1
|
Ababneh Q, Aldaken N, Jaradat Z, Al-Rousan E, Inaya Z, Alsaleh D, Alawneh D, Al Sbei S, Saadoun I. Predominance of extensively-drug resistant Acinetobacter baumannii carrying bla OXA-23 in Jordanian patients admitted to the intensive care units. PLoS One 2025; 20:e0317798. [PMID: 40014590 PMCID: PMC11867332 DOI: 10.1371/journal.pone.0317798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 01/04/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND AND AIM The global emergence of Acinetobacter baumannii is of great concern, especially inside intensive care units (ICUs). This study investigated the prevalence, antibiotic resistance, biofilm formation and genetic relatedness of A. baumannii recovered from ICU patients in three major hospitals in Jordan. METHODS The A. baumannii isolates included in this study were identified by the detection of the blaOXA-51 gene, and a multiplex PCR assay. Antibiotic susceptibility testing was performed using the disk diffusion and broth microdilution methods, and the ability of the isolates to form biofilms was tested using the 96-well plate assay. All isolates were tested for the presence of carbapenemases-encoding genes by PCR. Clonal relatedness was assessed by Rep-PCR and dendrogram analysis. RESULTS Overall, 148 A. baumannii isolates were identified, with 96.7% of the isolates recognized as carbapenem resistant A. baumannii. Based on their resistance patterns, 90% of the isolates were extensively resistant (XDR). The highest prevalence of carbapenemases-encoding genes was for blaOXA-23-like (96.7%), followed by blaADC (93.9.2%), blaVIM (56.8%) and blaNDM-1 (7.4%). Almost 80% of the isolates were able to form biofilms, with 63.2% classified as strong biofilm former. Rep-PCR and clustering analysis revealed 26 different clusters and the circulation of hospital-specific clones. CONCLUSIONS Our study revealed an alarming high prevalence of XDR, blaOXA-23-carrying and strong biofilm-producing A. baumannii among ICU patients. These findings call for continuous epidemiological surveillance and implementation of prevention strategies to reduce infections and dissemination of such a problematic pathogen inside the ICUs.
Collapse
Affiliation(s)
- Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Neda’a Aldaken
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ekhlas Al-Rousan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Zeina Inaya
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Dua’a Alsaleh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Dua’a Alawneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Sara Al Sbei
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ismail Saadoun
- Department of Applied Biology, College of Science, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Tantry M, Shaw T, Rao S, Mukhopadhyay C, Tellapragada C, Kalwaje Eshwara V. Heterogeneity and Genomic Plasticity of Acinetobacter baumannii and Acinetobacter nosocomialis Isolates Recovered from Clinical Samples in India. Curr Microbiol 2024; 81:415. [PMID: 39425793 DOI: 10.1007/s00284-024-03942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Acinetobacter baumannii and Acinetobacter nosocomialis are the imperious pathogens in the intensive care units. We aimed to explore the genomic features of these pathogens to understand the factors influencing their plasticity. Using next-generation sequencing, two carbapenem-resistant A. baumannii (AbaBS-3, AbaETR-4) isolates and a pan-susceptible A. nosocomialis (AbaAS-5) isolate were characterised. All genomes exhibited 94% similarity with a degree of heterogeneity. AbaBS-3 and AbaETR-4 harboured antibiotic resistance gene (ARG) repertoire to most antibiotic classes. Carbapenem resistance was due to blaOXA-23 and blaOXA-66 besides the antibiotic efflux pumps. Diverse mobile genetic elements (MGE), insertion sequences (IS), prophages and virulence determinants with a plethora of stress response genes were identified in all three genomes. Class-1 integron in AbaETR-4, encoded genes that confer resistance to aminoglycosides, phenicol, sulfonamides and disinfectants. Substitutions in LpxACD and PmrCAB of AbaETR-4 confirmed the colistin resistance in vitro. Novel mutations in piuA, responsible for transporting cefiderocol, were found in AbaBS-3 and AbaETR-4. Plasmids carrying toxin-antitoxin systems, ARGs and ISs were present in these genomes. All three genomes harboured diverse protein secretion systems, virulence determinants related to immune evasion, adherence, biofilm formation and iron acquisition systems. AbaAS-5 exclusively harboured serine protease pkf, and CpaA substrate of type-II secretion system but lacked the acinetobactin-iron acquisition system. Our work delivers a holistic genome characterization of A. baumannii, coupled with a trailblazing attempt to study A. nosocomialis from India. The presence of ARGs and potential virulence factors interspersed with MGE is a cause for concern, depicting the dynamic adaptability mediated by genetic recombination.
Collapse
Affiliation(s)
- Manasa Tantry
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tushar Shaw
- Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore, 560054, India
| | - Shwethapriya Rao
- Department of Critical Care, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 14183, Stockholm, Sweden
| | - Vandana Kalwaje Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for Antimicrobial Resistance and Education, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Sun C, Zhou D, He J, Liu H, Fu Y, Zhou Z, Leptihn S, Yu Y, Hua X, Xu Q. A panel of genotypically and phenotypically diverse clinical Acinetobacter baumannii strains for novel antibiotic development. Microbiol Spectr 2024; 12:e0008624. [PMID: 38916336 PMCID: PMC11302250 DOI: 10.1128/spectrum.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Acinetobacter baumannii is one of the most important pathogens worldwide. The intrinsic and acquired resistance of A. baumannii, coupled with the slow pace of novel antimicrobial drug development, poses an unprecedented and enormous challenge to clinical anti-infective therapy of A. baumannii. Recent studies in the field of pathogenicity, antibiotic resistance, and biofilms of A. baumannii have focused on the model strains, including ATCC 17978, ATCC 19606, and AB5075. However, these model strains represent only a limited portion of the heterogeneity in A. baumannii. Furthermore, variants of these model strains have emerged that show significant diversity not only at the genotypic level but also reflected in differences at the phenotypic levels of capsule, virulence, pathogenicity, and antibiotic resistance. Research on A. baumannii, a key pathogen, would benefit from a standardized approach, which characterizes heterogeneous strains in order to facilitate rapid diagnosis, discovery of new therapeutic targets, and efficacy assessment. Our study provides and describes a standardized, genomically and phenotypically heterogeneous panel of 45 different A. baumannii strains for the research community. In addition, we performed comparative analyses of several phenotypes of this panel. We found that the sequence type 2 (ST2) group showed significantly higher rates of resistance, lower fitness cost for adaptation, and yet less biofilm formation. The Macrocolony type E (MTE, flat center and wavy edge phenotype reported in the literature) group showed a less clear correlation of resistance rates and growth rate, but was observed to produce more biofilms. Our study sheds light on the complex interplay of resistance fitness and biofilm formation within distinct strains, offering insights crucial for combating A. baumannii infection. IMPORTANCE Acinetobacter baumannii is globally notorious, and in an effort to combat the spread of such pathogens, several emerging candidate therapies have already surfaced. However, the strains used to test these therapies vary across studies (the sources and numbers of test strains are varied and often very large, with little heterogeneity). The variation complicates the studies. Furthermore, the limited standardized resources of A. baumannii strains have greatly restricted the research on the physiology, pathogenicity, and antibiotic resistance. Therefore, it is crucial for the research community to acquire a standardized and heterogeneous panel of A. baumannii. Our study meticulously selected 45 diverse A. baumannii strains from a total of 2,197 clinical isolates collected from 64 different hospitals across 27 provinces in China, providing a scientific reference for the research community. This assistance will significantly facilitate scientific exchange in academic research.
Collapse
Affiliation(s)
- Chunli Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
| | - Danyan Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Liu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sebastian Leptihn
- Department of Antimicrobial Biotechnology, Fraunhofer Institute for Cell Therapy & Immunology (IZI), Leipzig, Germany
- Department of Biochemistry, Health and Medical University, Erfurt, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingye Xu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Upmanyu K, Kumar R, Rizwanul Haque QM, Singh R. Exploring the evolutionary and pathogenic role of Acinetobacter baumannii biofilm-associated protein (Bap) through in silico structural modeling. Arch Microbiol 2024; 206:267. [PMID: 38762620 DOI: 10.1007/s00203-024-03992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Acinetobacter species encode for extracellularly secreted Biofilm-associated protein (Bap), a multi-domain protein with variable molecular weights reaching several hundred kilodaltons. Bap is crucial for the development of multi-dimensional structures of mature biofilms. In our investigation, we analyzed 7338 sequences of A. baumannii from the NCBI database and found that Bap or Bap-like protein (BLP) was present in 6422 (87.52%) isolates. Further classification revealed that 12.12% carried Type-1 Bap, 68.44% had Type-2, 6.91% had Type-3, 0.05% had Type-6 or SDF-Type, and 12.51% lacked Bap or BLP. The majority of isolates with Type-1, Type-2, and Type-3 Bap belonged to ST1, ST2, and ST25, respectively. Phylogenetic analysis suggested that Type-1 Bap is the most ancient, while Type-3 and SDF-Type have evolved recently. Studying the interaction of predicted Bap structures with human CEACAM-1 and PIgR showed that Bap with its BIg13 and BIg6 domains interact with the N-terminal domain of CEACAM-1, involving Arg43 and Glu40, involved in CEACAM-1 dimerization. Also, we found that recently evolved Type-3 and SDF-Type Bap showed greater interaction with CEACAM-1 and PIgR. It can be asserted that the evolution of Bap has conferred enhanced virulence characteristics to A. baumannii with increased interaction with CEACAM-1 and PIgR. Using in silico approaches, this study explores the evolutionary, physicochemical, and structural features of A. baumannii Bap and unravels its crucial role in mediating interaction with human CEACAM-1 and PIgR through detailed structure modelling. These findings advance our understanding of A. baumannii Bap and highlight its role in pathogenesis.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rakesh Kumar
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
5
|
Cavallo I, Oliva A, Pages R, Sivori F, Truglio M, Fabrizio G, Pasqua M, Pimpinelli F, Di Domenico EG. Acinetobacter baumannii in the critically ill: complex infections get complicated. Front Microbiol 2023; 14:1196774. [PMID: 37425994 PMCID: PMC10325864 DOI: 10.3389/fmicb.2023.1196774] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rebecca Pages
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Discovery of Two Inhibitors of the Type IV Pilus Assembly ATPase PilB as Potential Antivirulence Compounds. Microbiol Spectr 2022; 10:e0387722. [PMID: 36377931 PMCID: PMC9769694 DOI: 10.1128/spectrum.03877-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the pressing antibiotic resistance pandemic, antivirulence has been increasingly explored as an alternative strategy against bacterial infections. The bacterial type IV pilus (T4P) is a well-documented virulence factor and an attractive target for small molecules for antivirulence purposes. The PilB ATPase is essential for T4P biogenesis because it catalyzes the assembly of monomeric pilins into the polymeric pilus filament. Here, we describe the identification of two PilB inhibitors by a high-throughput screen (HTS) in vitro and their validation as effective inhibitors of T4P assembly in vivo. We used Chloracidobacterium thermophilum PilB as a model enzyme to optimize an ATPase assay for the HTS. From a library of 2,320 compounds, benserazide and levodopa, two approved drugs for Parkinson's disease, were identified and confirmed biochemically to be PilB inhibitors. We demonstrate that both compounds inhibited the T4P-dependent motility of the bacteria Myxoccocus xanthus and Acinetobacter nosocomialis. Additionally, benserazide and levodopa were shown to inhibit A. nosocomialis biofilm formation, a T4P-dependent process. Using M. xanthus as a model, we showed that both compounds inhibited T4P assembly in a dose-dependent manner. These results suggest that these two compounds are effective against the PilB protein in vivo. The potency of benserazide and levodopa as PilB inhibitors both in vitro and in vivo demonstrate potentials of the HTS and its two hits here for the development of anti-T4P chemotherapeutics. IMPORTANCE Many bacterial pathogens use their type IV pilus (T4P) to facilitate and maintain an infection in a human host. Small-molecule inhibitors of the production or assembly of the T4P are promising for the treatment and prevention of infections by these bacteria, especially in our fight against antibiotic-resistant pathogens. Here, we report the development and implementation of a method to identify anti-T4P chemicals from compound libraries by high-throughput screen. This led to the identification and validation of two T4P inhibitors both in the test tubes and in bacteria. The discovery and validation pipeline reported here as well as the confirmation of two anti-T4P inhibitors provide new venues and leads for the development of chemotherapeutics against antibiotic-resistant infections.
Collapse
|
7
|
Ababneh Q, Al-Rousan E, Jaradat Z. Fresh produce as a potential vehicle for transmission of Acinetobacter baumannii. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00092-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractAcinetobacter baumannii is a Gram-negative bacterium that has gained a stronghold inside healthcare settings. Due to the ability of A. baumannii to acquire antibiotic resistance easily, its presence in food products could pose a major threat to the public health. The aim of this study therefore, was to investigate the prevalence of A. baumannii in fresh produce and study their genetic diversity. A total of 234 samples of vegetables and fruits were collected. A. baumannii isolates were identified using CHROMagar and two different PCR assays. Also, the isolates were tested for their ability to resist antibiotics and form biofilms. The genetic diversity of the isolates was determined using multi-locus sequence typing (MLST). Of the 234 samples collected, 10 (6.5%) and 7 (8.75%) A. baumannii isolates were recovered from vegetables and fruits, respectively. Antibiotic susceptibility testing revealed that 4 of these isolates were extensively drug-resistant (XDR). All isolates were able to form biofilms and MLST analysis revealed 6 novel strains. This study demonstrated that fresh produce constitutes a reservoir for A. baumannii, including strong biofilm formers and XDR strains. This represents a significant concern to public health because vegetables and fruits may serve as a vehicle for the spread of A. baumannii and antibiotic resistance into the community and healthcare settings.
Collapse
|
8
|
Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021; 9:1353. [PMID: 34206680 PMCID: PMC8304980 DOI: 10.3390/microorganisms9071353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. Acinetobacter baumannii is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs). The clinical isolates of A. baumannii can form biofilms on both biotic and abiotic surfaces; hospital settings and medical devices are the ideal environments for A. baumannii biofilms, thereby representing the main source of patient infections. However, the paucity of therapeutic options poses major concerns for human health infections caused by A. baumannii strains. The increasing number of multidrug-resistant A. baumannii biofilm-forming isolates in association with the limited number of biofilm-eradicating treatments intensify the need for effective antibiofilm approaches. This review discusses the mechanisms used by this opportunistic pathogen to form biofilms, describes their clinical impact, and summarizes the current and emerging treatment options available, both to prevent their formation and to disrupt preformed A. baumannii biofilms.
Collapse
Affiliation(s)
- Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Giovanni Di Bonaventura
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| |
Collapse
|
9
|
Lavrinenko A, Sheck E, Kolesnichenko S, Azizov I, Turmukhambetova A. Antibiotic Resistance and Genotypes of Nosocomial Strains of Acinetobacter baumannii in Kazakhstan. Antibiotics (Basel) 2021; 10:antibiotics10040382. [PMID: 33916831 PMCID: PMC8065490 DOI: 10.3390/antibiotics10040382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to determine the prevalence of A. baumannii antibiotic-resistant strains in Kazakhstan and to characterize genotypes related to epidemic “high-risk” clones. Two hundred and twenty four A. baumannii isolates from four cities of Kazakhstan in 2011–2019 were studied. Antibiotic susceptibility testing was performed by using broth microdilutions method according to EUCAST (v 11.0) recommendations. The presence of blaOXA-23-like, blaOXA-24/40-like,blaOXA-58-like,blaVIM,blaIMP, and blaNDM genes was determined by PCR. Genotyping was performed using high-throughput real-time PCR detection of 21 SNPs at 10 chromosomal loci used in existing MLST schemes. Resistance rates to imipenem, meropenem, amikacin, gentamicin, and ciprofloxacin were 81.3%, 78.6%, 79.9%, 65.2%, and 89.3%, respectively. No colistin resistant isolates were detected. The values of the MIC 50% and the MIC 90% of tigecycline were 0.125 mg/L, only four isolates (1.8%) had the ECOFF value >0.5 mg/L. The presence of acquired carbapenemase genes was found in 82.2% strains, including blaOXA-23-like (78.6%) or blaOXA-58-like (3.6%) genes. The spreading of carbapenem resistant A. baumannii strains in Kazakhstan was associated with epidemic “high-risk” clonal groups, predominantly, CG208(92)OXF/CG2PAS (80.8%) and less often CG231(109)OXF/CG1PAS (1.8%).
Collapse
Affiliation(s)
- Alyona Lavrinenko
- Share Resource Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan; (A.L.); (A.T.)
| | - Eugene Sheck
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214014 Smolensk, Russia; (E.S.); (I.A.)
| | - Svetlana Kolesnichenko
- Share Resource Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan; (A.L.); (A.T.)
- Correspondence: ; Tel.: +7-721-251-3479
| | - Ilya Azizov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214014 Smolensk, Russia; (E.S.); (I.A.)
| | - Anar Turmukhambetova
- Share Resource Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan; (A.L.); (A.T.)
| |
Collapse
|
10
|
Molecular characterization and antibiotic resistance of Acinetobacter baumannii in cerebrospinal fluid and blood. PLoS One 2021; 16:e0247418. [PMID: 33617547 PMCID: PMC7899338 DOI: 10.1371/journal.pone.0247418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/07/2021] [Indexed: 01/22/2023] Open
Abstract
The increasing prevalence of carbapenem-resistant Acinetobacter baumannii (CRAB) caused nosocomial infections generate significant comorbidity and can cause death among patients. Current treatment options are limited. These infections pose great difficulties for infection control and clinical treatment. To identify the antimicrobial resistance, carbapenemases and genetic relatedness of Acinetobacter baumannii isolates from cerebrospinal fluid (CSF) and blood, a total of 50 nonrepetitive CSF isolates and 44 blood isolates were collected. The resistance phenotypes were determined, and polymerase chain reaction (PCR) was performed to examine the mechanisms of carbapenem resistance. Finally, multilocus sequence typing (MLST) was conducted to determine the genetic relatedness of these isolates. It was observed that 88 of the 94 collected isolates were resistant to imipenem or meropenem. Among them, the blaOXA-23 gene was the most prevalent carbapenemase gene, with an observed detection rate of 91.5% (86/94), followed by the blaOXA-24 gene with a 2.1% detection rate (2/94). Among all carbapenem-resistant Acinetobacter baumannii (CRAB) observations, isolates with the blaOXA-23 gene were resistant to both imipenem and meropenem. Interestingly, isolates positive for the blaOXA-24 gene but negative for the blaOXA-23 gene showed an imipenem-sensitive but meropenem-resistant phenotype. The MLST analysis identified 21 different sequence types (STs), with ST195, ST540 and ST208 most frequently detected (25.5%, 12.8% and 11.7%, respectively). 80 of the 94 isolates (85.1%) were clustered into CC92 which showed a carbapenem resistance phenotype (except AB13). Five novel STs were detected, and most of them belong to CRAB. In conclusion, these findings provide additional observations and epidemiological data of CSF and blood A. baumannii strains, which may improve future infection-control measures and aid in potential clinical treatments in hospitals and other clinical settings.
Collapse
|
11
|
Gallagher P, Baker S. Developing new therapeutic approaches for treating infections caused by multi-drug resistant Acinetobacter baumannii. J Infect 2020; 81:857-861. [DOI: 10.1016/j.jinf.2020.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
|
12
|
Duda-Madej A, Kozłowska J, Krzyżek P, Anioł M, Seniuk A, Jermakow K, Dworniczek E. Antimicrobial O-Alkyl Derivatives of Naringenin and Their Oximes Against Multidrug-Resistant Bacteria. Molecules 2020; 25:E3642. [PMID: 32785151 PMCID: PMC7464300 DOI: 10.3390/molecules25163642] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/01/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022] Open
Abstract
New antimicrobial agents are needed to address infections caused by multidrug-resistant bacteria. Here, we are reporting novel O-alkyl derivatives of naringenin and their oximes, including novel compounds with a naringenin core and O-hexyl chains, showing activity against clinical strains of clarithromycin-resistant Helicobacter pylori, vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, and beta-lactam-resistant Acinetobacter baumannii and Klebsiella pneumoniae. The minimum inhibitory concentrations (MICs), which provide a quantitative measure of antimicrobial activity, were in the low microgram range for the selected compounds. Checkerboard assays for the most active compounds in combination with antibiotics revealed interactions that varied from synergistic to neutral.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| | - Joanna Kozłowska
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| | - Mirosław Anioł
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Alicja Seniuk
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| | - Katarzyna Jermakow
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| | - Ewa Dworniczek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland; (A.D.-M.); (P.K.); (A.S.); (K.J.)
| |
Collapse
|
13
|
Lin MF, Lin YY, Lan CY. Characterization of biofilm production in different strains of Acinetobacter baumannii and the effects of chemical compounds on biofilm formation. PeerJ 2020; 8:e9020. [PMID: 32523805 PMCID: PMC7261477 DOI: 10.7717/peerj.9020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/28/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii, an important emerging pathogen of nosocomial infections, is known for its ability to form biofilms. Biofilm formation increases the survival rate of A. baumannii on dry surfaces and may contribute to its persistence in the hospital environment, which increases the probability of nosocomial infections and outbreaks. This study was undertaken to characterize the biofilm production of different strains of A. baumannii and the effects of chemical compounds, especially antibiotics, on biofilm formation. In this study, no statistically significant relationship was observed between the ability to form a biofilm and the antimicrobial susceptibility of the A. baumannii clinical isolates. Biofilm formation caused by A. baumannii ATCC 17978 after gene knockout of two-component regulatory system gene baeR, efflux pump genes emrA/emrB and outer membrane coding gene ompA revealed that all mutant strains had less biofilm formation than the wild-type strain, which was further supported by the images from scanning electron microscopy and confocal laser scanning microscopy. The addition of amikacin, colistin, LL-37 or tannic acid decreased the biofilm formation ability of A. baumannii. In contrast, the addition of lower subinhibitory concentration tigecycline increased the biofilm formation ability of A. baumannii. Minimum biofilm eradication concentrations of amikacin, imipenem, colistin, and tigecycline were increased obviously for both wild type and multidrug resistant clinical strain A. baumannii VGH2. In conclusion, the biofilm formation ability of A. baumannii varied in different strains, involved many genes and could be influenced by many chemical compounds.
Collapse
Affiliation(s)
- Ming-Feng Lin
- Department of Medicine, National Taiwan University Hospital Chu-Tung Branch, Hsinchu County, Taiwan
| | - Yun-You Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
14
|
Kishii K, Hamada M, Aoki K, Ito K, Onodera J, Ishii Y, Tateda K. Differences in biofilm formation and transcription of biofilm-associated genes among Acinetobacter baumannii clinical strains belonging to the international clone II lineage. J Infect Chemother 2020; 26:693-698. [PMID: 32249162 DOI: 10.1016/j.jiac.2020.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Acinetobacter baumannii isolates belonging to international clonal lineage (IC) II are often multidrug-resistant and are the predominant cause of nosocomial outbreaks. While many studies have investigated the genetic and functional basis of antimicrobial resistance of these strains, few have examined specific virulence characteristics such as biofilm formation or overall pathogenic potential. Here, we analyzed biofilm formation and the associated mechanisms in A. baumannii clinical isolates from Japan belonging to the IC II lineage. Draft whole-genome sequence data for each of the isolates was analyzed to detect biofilm-associated genes, including csu (pili) and bfmS/R (two-component regulatory system), and transcription of these genes was evaluated using reverse transcription quantitative PCR. Biofilm formation was measured by crystal violet staining assay. csu operon genes showed some variation in prevalence among the isolates, with an overall prevalence of 73.7% (14/19). The biofilms formed by csu operon-positive isolates were significantly more mature than those of csu operon-negative isolates, supporting the importance of the csu operon in biofilm formation by A. baumannii. However, there was substantial variation among the csu operon-positive isolates, indicating the influence of other factors in biofilm formation. Furthermore, transcriptional levels of csu operon genes were highly divergent, with comprehensive analysis indicating that regulatory factors other than bfmS/R were involved. Our findings are a first step towards understanding the mechanisms of biofilm formation by A. baumannii IC II strains.
Collapse
Affiliation(s)
- Kozue Kishii
- Department of Health Sciences, Saitama Prefectural University, 820, Sannomiya, Koshigaya-shi, Saitama, 343-8540, Japan; Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Masakaze Hamada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Kengo Ito
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Joh Onodera
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
15
|
Dissemination of bla OXA-23-harbouring carbapenem-resistant Acinetobacter baumannii clones in Pakistan. J Glob Antimicrob Resist 2020; 21:357-362. [PMID: 32006748 DOI: 10.1016/j.jgar.2020.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/24/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The rise of carbapenem resistance in Acinetobacter baumannii represents a challenge for the therapeutic management of infections. The present study aimed to investigate the sequence types (STs) and carbapenem resistance in A. baumannii strains collected from various clinical specimens from patients admitted to five tertiary-care hospitals in Pakistan. METHODS A total of 156 A. baumannii clinical strains were analysed for antimicrobial susceptibility, followed by genetic screening for carbapenem resistance determinants. All of the strains were typed by multilocus sequence typing (MLST) according to the Pasteur scheme. RESULTS Of the 156 A. baumannii isolates, 139 (89.1%) were carbapenem-resistant, of which 136 carried blaOXA-23-like genes. Interestingly, the most commonly identified ST was ST589 (n = 52), classified as clonal complex 1 (CC1). ST2 was the second most common (n = 38), corresponding to CC2/92 (Pasteur/Oxford scheme), which was distributed in all five hospitals. CONCLUSION Diverse clones of carbapenem-resistant A. baumannii, including previously reported STs as well as new STs, carrying blaOXA-23 are distributed in Pakistan. This is the first study to describe the molecular epidemiology of widely disseminated A. baumannii isolates in Pakistan. The findings will help to improve our knowledge of the predominant STs and will be valuable for a deeper understanding of resistance mechanisms among various STs.
Collapse
|
16
|
Alcántar-Curiel MD, Rosales-Reyes R, Jarillo-Quijada MD, Gayosso-Vázquez C, Fernández-Vázquez JL, Toledano-Tableros JE, Giono-Cerezo S, Garza-Villafuerte P, López-Huerta A, Vences-Vences D, Morfín-Otero R, Rodríguez-Noriega E, López-Álvarez MDR, Espinosa-Sotero MDC, Santos-Preciado JI. Carbapenem-Resistant Acinetobacter baumannii in Three Tertiary Care Hospitals in Mexico: Virulence Profiles, Innate Immune Response and Clonal Dissemination. Front Microbiol 2019; 10:2116. [PMID: 31616391 PMCID: PMC6764332 DOI: 10.3389/fmicb.2019.02116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is one of the most important nosocomial pathogens distributed worldwide. Due to its multidrug-resistance and the propensity for the epidemic spread, the World Health Organization includes this bacterium as a priority health issue for development of new antibiotics. The aims of this study were to investigate the antimicrobial resistance profile, the clonal relatedness, the virulence profiles, the innate host immune response and the clonal dissemination of A. baumannii in Hospital Civil de Guadalajara (HCG), Hospital Regional General Ignacio Zaragoza (HRGIZ) and Pediatric ward of the Hospital General de México Eduardo Liceaga (HGM-P). A total of 252 A. baumannii clinical isolates were collected from patients with nosocomial infections in these hospitals between 2015 and 2016. These isolates showed a multidrug-resistant profile and most of them only susceptible to colistin. Furthermore, 83.3 and 36.9% of the isolates carried the blaOXA–24 and blaTEM–1 genes for resistance to carbapenems and β-lactam antibiotics, respectively. The clonal relatedness assessed by pulsed-field gel electrophoresis (PFGE) and by multi-locus sequence typing (MLST) demonstrated a genetic diversity. Remarkably, the ST136, ST208 and ST369 that belonged to the clonal complex CC92 and ST758 and ST1054 to the CC636 clonal complex were identified. The ST136 was a high-risk persistent clone involved in an outbreak at HCG and ST369 were related to the first carbapenem-resistant A. baumannii outbreak in HRGIZ. Up to 58% isolates were able to attach to A549 epithelial cells and 14.5% of them induced >50% of cytotoxicity. A549 cells infected with A. baumannii produced TNFα, IL-6 and IL-1β and the oxygen and nitrogen reactive species that contributes to the development of an inflammatory immune response. Up to 91.3% of clinical isolates were resistant to normal human serum activity. Finally, 98.5% of the clinical isolates were able to form biofilm over polystyrene tubes. In summary, these results demonstrate the increasingly dissemination of multidrug-resistant A. baumannii clones in three hospitals in Mexico carrying diverse bacterial virulence factors that could contribute to establishment of the innate immune response associated to the fatality risks in seriously ill patients.
Collapse
Affiliation(s)
- María Dolores Alcántar-Curiel
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Catalina Gayosso-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Fernández-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Eduardo Toledano-Tableros
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Silvia Giono-Cerezo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Paola Garza-Villafuerte
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arath López-Huerta
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniela Vences-Vences
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, UDG, Guadalajara, Mexico
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, UDG, Guadalajara, Mexico
| | | | | | - José Ignacio Santos-Preciado
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Skerniškytė J, Krasauskas R, Péchoux C, Kulakauskas S, Armalytė J, Sužiedėlienė E. Surface-Related Features and Virulence Among Acinetobacter baumannii Clinical Isolates Belonging to International Clones I and II. Front Microbiol 2019; 9:3116. [PMID: 30671029 PMCID: PMC6331429 DOI: 10.3389/fmicb.2018.03116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii currently represents one of the most important nosocomial infection agent due to its multidrug-resistance and a propensity for the epidemic spread. The A. baumannii strains belonging to the international clonal lineages I (IC I) and II (IC II) are associated with the hospital outbreaks and a high virulence. However, the intra and inter lineage-specific features of strains belonging to these most worldwide spread A. baumannii clones are not thoroughly explored. In this study we have investigated a set of cell surface-related features of A. baumannii IC I (n = 20) and IC II (n = 16) lineage strains, representing 30 distinct pulsed-field gel electrophoresis types in the collection of clinical isolates obtained in Lithuanian tertiary care hospitals. We show that A. baumannii IC II strains are non-motile, do not form pellicle and display distinct capsular polysaccharide profile compared with the IC I strains. Moreover, in contrast to the overall highly hydrophobic IC I strains, IC II strains showed a greater variation in cell surface hydrophobicity. Within the IC II lineage, hydrophilic strains demonstrated reduced ability to form biofilm and adhere to the abiotic surfaces, also possessed twofold thicker cell wall and exhibited higher resistance to desiccation. Furthermore, these strains showed increased adherence to the lung epithelial cells and were more virulent in nematode and mouse infection model compared with the hydrophobic IC II strains. According to the polymerase chain reaction-based locus-typing, the reduction in hydrophobicity of IC II strains was not capsule or lipooligosaccharide locus type-dependent. Hence, this study shows that the most widespread A. baumannii clonal lineages I and II markedly differ in the series of cell surface-related phenotypes including the considerable phenotypic diversification of IC II strains at the intra-lineage level. These findings suggest that the genotypically related A. baumannii strains might evolve the features which could provide an advantage at the specific conditions outside or within the host.
Collapse
Affiliation(s)
- Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Saulius Kulakauskas
- INRA, MICALIS Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
18
|
Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 2018; 11:2277-2299. [PMID: 30532562 PMCID: PMC6245380 DOI: 10.2147/idr.s169894] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a leading cause of nosocomial infections due to its increased antibiotic resistance and virulence. The ability of A. baumannii to form biofilms contributes to its survival in adverse environmental conditions including hospital environments and medical devices. A. baumannii has undoubtedly propelled the interest of biomedical researchers due to its broad range of associated infections especially in hospital intensive care units. The interplay among microbial physicochemistry, alterations in the phenotype and genotypic determinants, and the impact of existing ecological niche and the chemistry of antimicrobial agents has led to enhanced biofilm formation resulting in limited access of drugs to their specific targets. Understanding the triggers to biofilm formation is a step towards limiting and containing biofilm-associated infections and development of biofilm-specific countermeasures. The present review therefore focused on explaining the impact of environmental factors, antimicrobial resistance, gene alteration and regulation, and the prevailing microbial ecology in A. baumannii biofilm formation and gives insights into prospective anti-infective treatments.
Collapse
Affiliation(s)
- Emmanuel C Eze
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| | - Hafizah Y Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| |
Collapse
|
19
|
The Relationship Between Antibiotic Resistance Phenotypes and Biofilm Formation Capacity in Clinical Isolates of Acinetobacter baumannii. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.74315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
20
|
Comparison of clinical manifestations and antibiotic resistances among three genospecies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. PLoS One 2018; 13:e0191748. [PMID: 29389980 PMCID: PMC5794090 DOI: 10.1371/journal.pone.0191748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/10/2018] [Indexed: 01/26/2023] Open
Abstract
The Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex has emerged as a high priority among hospital-acquired pathogens in intensive care units (ICUs), posing a challenge to infection management practices. In this study, the clinical characteristics, antimicrobial susceptibility patterns, and patients outcome among genospecies were retrospectively compared. Samples were taken from the tracheal secretions of 143 patients in the ICU. Genospecies of the ACB complex were discriminated by analysis of the 16S-23S rRNA gene intergenic spacer (ITS) sequence. Univariate and multiple variable logistic regression analyses were performed to identify risk factors for infection and mortality. Three genospecies were isolated: A. baumannii (73, 51.0%), A. nosocomialis (29, 20.3%), and A. pittii (41, 28.7%). The results showed that the distribution of infection and colonization among the three genospecies were the same, while A. baumannii was more resistant to common antibiotics than A. nosocomialis and A. pittii. Advanced age, a long stay in the ICU, acute physiology and chronic health evaluation (APACHE) II score, the use of a mechanical ventilator, and previous antibiotic use were risk factors for patient infection. The APACHE II score was a risk factor for mortality in patients with ACB complex isolated from tracheal secretions. Poor outcome of patients with ACB complex isolated from tracheal secretion appears to be related to the APACHE II score rather than genospecies.
Collapse
|
21
|
Bardoloi V, Yogeesha Babu KV. Comparative study of isolates from community-acquired and catheter-associated urinary tract infections with reference to biofilm-producing property, antibiotic sensitivity and multi-drug resistance. J Med Microbiol 2017; 66:927-936. [PMID: 28703700 DOI: 10.1099/jmm.0.000525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Urinary tract infection (UTI) can be community-acquired (Com-UTI) or catheter-associated (CAUTI) and may be associated with biofilm-producing organisms. A comparative analysis of biofilm-producing property (BPP), antibiotic-sensitivity and multi-drug resistance (MDR) and their relation with the BPP of isolates from Com-UTI and CAUTI has not yet been performed and necessitated this study. METHODOLOGY OBJECTIVES (1) isolation of bacteria from CAUTI and Com-UTI and identification of their BPP, antibiotic-sensitivity and MDR status; (2) comparison of the isolates from CAUTI and Com-UTI as regards BPP, MDR status and their relation with BPP. METHOD isolates from 100 cases each of Com-UTI and CAUTI were subjected to Congo redagar (CRA) and Safranin tube tests. Antibiotic susceptibility was investigated using the disc diffusion method. Both groups were compared regarding BPP, drug sensitivity and MDR status. Statistical analyses were performed using χ2 and Fisher's exact tests. RESULTS 76.19 % of isolates from Com-UTI and 60.72 % from CAUTI had BPP (P=0.0252; significant). The Safranin tube test detected more isolates with BPP than the CRA test. MDR is greater in CAUTI than Com-UTI (83.33 % versus 64.76 %; P=0.0039; significant). MDR is greater in isolates with BPP in both Com-UTI and CAUTI (76.47 and 62.35 %; non-significant). CONCLUSIONS BPP was found in both Com-UTI and CAUTI. When used together, the Safranin tube test and the CRA test increased the sensitivity of detecting BPP. MDR was higher in CAUTI than Com-UTI. MDR and BPP are not interrelated or associated, especially in settings where it is not certain that isolates were obtained from a well-formed biofilm. However, this does not rule out a higher incidence or prevalence of MDR in isolates with BPP taken directly from the biofilms.
Collapse
Affiliation(s)
- Vishwajeet Bardoloi
- Department of Microbiology, Azeezia Institute of Medical Sciences and Research, Kollam, Kerala, India
| | - K V Yogeesha Babu
- Department of Microbiology, Azeezia Institute of Medical Sciences and Research, Kollam, Kerala, India
| |
Collapse
|
22
|
Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype. Int J Mol Sci 2017; 18:ijms18051077. [PMID: 28513576 PMCID: PMC5454986 DOI: 10.3390/ijms18051077] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 01/28/2023] Open
Abstract
Bacterial biofilm is a major factor in delayed wound healing and high levels of biofilm production have been repeatedly described in multidrug resistant organisms (MDROs). Nevertheless, a quantitative correlation between biofilm production and the profile of antimicrobial drug resistance in delayed wound healing remains to be determined. Microbial identification, antibiotic susceptibility and biofilm production were assessed in 135 clinical isolates from 87 patients. Gram-negative bacteria were the most represented microorganisms (60.8%) with MDROs accounting for 31.8% of the total isolates. Assessment of biofilm production revealed that 80% of the strains were able to form biofilm. A comparable level of biofilm production was found with both MDRO and not-MDRO with no significant differences between groups. All the methicillin-resistant Staphylococcus aureus (MRSA) and 80% of Pseudomonas aeruginosa MDR strains were found as moderate/high biofilm producers. Conversely, less than 17% of Klebsiella pneumoniae extended-spectrum beta-lactamase (ESBL), Escherichia coli-ESBL and Acinetobacter baumannii were moderate/high biofilm producers. Notably, those strains classified as non-biofilm producers, were always associated with biofilm producer bacteria in polymicrobial colonization. This study shows that biofilm producers were present in all chronic skin ulcers, suggesting that biofilm represents a key virulence determinant in promoting bacterial persistence and chronicity of ulcerative lesions independently from the MDRO phenotype.
Collapse
|