP1, ON, RUNX2, DSPP compared with the control. This observation was further supported by the Western blot data for DSPP and DMP1 and immunohistochemical analysis. The hypoxic condition reversed this effect. CONCLUSIONS Our results demonstrate that C5a regulates the odontogenic DPSC differentiation under normoxia. Under hypoxia, C5a exerts a reversed function for DPSC differentiation. Taken together, we identified that C5a and oxygen levels are key initial signals during pulp inflammation to control the odontogenic differentiation of DPSCs, thereby, providing a mechanism for potential therapeutic interventions for dentin repair and vital tooth preservation.
Collapse
Affiliation(s)
- Ryan Pasiewicz
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Yessenia Valverde
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Raghuvaran Narayanan
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Ji-Hyun Kim
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Muhammad Irfan
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Nam-Seob Lee
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Anne George
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Lyndon F Cooper
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Satish B Alapati
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Seung Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
10
|
Álvarez-Vásquez JL, Castañeda-Alvarado CP. Dental pulp fibroblast: A star Cell. J Endod 2022; 48:1005-1019. [DOI: 10.1016/j.joen.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022]
|
11
|
Qi R, Qin W. Role of Complement System in Kidney Transplantation: Stepping From Animal Models to Clinical Application. Front Immunol 2022; 13:811696. [PMID: 35281019 PMCID: PMC8913494 DOI: 10.3389/fimmu.2022.811696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal diseases. Despite the advances in surgical techniques and immunosuppressive agents, the long-term graft survival remains a challenge. Growing evidence has shown that the complement system, part of the innate immune response, is involved in kidney transplantation. Novel insights highlighted the role of the locally produced and intracellular complement components in the development of inflammation and the alloreactive response in the kidney allograft. In the current review, we provide the updated understanding of the complement system in kidney transplantation. We will discuss the involvement of the different complement components in kidney ischemia-reperfusion injury, delayed graft function, allograft rejection, and chronic allograft injury. We will also introduce the existing and upcoming attempts to improve allograft outcomes in animal models and in the clinical setting by targeting the complement system.
Collapse
Affiliation(s)
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Irfan M, Kim JH, Druzinsky RE, Ravindran S, Chung S. Complement C5aR/LPS-induced BDNF and NGF modulation in human dental pulp stem cells. Sci Rep 2022; 12:2042. [PMID: 35132159 PMCID: PMC8821590 DOI: 10.1038/s41598-022-06110-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells with the ability to differentiate into a variety of cells and secrete nerve regeneration factors have become an emerging option in nerve regeneration. Dental pulp stem cells (DPSCs) appear to be a good candidate for nerve regeneration given their accessibility, neural crest origin, and neural repair qualities. We have recently demonstrated that the complement C5a system, which is an important mediator of inflammation and tissue regeneration, is activated by lipoteichoic acid-treated pulp fibroblasts, and governs the production of brain-derived nerve growth factor (BDNF). This BDNF secretion promotes neurite outgrowth towards the injury site. Here, we extend our observation to DPSCs and compare their neurogenic ability to bone marrow-derived mesenchymal stem cells (BM-MSCs) under inflammatory stimulation. Our ELISA and immunostaining data demonstrate that blocking the C5a receptor (C5aR) reduced BDNF production in DPSCs, while treatment with C5aR agonist increased the BDNF expression, which suggests that C5aR has a positive regulatory role in the BDNF modulation of DPSCs. Inflammation induced by lipopolysaccharide (LPS) treatment potentiated this effect and is C5aR dependent. Most important, DPSCs produced significantly higher levels of C5aR-mediated BDNF compared to BM-MSCs. Taken together, our data reveal novel roles for C5aR and inflammation in modulation of BDNF and NGF in DPSCs.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA
| | - Ji Hyun Kim
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA
| | - Robert E Druzinsky
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA
| | - Seung Chung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
The role of complement C5a receptor in DPSC odontoblastic differentiation and in vivo reparative dentin formation. Int J Oral Sci 2022; 14:7. [PMID: 35087028 PMCID: PMC8795457 DOI: 10.1038/s41368-022-00158-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Therapeutic dentin regeneration remains difficult to achieve, and a majority of the attention has been given to anabolic strategies to promote dentinogenesis directly, whereas, the available literature is insufficient to understand the role of inflammation and inflammatory complement system on dentinogenesis. The aim of this study is to determine the role of complement C5a receptor (C5aR) in regulating dental pulp stem cells (DPSCs) differentiation and in vivo dentin regeneration. Human DPSCs were subjected to odontogenic differentiation in osteogenic media treated with the C5aR agonist and C5aR antagonist. In vivo dentin formation was evaluated using the dentin injury/pulp-capping model of the C5a-deficient and wild-type mice. In vitro results demonstrate that C5aR inhibition caused a substantial reduction in odontogenic DPSCs differentiation markers such as DMP-1 and DSPP, while the C5aR activation increased these key odontogenic genes compared to control. A reparative dentin formation using the C5a-deficient mice shows that dentin regeneration is significantly reduced in the C5a-deficient mice. These data suggest a positive role of C5aR in the odontogenic DPSCs differentiation and tertiary/reparative dentin formation. This study addresses a novel regulatory pathway and a therapeutic approach for improving the efficiency of dentin regeneration in affected teeth.
Collapse
|
14
|
Barkley C, Serra R, Peters SB. A Co-Culture Method to Study Neurite Outgrowth in Response to Dental Pulp Paracrine Signals. J Vis Exp 2020. [PMID: 32116290 DOI: 10.3791/60809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tooth innervation allows teeth to sense pressure, temperature and inflammation, all of which are crucial to the use and maintenance of the tooth organ. Without sensory innervation, daily oral activities would cause irreparable damage. Despite its importance, the roles of innervation in tooth development and maintenance have been largely overlooked. Several studies have demonstrated that DP cells secrete extracellular matrix proteins and paracrine signals to attract and guide TG axons into and throughout the tooth. However, few studies have provided detailed insight into the crosstalk between the DP mesenchyme and neuronal afferents. To address this gap in knowledge, researchers have begun to utilize co-cultures and a variety of techniques to investigate these interactions. Here, we demonstrate the multiple steps involved in co-culturing primary DP cells with TG neurons dispersed on an overlying transwell filter with large diameter pores to allow axonal growth through the pores. Primary DP cells with the gene of interest flanked by loxP sites were utilized to facilitate gene deletion using an Adenovirus-Cre-GFP recombinase system. Using TG neurons from the Thy1-YFP mouse allowed for precise afferent imaging, with expression well above background levels by confocal microscopy. The DP responses can be investigated via protein or RNA collection and analysis, or alternatively, through immunofluorescent staining of DP cells plated on removable glass coverslips. Media can be analyzed using techniques such as proteomic analyses, although this will require albumin depletion due to the presence of fetal bovine serum in the media. This protocol provides a simple method that can be manipulated to study the morphological, genetic, and cytoskeletal responses of TG neurons and DP cells in response to the controlled environment of a co-culture assay.
Collapse
Affiliation(s)
- Courtney Barkley
- Cell, Developmental and Integrative Biology Department, University of Alabama at Birmingham
| | - Rosa Serra
- Cell, Developmental and Integrative Biology Department, University of Alabama at Birmingham
| | - Sarah B Peters
- Cell, Developmental and Integrative Biology Department, University of Alabama at Birmingham;
| |
Collapse
|
15
|
Liu M, Mu H, Peng W, Zhao L, Hu W, Jiang Z, Gao L, Cao X, Li N, Han J. Time-dependent C5a and C5aR expression in dental pulp cells following stimulation with LTA and LPS. Int J Mol Med 2019; 44:823-834. [PMID: 31257457 PMCID: PMC6657968 DOI: 10.3892/ijmm.2019.4246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
Clinically, deep decay can lead to inflammation in the dental pulp. Apart from the use of various materials to sooth the inflamed pulp, there is currently no adequate treatment, and the gold standard, calcium hydroxide, that is used to cover the dentin/pulp, has limited effect. Sometimes the pulp will remain infected and cause pulpitis, and ultimately, the pulp will need to be removed. The first principle of oral treatment is to protect the pulp. Therefore, it is necessary to study the immune response and regeneration of pulp cells in conditions of deep decay. Of the terminal complement system proteins, complement 5a (C5a) has the most potent effect compared to complement 3a (C3a) and complement 4a (C4a). C5a is 20- to 2,500-fold stronger than C3a and C4a. The purpose of this study was to elucidate the association between C5a, secreted by complement activation, and the duration of inflammation. Another key goal was to detect the expression of C5a and its receptor, complement 5a receptor (C5aR). To this end, the cells were divided into 4 groups as per stimulation with lipoteichoic acid (LTA) or lipopolysaccharide (LPS) as follows: i) The 1 µg/ml LTA group; ii) the 1 µg/ml LPS group; iii) the 1 µg/ml LTA and 1 µg/ml LPS group; and iv) the PBS-only group, which served as a control. There were 5 time points for all 4 groups: 1, 2, 3, 5 and 7 days. Reverse transcription-quantitative polymerase chain reaction was used to detect the gene expression levels of C5a, C5aR and interleukin (IL)-6 at different time points. Western blot analyses was carried out to detect the expression of C5aR. Transmission electron microscopy was also conducted to assess the ultra-structural features of dental pulp cells. The gene expression trends of C5a and C5aR mRNA were identical. C5a and C5aR mRNA was highly expressed on the second day of LTA or LPS stimulation. However, in the LTA and LPS co-stimulation group, C5a and C5aR mRNA were highly expressed on both the first and second day, with higher levels on the second day. IL-6 expression decreased as time progressed in the LTA only and in the LTA + LPS co-stimulation groups. However, a peak in its expression was observed on the second day in the LPS group. On the whole, this study demonstrates that a 1 µg/ml concentration of LTA and LPS stimulates human dental pulp cells to activate the expression of C5a.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Prosthodontics, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haibin Mu
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wenting Peng
- Department of Stomatology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Lin Zhao
- Department of Stomatology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Weiping Hu
- Department of Prosthodontics, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhuling Jiang
- Department of Oral Implantology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaofang Cao
- Department of Endodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ning Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jingying Han
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
16
|
Han Q, Wang Q, Wu J, Li M, Fang Y, Zhu H, Wang X. Nell-1 promotes the neural-like differentiation of dental pulp cells. Biochem Biophys Res Commun 2019; 513:515-521. [PMID: 30979495 DOI: 10.1016/j.bbrc.2019.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
Previous studies showed that Nel-like molecule-1 (Nell-1) can positively regulate odontoblastic differentiation and dentin formation. Intriguingly, our group found that Nell-1 is co-expressed with neural markers. The purpose of this study was to investigate whether Nell-1 protein plays a regulatory role in the differentiation of dental pulp cells into neural-like cells by in vivo and in vitro studies. The expression patterns of Nell-1 and dental pulp neural markers were observed by double immunofluorescence staining in normal dental pulp tissue sections of Wistar rat. Collagen sponge containing Nell-1 protein was added into the pulp cavity of rat molars in order to observe the expression patterns of neural markers in rat dental pulp repair and regeneration model by immunohistochemical staining. Moreover, human dental pulp stem cells (hDPSCs) were cultured, and different concentrations of Nell-1 protein were added for 12 h, 24 h, and 72h. The expression of neural markers was detected by using quantitative real-time polymerase chain reaction and Western blot. Nell-1 was co-expressed with neural markers including substance P (SP) and Nestin in rat dental pulp tissue. The expression of neural markers including SP, neuron-specific enolase (NSE), and Nestin was increased obviously in rat dental pulp tissues stimulated with Nell-1 protein. In cultured hDPSCs induced by Nell-1 protein, the expression of neural markers including glial fibrillary acidic protein (GFAP), Nestin, and β-III tubulin was increased. Nell-1 plays a positive role in inducing the differentiation of DPSCs into neural-like cells.
Collapse
Affiliation(s)
- Qi Han
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, 44-1Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Qiang Wang
- Jinan Stomatological Hospital, Jinan, 250001, Shandong, China
| | - Jiameng Wu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, 44-1Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Mengyue Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, 44-1Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yixuan Fang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, 44-1Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Hongfan Zhu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, 44-1Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Xiaoying Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, 44-1Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
17
|
Chmilewsky F, About I, Cooper LF, Chung SH. C5L2 Silencing in Human Pulp Fibroblasts Enhances Nerve Outgrowth Under Lipoteichoic Acid Stimulation. J Endod 2018; 44:1396-1401. [PMID: 30032862 DOI: 10.1016/j.joen.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION We recently reported that caries-associated C5a receptor (C5aR) expression and activation result in up-regulation of brain-derived neurotropic factor secretion by pulp fibroblasts inducing prominent neurite outgrowth toward the carious site. Our data further showed a negative regulation of this brain-derived neurotropic factor secretion by C5L2, another C5aR. C5L2 was considered a nonfunctional receptor and thus has received much less attention than C5aR. The aim of this study was to identify the role of C5L2 in pulp fibroblast-mediated neurite outgrowth. METHODS In this study, lipoteichoic acid (LTA) was used to mimic dental caries-like inflammation. To evaluate the role of C5L2 in pulp neurite outgrowth, human pulp fibroblasts were C5L2 small interfering RNA silenced and cocultured with human neurons in a nerve growth assay system. RESULTS C5L2 silencing drastically increased the neurite outgrowth toward the LTA-stimulated pulp fibroblasts. The number of neurites detected was increased in the LTA-treated pulp fibroblasts. CONCLUSIONS Our results show that C5L2 constitutes a negative regulator of the neurite outgrowth under LTA stimulation. Of the events occurring during dentin-pulp regeneration, nerve regeneration is the key factor for maintaining tooth viability after infection or injury. Our study provides a foundation for creating therapeutic tools that target pulp fibroblasts during pulp/nerve regeneration.
Collapse
Affiliation(s)
- Fanny Chmilewsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Imad About
- Department of Oral Biology, Aix Marseille University, Marseille, France
| | - Lyndon F Cooper
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Seung H Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
18
|
|
19
|
Valverde Y, Narayanan R, Alapati SB, Chmilewsky F, Huang CC, Ravindran S, Chung SH. Poly(Adenosine Phosphate Ribose) Polymerase 1 Inhibition Enhances Brain-derived Neurotrophic Factor Secretion in Dental Pulp Stem Cell-derived Odontoblastlike Cells. J Endod 2018; 44:1121-1125. [PMID: 29884339 DOI: 10.1016/j.joen.2018.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The nuclear enzyme poly(adenosine phosphate ribose) polymerase 1 (PARP-1) has been implicated in the maintenance and differentiation of several stem cells. The role of PARP-1 in dental pulp stem cell (DPSC) differentiation, especially in the context of its ability to modulate nerve regeneration factors, has not been investigated. Regeneration of neuronal components in pulp tissue is important for the assessment of tooth vitality. Brain-derived neurotrophic factor (BDNF) is known to play an integral signaling factor during nerve regeneration. In this study, we identified the role of PARP-1 in the modulation of BDNF in DPSC differentiation into odontoblastlike cells. METHODS Human DPSCs were prepared from healthy molars and cultured in regular and osteogenic media treated with PARP-1 antagonist and PARP-1 exogeneous protein. Polymerase chain reaction and immunohistochemistry analysis for BDNF and various differentiation markers were performed. RESULTS Our polymerase chain reaction results showed that differentiated cells show odontoblastlike properties because they express odontogenic markers such as dentin sialophosphoprotein and dentin matrix protein 1. Both PARP-1 inhibitor and protein did not affect odontogenic differentiation and proliferation because the number of the differentiated cells was unaffected, and the expression of dentin sialophosphoprotein and dentin matrix protein 1 was not significantly changed. There is the possibility that PARP-1 treatment induces DPSCs into the unique cell lineage. Some differentiated cells show a very unique morphology with large irregular cytoplasm and an oval nucleus. Moreover, PARP-1 inhibition significantly increased BDNF secretion in DPSC-derived odontoblastlike cells. This observation was also confirmed by immunohistochemistry. CONCLUSIONS Taken together, our results indicate PARP-1 as a negative regulator in BDNF secretion during odontogenic DPSC differentiation, showing its potential application for translational nerve regeneration strategies to improve dental pulp tissue vitality assessments.
Collapse
Affiliation(s)
- Yessenia Valverde
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Satish B Alapati
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois
| | - Fanny Chmilewsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Chun-Chieh Huang
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Sriram Ravindran
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Seung H Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Potential Therapeutic Strategy of Targeting Pulp Fibroblasts in Dentin-Pulp Regeneration. J Endod 2017; 43:S17-S24. [DOI: 10.1016/j.joen.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Lambrichts I, Driesen RB, Dillen Y, Gervois P, Ratajczak J, Vangansewinkel T, Wolfs E, Bronckaers A, Hilkens P. Dental Pulp Stem Cells: Their Potential in Reinnervation and Angiogenesis by Using Scaffolds. J Endod 2017; 43:S12-S16. [PMID: 28781091 DOI: 10.1016/j.joen.2017.06.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dental pulp is a highly vascularized and innervated tissue containing a heterogeneous stem cell population with multilineage differentiation potential. Current endodontic treatments focus on the preservation of the pulp tissue and the regeneration of dental pulp after pathological insults. Human dental pulp stem cells (hDPSCs) are currently investigated as stem cell-based therapy for pulp regeneration and for peripheral nerve injury in which neurons and Schwann cells display limited regenerative capacity. We have developed a neuronal differentiation protocol for hDPSCs that requires neurosphere formation before neuronal maturation. Moreover, Schwann cell differentiation of hDPSCs in our group revealed that differentiated hDPSCs have acquired the ability to myelinate and guide neurites from dorsal root ganglia. Besides their dynamic differentiation capacity, hDPSCs were shown to exert a paracrine effect on neural and endothelial cells. Analysis of hDPSC conditioned medium revealed the secretion of a broad spectrum of growth factors including brain-derived neurotrophic factor, nerve growth factor, vascular endothelial growth factor, and glial-derived neurotrophic factor. Application of the conditioned medium to endothelial cells promoted cell migration and tubulogenesis, indicating a paracrine proangiogenic effect. This hypothesis was enforced by the enhanced formation of blood vessels in the chorioallantoic membrane assay in the presence of hDPSCs. In addition, transplantation of 3-dimensional-printed hydroxyapatite scaffolds containing peptide hydrogels and hDPSCs into immunocompromised mice revealed blood vessel ingrowth, pulplike tissue formation, and osteodentin deposition suggesting osteogenic/odontogenic differentiation of hDPSCs. Future studies in our research group will focus on the pulp regeneration capacity of hDPSCs and the role of fibroblasts within the pulp extracellular matrix.
Collapse
Affiliation(s)
- Ivo Lambrichts
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| | - Ronald B Driesen
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Yörg Dillen
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Jessica Ratajczak
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Tim Vangansewinkel
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Petra Hilkens
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
22
|
Recent progress in the understanding of complement activation and its role in tumor growth and anti-tumor therapy. Biomed Pharmacother 2017; 91:446-456. [DOI: 10.1016/j.biopha.2017.04.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
|