1
|
Chen L, Yang Z, Ji S, Song T, Li H, Tang Y, Chen Y, Li Y. Comparing the Risk of Epilepsy in Patients With Simple Congenital Heart Diseases: A Prospective Cohort Study. CNS Neurosci Ther 2025; 31:e70230. [PMID: 39918096 PMCID: PMC11803515 DOI: 10.1111/cns.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
AIMS Simple congenital heart diseases (CHD) are associated with various central nervous system diseases, including epilepsy. This study aimed to compare the risk of epilepsy in patients with different types of simple CHD. METHODS In this prospective cohort study, from January 2008 to June 2022, patients with atrial septal defect (ASD), patent foramen ovale (PFO), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) were recruited at the Registration Center of CHD in West China Hospital. Follow-up was conducted yearly until the diagnosis of epilepsy, loss to follow-up, or end of study. The outcomes included a comparison of epilepsy incidence according to different simple CHD types and a risk assessment of developing epilepsy. Multivariable Poisson regression was performed to adjusted factors of demographics and disease history. RESULTS Of 10,914 patients who met the inclusion criteria, 108 were diagnosed with epilepsy at an average follow-up of 2.19 years. Epilepsy incidence in patients with PFO, VSD, PDA, and ASD was 8.58/1000, 4.85/1000, 3.98/1000, and 2.63/1000 person-years, respectively. Compared with ASD patients (reference group), the risk ratios (95% confidence intervals) in patients with PFO, VSD, and PDA were 3.28 (2.00-5.43), 1.47 (0.79-2.68), and 1.46 (0.70-2.82), respectively. Subgroup analyses determined that patients with simple CHD who underwent CHD surgery demonstrated a lower risk of epilepsy than those who did not. CONCLUSION Among the major types of simple CHD, PFO was associated with a significantly higher risk of epilepsy, while the risk was reduced in those who underwent PFO closure procedures.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology, Joint Research Institution of Altitude Health, West China HospitalSichuan UniversityChengduChina
- Sichuan Provincial Engineering Research Center of Brain‐Machine InterfaceChengduChina
- Sichuan Provincial Engineering Research Center of NeuromodulationChengduChina
| | - Zuyao Yang
- JC School of Public Health and Primary CareThe Chinese University of Hong KongHong KongChina
| | - Shuming Ji
- Department of Clinical Research Management, West China HospitalSichuan UniversityChengduChina
| | - Tingting Song
- Department of Neurology, Joint Research Institution of Altitude Health, West China HospitalSichuan UniversityChengduChina
| | - Hua Li
- Department of Neurology, Joint Research Institution of Altitude Health, West China HospitalSichuan UniversityChengduChina
| | - Yusha Tang
- Department of Neurology, Joint Research Institution of Altitude Health, West China HospitalSichuan UniversityChengduChina
| | - Yucheng Chen
- Department of Cardiology, West China HospitalSichuan UniversityChengduChina
| | - Yajiao Li
- Department of Cardiology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Jeelani M. miRNAs in epilepsy: A review from molecular signatures to therapeutic intervention. Int J Biol Macromol 2024; 263:130468. [PMID: 38417757 DOI: 10.1016/j.ijbiomac.2024.130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Epilepsy is a medical disorder marked by sporadic seizures accompanied by alterations in consciousness. The molecular mechanisms responsible for epilepsy and the factors contributing to alterations in neuronal structure compromised apoptotic responses in neurons, and disturbances in regeneration pathways in glial cells remain unidentified. MicroRNAs (miRNAs) are short noncoding RNA that consist of a single strand. They typically contain 21 to 23 nucleotides. miRNAs participate in the process of RNA silencing and the regulation of gene expression after transcription by selectively binding to mRNA molecules that possess complementary sequences. The disruption of miRNA regulation has been associated with the development of epilepsy, and manipulating a single miRNA can impact various cellular processes, hence serving as a potent intervention approach. Despite existing obstacles in the delivery and safety of miRNA-based treatments, researchers are actively investigating the potential of miRNAs to operate as regulators of brain activity and as targets for treating and preventing epilepsy. Hence, the utilization of miRNA-based therapeutic intervention shows potential for future epilepsy management. The objective of our present investigation was to ascertain the involvement of miRNAs in the causation and advancement of epilepsy. Moreover, they have undergone scrutiny for their potential utilization in therapeutic intervention.
Collapse
Affiliation(s)
- Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
3
|
Guarnieri L, Amodio N, Bosco F, Carpi S, Tallarico M, Gallelli L, Rania V, Citraro R, Leo A, De Sarro G. Circulating miRNAs as Novel Clinical Biomarkers in Temporal Lobe Epilepsy. Noncoding RNA 2024; 10:18. [PMID: 38525737 PMCID: PMC10961783 DOI: 10.3390/ncrna10020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Temporal lobe epilepsy (TLE) represents the most common form of refractory focal epilepsy. The identification of innovative clinical biomarkers capable of categorizing patients with TLE, allowing for improved treatment and outcomes, still represents an unmet need. Circulating microRNAs (c-miRNAs) are short non-coding RNAs detectable in body fluids, which play crucial roles in the regulation of gene expression. Their characteristics, including extracellular stability, detectability through non-invasive methods, and responsiveness to pathological changes and/or therapeutic interventions, make them promising candidate biomarkers in various disease settings. Recent research has investigated c-miRNAs in various bodily fluids, including serum, plasma, and cerebrospinal fluid, of TLE patients. Despite some discrepancies in methodologies, cohort composition, and normalization strategies, a common dysregulated signature of c-miRNAs has emerged across different studies, providing the basis for using c-miRNAs as novel biomarkers for TLE patient management.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Sara Carpi
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Martina Tallarico
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Luca Gallelli
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Rania
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (L.G.); (F.B.); (S.C.); (M.T.); (L.G.); (V.R.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Xu D, Chu M, Chen Y, Fang Y, Wang J, Zhang X, Xu F. Identification and verification of ferroptosis-related genes in the pathology of epilepsy: insights from CIBERSORT algorithm analysis. Front Neurol 2023; 14:1275606. [PMID: 38020614 PMCID: PMC10644861 DOI: 10.3389/fneur.2023.1275606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epilepsy is a neurological disorder characterized by recurrent seizures. A mechanism of cell death regulation, known as ferroptosis, which involves iron-dependent lipid peroxidation, has been implicated in various diseases, including epilepsy. Objective This study aimed to provide a comprehensive understanding of the relationship between ferroptosis and epilepsy through bioinformatics analysis. By identifying key genes, pathways, and potential therapeutic targets, we aimed to shed light on the underlying mechanisms involved in the pathogenesis of epilepsy. Materials and methods We conducted a comprehensive analysis by screening gene expression data from the Gene Expression Omnibus (GEO) database and identified the differentially expressed genes (DEGs) related to ferroptosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to gain insights into the biological processes and pathways involved. Moreover, we constructed a protein-protein interaction (PPI) network to identify hub genes, which was further validated using the receiver operating characteristic (ROC) curve analysis. To explore the relationship between immune infiltration and genes, we employed the CIBERSORT algorithm. Furthermore, we visualized four distinct interaction networks-mRNA-miRNA, mRNA-transcription factor, mRNA-drug, and mRNA-compound-to investigate potential regulatory mechanisms. Results In this study, we identified a total of 33 differentially expressed genes (FDEGs) associated with epilepsy and presented them using a Venn diagram. Enrichment analysis revealed significant enrichment in the pathways related to reactive oxygen species, secondary lysosomes, and ubiquitin protein ligase binding. Furthermore, GSVA enrichment analysis highlighted significant differences between epilepsy and control groups in terms of the generation of precursor metabolites and energy, chaperone complex, and antioxidant activity in Gene Ontology (GO) analysis. Furthermore, during the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we observed differential expression in pathways associated with amyotrophic lateral sclerosis (ALS) and acute myeloid leukemia (AML) between the two groups. To identify hub genes, we constructed a protein-protein interaction (PPI) network using 30 FDEGs and utilized algorithms. This analysis led to the identification of three hub genes, namely, HIF1A, TLR4, and CASP8. The application of the CIBERSORT algorithm allowed us to explore the immune infiltration patterns between epilepsy and control groups. We found that CD4-naïve T cells, gamma delta T cells, M1 macrophages, and neutrophils exhibited higher expression in the control group than in the epilepsy group. Conclusion This study identified three FDEGs and analyzed the immune cells in epilepsy. These findings pave the way for future research and the development of innovative therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Dan Xu
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - ManMan Chu
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - YaoYao Chen
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - JingGuang Wang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - XiaoLi Zhang
- Department of Pediatric Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - FaLin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Vasilieva AA, Timechko EE, Lysova KD, Paramonova AI, Yakimov AM, Kantimirova EA, Dmitrenko DV. MicroRNAs as Potential Biomarkers of Post-Traumatic Epileptogenesis: A Systematic Review. Int J Mol Sci 2023; 24:15366. [PMID: 37895044 PMCID: PMC10607802 DOI: 10.3390/ijms242015366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Structural or post-traumatic epilepsy often develops after brain tissue damage caused by traumatic brain injury, stroke, infectious diseases of the brain, etc. Most often, between the initiating event and epilepsy, there is a period without seizures-a latent period. At this time, the process of restructuring of neural networks begins, leading to the formation of epileptiform activity, called epileptogenesis. The prediction of the development of the epileptogenic process is currently an urgent and difficult task. MicroRNAs are inexpensive and minimally invasive biomarkers of biological and pathological processes. The aim of this study is to evaluate the predictive ability of microRNAs to detect the risk of epileptogenesis. In this study, we conducted a systematic search on the MDPI, PubMed, ScienceDirect, and Web of Science platforms. We analyzed publications that studied the aberrant expression of circulating microRNAs in epilepsy, traumatic brain injury, and ischemic stroke in order to search for microRNAs-potential biomarkers for predicting epileptogenesis. Thus, 31 manuscripts examining biomarkers of epilepsy, 19 manuscripts examining biomarkers of traumatic brain injury, and 48 manuscripts examining biomarkers of ischemic stroke based on circulating miRNAs were analyzed. Three miRNAs were studied: miR-21, miR-181a, and miR-155. The findings showed that miR-21 and miR-155 are associated with cell proliferation and apoptosis, and miR-181a is associated with protein modifications. These miRNAs are not strictly specific, but they are involved in processes that may be indirectly associated with epileptogenesis. Also, these microRNAs may be of interest when they are studied in a cohort with each other and with other microRNAs. To further study the microRNA-based biomarkers of epileptogenesis, many factors must be taken into account: the time of sampling, the type of biological fluid, and other nuances. Currently, there is a need for more in-depth and prolonged studies of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diana V. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (A.A.V.); (E.E.T.); (K.D.L.); (A.I.P.)
| |
Collapse
|
6
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Peplow P, Martinez B. MicroRNAs as potential biomarkers in temporal lobe epilepsy and mesial temporal lobe epilepsy. Neural Regen Res 2023; 18:716-726. [DOI: 10.4103/1673-5374.354510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Stage- and Subfield-Associated Hippocampal miRNA Expression Patterns after Pilocarpine-Induced Status Epilepticus. Biomedicines 2022; 10:biomedicines10123012. [PMID: 36551767 PMCID: PMC9775180 DOI: 10.3390/biomedicines10123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To investigate microRNA (miRNA) expression profiles before and after pilocarpine-induced status epilepticus (SE) in the cornu ammonis (CA) and dentated gyrus (DG) areas of the mouse hippocampus, and to predict the downstream proteins and related pathways based on bioinformatic analysis. METHODS An epileptic mouse model was established using a pilocarpine injection. Brain tissues from the CA and DG were collected separately for miRNA analysis. The miRNAs were extracted using a kit, and the expression profiles were generated using the SurePrint G3 Mouse miRNA microarray and validated. The intersecting genes of TargetScan and miRanda were selected to predict the target genes of each miRNA. For gene ontology (GO) studies, the parent-child-intersection (pci) method was used for enrichment analysis, and Benjamini-Hochberg was used for multiple test correction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to detect disease-related pathways among the large list of miRNA-targeted genes. All analyses mentioned above were performed at the time points of control, days 3, 14, and 60 post-SE. RESULTS Control versus days 3, 14, and 60 post-SE: in the CA area, a total of 131 miRNAs were differentially expressed; 53, 49, and 26 miRNAs were upregulated and 54, 10, and 22 were downregulated, respectively. In the DG area, a total of 171 miRNAs were differentially expressed; furthermore, 36, 32, and 28 miRNAs were upregulated and 78, 58, and 44 were downregulated, respectively. Of these, 92 changed in both the CA and DG, 39 only in the CA, and 79 only in the DG area. The differentially expressed miRNAs target 11-1630 genes. Most of these proteins have multiple functions in epileptogenesis. There were 15 common pathways related to altered miRNAs: nine different pathways in the CA and seven in the DG area. CONCLUSIONS Stage- and subfield-associated hippocampal miRNA expression patterns are closely related to epileptogenesis, although the detailed mechanisms need to be explored in the future.
Collapse
|
9
|
Li Z, Cao W, Sun H, Wang X, Li S, Ran X, Zhang H. Potential clinical and biochemical markers for the prediction of drug-resistant epilepsy: A literature review. Neurobiol Dis 2022; 174:105872. [PMID: 36152944 DOI: 10.1016/j.nbd.2022.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022] Open
Abstract
Drug resistance is a major challenge in the treatment of epilepsy. Drug-resistant epilepsy (DRE) accounts for 30% of all cases of epilepsy and is a matter of great concern because of its uncontrollability and the high burden, mortality rate, and degree of damage. At present, considerable research has focused on the development of predictors to aid in the early identification of DRE in an effort to promote prompt initiation of individualized treatment. While multiple predictors and risk factors have been identified, there are currently no standard predictors that can be used to guide the clinical management of DRE. In this review, we discuss several potential predictors of DRE and related factors that may become predictors in the future and perform evidence rating analysis to identify reliable potential predictors.
Collapse
Affiliation(s)
- ZhiQiang Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - HuiLiang Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - ShanMin Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - XiangTian Ran
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Zahra MA, Kamha ES, Abdelaziz HK, Nounou HA, Deeb HME. Aberrant Expression of Serum MicroRNA-153 and -199a in Generalized Epilepsy and its Correlation with Drug Resistance. Ann Neurosci 2022; 29:203-208. [PMID: 37064282 PMCID: PMC10101161 DOI: 10.1177/09727531221077667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Epilepsy is one of the common neurological disorders affecting approximately 50 million people worldwide. Despite the recent introduction of new antiepileptic drugs, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early recognition of patients with drug-resistant epilepsy may help direct these patients to appropriate nonpharmacological treatment. Purpose: The possible use of serum microRNAs (miRNAs) as noninvasive biomarkers has been explored in various brain diseases, including epilepsy. In this study, we are aiming at analyzing the expression levels of circulating miRNA-153 and miRNA-199a in patients with generalized epilepsy and their correlation with drug resistance. Methods: Our study comprised 40 patients with generalized epilepsy and 20 healthy controls. 22 patients were drug-resistant and 18 patients were drug-responsive. The expression levels of miRNA-153 and -199a in serum were analyzed using quantitative real-time polymerase chain reaction. Data analysis was done by IBM SPSS Statistics 20.0. Results: The expression of miRNA-153 and -199a in serum was significantly downregulated in patients with generalized epilepsy compared with that of the healthy control ( P < .001). Combined expression level of serum miRNA-153 and -199a had a sensitivity of 85% and a specificity of 90% in the diagnosis of generalized epilepsy. Furthermore, the expression levels of miRNA-153 and -199a were significantly decreased in drug-resistant patients compared to the drug-responsive group, and the combination of both markers gave the best results in differentiating between the two groups. Conclusion: We suggest that serum miRNAs-153 and -199a expression levels could be potential noninvasive biomarkers supporting the diagnosis of generalized epilepsy. Moreover, they could be used for the early detection of refractory generalized epilepsy.
Collapse
Affiliation(s)
- Mai A. Zahra
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| | - Eman S. Kamha
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| | - Hanan K. Abdelaziz
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| | - Howaida A. Nounou
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| | - Hany M. El Deeb
- Department of Neuropsychiatry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| |
Collapse
|
11
|
Expression Profile of miRs in Mesial Temporal Lobe Epilepsy: Systematic Review. Int J Mol Sci 2022; 23:ijms23020951. [PMID: 35055144 PMCID: PMC8781102 DOI: 10.3390/ijms23020951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy in children and adults. TLE is characterized by variable onset and seizures. Moreover, this form of epilepsy is often resistant to pharmacotherapy. The search for new mechanisms for the development of TLE may provide us with a key to the development of new diagnostic methods and a personalized approach to the treatment. In recent years, the role of non-coding ribonucleic acids (RNA) has been actively studied, among which microRNA (miR) is of the greatest interest. (1) Background: The purpose of the systematic review is to analyze the studies carried out on the role of miRs in the development of mesial TLE (mTLE) and update the existing knowledge about the biomarkers of this disease. (2) Methods: The search for publications was carried out in the databases PubMed, Springer, Web of Science, Clinicalkeys, Scopus, OxfordPress, Cochrane. The search was carried out using keywords and combinations. We analyzed publications for 2016–2021, including original studies in an animal model of TLE and with the participation of patients with TLE, thematic and systemic reviews, and Cochrane reviews. (3) Results: this thematic review showed that miR‒155, miR‒153, miR‒361‒5p, miR‒4668‒5p, miR‒8071, miR‒197‒5p, miR‒145, miR‒181, miR‒199a, miR‒1183, miR‒129‒2‒3p, miR‒143‒3p (upregulation), miR–134, miR‒0067835, and miR‒153 (downregulation) can be considered as biomarkers of mTLE. However, the roles of miR‒146a, miR‒142, miR‒106b, and miR‒223 are questionable and need further study. (4) Conclusion: In the future, it will be possible to consider previously studied miRs, which have high specificity and sensitivity in mTLE, as prognostic biomarkers (predictors) of the risk of developing this disease in patients with potentially epileptogenic structural damage to the mesial regions of the temporal lobe of the brain (congenital disorders of the neuronal migration and neurogenesis, brain injury, neuro-inflammation, tumor, impaired blood supply, neurodegeneration, etc.).
Collapse
|
12
|
A novel insight into differential expression profiles of sporadic cerebral cavernous malformation patients with different symptoms. Sci Rep 2021; 11:19351. [PMID: 34588521 PMCID: PMC8481309 DOI: 10.1038/s41598-021-98647-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a vascular lesion of the central nervous system that may lead to distinct symptoms among patients including cerebral hemorrhages, epileptic seizures, focal neurologic deficits, and/or headaches. Disease-related mutations were identified previously in one of the three CCM genes: CCM1, CCM2, and CCM3. However, the rate of these mutations in sporadic cases is relatively low, and new studies report that mutations in CCM genes may not be sufficient to initiate the lesions. Despite the growing body of research on CCM, the underlying molecular mechanism has remained largely elusive. In order to provide a novel insight considering the specific manifested symptoms, CCM patients were classified into two groups (as Epilepsy and Hemorrhage). Since the studied patients experience various symptoms, we hypothesized that the underlying cause for the disease may also differ between those groups. To this end, the respective transcriptomes were compared to the transcriptomes of the control brain tissues and among each other. This resulted into the identification of the differentially expressed coding genes and the delineation of the corresponding differential expression profile for each comparison. Notably, some of those differentially expressed genes were previously implicated in epilepsy, cell structure formation, and cell metabolism. However, no CCM1-3 gene deregulation was detected. Interestingly, we observed that when compared to the normal controls, the expression of some identified genes was only significantly altered either in Epilepsy (EGLN1, ELAVL4, and NFE2l2) or Hemorrhage (USP22, EYA1, SIX1, OAS3, SRMS) groups. To the best of our knowledge, this is the first such effort focusing on CCM patients with epileptic and hemorrhagic symptoms with the purpose of uncovering the potential CCM-related genes. It is also the first report that presents a gene expression dataset on Turkish CCM patients. The results suggest that the new candidate genes should be explored to further elucidate the CCM pathology. Overall, this work constitutes a step towards the identification of novel potential genetic targets for the development of possible future therapies.
Collapse
|
13
|
Bohosova J, Vajcner J, Jabandziev P, Oslejskova H, Slaby O, Aulicka S. MicroRNAs in the development of resistance to antiseizure drugs and their potential as biomarkers in pharmacoresistant epilepsy. Epilepsia 2021; 62:2573-2588. [PMID: 34486106 DOI: 10.1111/epi.17063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023]
Abstract
Although many new antiseizure drugs have been developed in the past decade, approximately 30%-40% of patients remain pharmacoresistant. There are no clinical tools or guidelines for predicting therapeutic response in individual patients, leaving them no choice other than to try all antiseizure drugs available as they suffer debilitating seizures with no relief. The discovery of predictive biomarkers and early identification of pharmacoresistant patients is of the highest priority in this group. MicroRNAs (miRNAs), a class of short noncoding RNAs negatively regulating gene expression, have emerged in recent years in epilepsy, following a broader trend of their exploitation as biomarkers of various complex human diseases. We performed a systematic search of the PubMed database for original research articles focused on miRNA expression level profiling in patients with drug-resistant epilepsy or drug-resistant precilinical models and cell cultures. In this review, we summarize 17 publications concerning miRNAs as potential new biomarkers of resistance to antiseizure drugs and their potential role in the development of drug resistance or epilepsy. Although numerous knowledge gaps need to be filled and reviewed, and articles share some study design pitfalls, several miRNAs dysregulated in brain tissue and blood serum were identified independently by more than one paper. These results suggest a unique opportunity for disease monitoring and personalized therapeutic management in the future.
Collapse
Affiliation(s)
- Julia Bohosova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Vajcner
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Jabandziev
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pediatrics, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Oslejskova
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stefania Aulicka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Bruxel EM, do Canto AM, Bruno DCF, Geraldis JC, Lopes-Cendes I. Multi-omic strategies applied to the study of pharmacoresistance in mesial temporal lobe epilepsy. Epilepsia Open 2021; 7 Suppl 1:S94-S120. [PMID: 34486831 PMCID: PMC9340306 DOI: 10.1002/epi4.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults, and hippocampal sclerosis (HS) is a frequent histopathological feature in patients with MTLE. Pharmacoresistance is present in at least one-third of patients with MTLE with HS (MTLE+HS). Several hypotheses have been proposed to explain the mechanisms of pharmacoresistance in epilepsy, including the effect of genetic and molecular factors. In recent years, the increased knowledge generated by high-throughput omic technologies has significantly improved the power of molecular genetic studies to discover new mechanisms leading to disease and response to treatment. In this review, we present and discuss the contribution of different omic modalities to understand the basic mechanisms determining pharmacoresistance in patients with MTLE+HS. We provide an overview and a critical discussion of the findings, limitations, new approaches, and future directions of these studies to improve the understanding of pharmacoresistance in MTLE+HS. However, it is important to point out that, as with other complex traits, pharmacoresistance to anti-seizure medications is likely a multifactorial condition in which gene-gene and gene-environment interactions play an important role. Thus, studies using multidimensional approaches are more likely to unravel these intricate biological processes.
Collapse
Affiliation(s)
- Estela M Bruxel
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda M do Canto
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Danielle C F Bruno
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C Geraldis
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
15
|
Kukec E, Goričar K, Dolžan V, Rener-Primec Z. HIF1A polymorphisms do not modify the risk of epilepsy nor cerebral palsy after neonatal hypoxic-ischemic encephalopathy. Brain Res 2021; 1757:147281. [PMID: 33515534 DOI: 10.1016/j.brainres.2021.147281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Hypoxic-ischemic encephalopathy (HIE) remains the major cause of cerebral palsy and epilepsy in developed countries. Hypoxia-inducible factor 1 alpha (HIF-1α) is the key mediator of oxygen homoeostasis. The aim of this study was to investigate whether hypoxia-inducible factor 1 subunit alpha (HIF1A) functional polymorphisms are associated with the risk of epilepsy, drug-resistant epilepsy, and cerebral palsy after neonatal HIE. METHODS The study included 139 healthy controls and 229 patients with epilepsy and/or cerebral palsy, of which 95 had perinatal HIE. Genomic DNA isolated from buccal swabs or peripheral blood were genotyped for HIF1A rs11549465 and rs11549467 using PCR based methods. RESULTS The investigated HIF1A polymorphisms did not influence the risk of epilepsy and its drug-resistance nor cerebral palsy after neonatal HIE (all p > 0.05). Clinical characteristics of patients were significantly associated with neurological deficits after HIE. CONCLUSION This study found no statistically significant association of HIF1A rs11549465 and rs11549467 with the development of epilepsy and its drug-resistance, as well as cerebral palsy, after neonatal HIE.
Collapse
Affiliation(s)
- Eva Kukec
- Department of Child, Adolescent, and Developmental Neurology, Children's Hospital, University Medical Centre Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | - Katja Goričar
- Faculty of Medicine, University of Ljubljana, Slovenia; Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Vita Dolžan
- Faculty of Medicine, University of Ljubljana, Slovenia; Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Zvonka Rener-Primec
- Department of Child, Adolescent, and Developmental Neurology, Children's Hospital, University Medical Centre Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
16
|
Prospects and Limitations Related to the Use of MicroRNA as a Biomarker of Epilepsy in Children: A Systematic Review. Life (Basel) 2021; 11:life11010026. [PMID: 33406636 PMCID: PMC7824581 DOI: 10.3390/life11010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is one of the most common neurological diseases in children. There is an unmet need for new objective methods that would facilitate and accelerate the diagnostic process, thus improving the prognosis. In many studies, the participation of microRNA in epileptogenesis has been confirmed. Therefore, it seems to be a promising candidate for this role. Scientists show the possibility of using microRNAs as diagnostic and predictive biomarkers as well as novel therapeutic targets. Children with epilepsy would benefit particularly from the use of this innovative method. However, the number of studies related to this age group is very limited. This review is based on 10 studies in children and summarizes the information collected from studies on animal models and the adult population. A total of 136 manuscripts were included in the analysis. The aim of the review was to facilitate the design of studies in children and to draw attention to the challenges and traps related to the analysis of the results. Our review suggests a high potential for the use of microRNAs and the need for further research.
Collapse
|
17
|
Asadi-Pooya AA, Tajbakhsh A, Savardashtaki A. MicroRNAs in temporal lobe epilepsy: a systematic review. Neurol Sci 2021; 42:571-578. [PMID: 33389245 DOI: 10.1007/s10072-020-05016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE About 30% of patients with epilepsy have drug-resistant seizures. The aim of the current endeavor was to systematically review the existing evidence on the potential applications of microRNAs as biomarkers in people with difficult to treat temporal lobe epilepsy (TLE). METHODS MEDLINE (accessed from PubMed) and Scopus from inception to March 18, 2020 were systematically searched for related published articles. In both electronic databases, the following search strategy was implemented, and these keywords (in the title/abstract) were used: "microRNA" AND "temporal lobe epilepsy." Articles written in English that were human studies in people with epilepsy were all included in this search. RESULTS We could identify 16 articles about different aspects of microRNAs in the serum of patients with TLE. However, only three studies robustly investigated microRNAs as potential biomarkers in the diagnosis of drug-resistant TLE (microRNA-155 (upregulated), microRNA-129-2-3p (upregulated), microRNA-153 (downregulated)). One small study provided class II, and two small studies provided class III evidence. CONCLUSION While this systematic review identified three studies that provided some evidence on the potential applications of circulating serum microRNAs as biomarkers in people with drug-resistant TLE, the evidence is not robust yet. While these findings provide a new horizon, substantial challenges remain before the roles of microRNAs as biomarkers in the diagnosis of drug-resistant TLE can be translated into clinical practice.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Amir Tajbakhsh
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Wang HJ, Tang XL, Huang G, Li YB, Pan RH, Zhan J, Wu YK, Liang JF, Bai XX, Cai J. Long Non-Coding KCNQ1OT1 Promotes Oxygen-Glucose-Deprivation/Reoxygenation-Induced Neurons Injury Through Regulating MIR-153-3p/FOXO3 Axis. J Stroke Cerebrovasc Dis 2020; 29:105126. [PMID: 32912499 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been reported to play important roles in the pathogenesis and development of many diseases, including cerebral ischemia and reperfusion (I/R) injury. In this study, we aimed to investigate the role of LncRNA-Potassium Voltage-Gated Channel Subfamily Q Member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) in cerebral I/R induced neuronal injury, and its underlying mechanisms. METHODS Primary mouse cerebral cortical neurons treated with oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro and mice subjected to middle cerebral artery occlusion (MCAO) and reperfusion were used to mimic cerebral I/R injury. Small inference RNA (siRNA) was used to knockdown KCNQ1OT1 or microRNA-153-3p (miR-153-3p). Dual-luciferase assay was performed to detect the interaction between KCNQ1OT1 and miR-153-3p and interaction between miR-153-3p and Fork head box O3a (Foxo3). Flow cytometry analysis was performed to detect neuronal apoptosis. qRT-PCR and Western blotting were performed to detect RNA and protein expressions. RESULTS KCNQ1OT1 and Foxo3 expressions were significantly increased in neurons subjected to I/R injury in vitro and in vivo, and miR-153-3p expression were significantly decreased. Knockdown of KCNQ1OT1 or overexpression of miR-153-3p weakened OGD/R-induced neuronal injury and regulated Foxo3 expressions. Dual-luciferase analysis showed that KCNQ1OT1 directly interacted with miR-153-3p and Foxo3 is a direct target of miR-153-3p. CONCLUSIONS Our results indicate that LncRNA-KCNQ1OT1 promotes OGD/R-induced neuronal injury at least partially through acting as a competing endogenous RNA (ceRNA) for miR-153-3p to regulate Foxo3a expression, suggesting LncRNA-KCNQ1OT1 as a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Hua-Jun Wang
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Xia-Lin Tang
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Gan Huang
- Postdoctoral Center, Yangjiang Hospital of Chinese Medicine, Yangjiang 529500, China
| | - Ying-Bin Li
- Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Rui-Huan Pan
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Jie Zhan
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Ye-Kun Wu
- Postdoctoral Center, Yangjiang Hospital of Chinese Medicine, Yangjiang 529500, China
| | - Jian-Feng Liang
- Postdoctoral Center, Yangjiang Hospital of Chinese Medicine, Yangjiang 529500, China
| | - Xiao-Xin Bai
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China.
| | - Jun Cai
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
19
|
Zhang S, Yan ML, Yang L, An XB, Zhao HM, Xia SN, Jin Z, Huang SY, Qu Y, Ai J. MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol 2020; 332:113389. [PMID: 32580014 DOI: 10.1016/j.expneurol.2020.113389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) promotes the development of Alzheimer's pathology. However, whether and how CCH impairs the synaptic vesicle trafficking is still unclear. In the present study, we found that the hippocampal glutamatergic vesicle trafficking was impaired as indicated by a significant shortened delayed response enhancement (DRE) phase in CA3-CA1 circuit and decreased synapsin I in CCH rats suffering from bilateral common carotid artery occlusion (2VO). Further study showed an upregulated miR-153 in the hippocampus of 2VO rats. In vitro, overexpression of miR-153 downregulated synapsin I by binding the 3'UTRs of SYN1 mRNAs, which was prevented by its antisense AMO-153 and miRNA-masking antisense oligodeoxynucleotides (SYN1-ODN). In vivo, the upregulation of miR-153 elicited similar reduced DRE phase and synapsin I deficiency as CCH. Furthermore, miR-153 knockdown rescued the downregulated synapsin I and shortened DRE phase in 2VO rats. Our results demonstrate that CCH impairs hippocampal glutamatergic vesicle trafficking by upregulating miR-153, which suppresses the expression of synapsin I at the post-transcriptional level. These results will provide important references for drug research and treatment of vascular dementia.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province 150086, China.
| |
Collapse
|
20
|
Qi Y, Qian R, Jia L, Fei X, Zhang D, Zhang Y, Jiang S, Fu X. Overexpressed microRNA-494 represses RIPK1 to attenuate hippocampal neuron injury in epilepsy rats by inactivating the NF-κB signaling pathway. Cell Cycle 2020; 19:1298-1313. [PMID: 32308116 DOI: 10.1080/15384101.2020.1749472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The effects of microRNAs (miRNAs) have been identified in epilepsy (Ep) in recent years, our research was focused on the functions of miR-494 in Ep and its inner mechanisms. METHODS The Ep modeled rats induced by lithium chloride-pilocarpine were treated with agomir-miR-494 or RIPK1-siRNA. The pathology of rat hippocampal tissues was observed. Expression of miR-494, receptor-interacting protein kinase 1 (RIPK1) and nuclear factor-kappaB (NF-κB) p65 was assessed by RT-qPCR and Western blot analysis. The hippocampal neurons of epileptic rats were successfully modeled, which were transfected with miR-494 mimics or RIPK1-siRNA to determine neurons' proliferation ability and cell apoptosis. The target relation between miR-494 and RIPK1 was measured by bioinformatics website and dual luciferase gene reporter assay. RESULTS The expression of miR-494 was reduced, while the expression of RIPK1 and NF-κB p65 was amplified in hippocampus of Ep rats. Elevated miR-494 repressed the expression of RIPK1 to ameliorate the hippocampal neuron injury, accelerate neuronal proliferation, and restrain neuronal apoptosis via inactivating the NF-κB signaling pathway, causing a deceleration of Ep development. Furthermore, amplified RIPK1 was able to reverse the amelioration of neuronal injury in Ep rats which was contributed by upregulated miR-494. CONCLUSION We found in this study that elevated miR-494 repressed RIPK1, causing an inactivation of the NF-κB signaling pathway and acceleration of cell proliferation, and suppression of apoptosis of hippocampal neurons in Ep rats, thereby attenuating the neuron injury and Ep development. Our research may provide novel targets for the therapy of Ep.
Collapse
Affiliation(s)
- Yinbao Qi
- Department of Nuerosurgery, Shandong University , Jinan, Shandong Province, P. R. China.,Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Ruobing Qian
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Li Jia
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Xiaorui Fei
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Dong Zhang
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| | - Yiming Zhang
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, Anhui Province, P. R. China
| | - Sen Jiang
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, Anhui Province, P. R. China
| | - Xianming Fu
- Department of Nuerosurgery, Shandong University , Jinan, Shandong Province, P. R. China.,Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui Province, P. R. China.,Department of Neurosurgery, Anhui Provincial Institute of Stereotactic Neurosurgery , Hefei, Anhui Province, P. R. China
| |
Collapse
|
21
|
Bauer S, Schütz V, Strzelczyk A, Rosenow F. Is there a role for microRNAs in epilepsy diagnostics? Expert Rev Mol Diagn 2020; 20:693-701. [DOI: 10.1080/14737159.2020.1745065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sebastian Bauer
- Department. Of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe-University Frankfurt Am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Germany
| | - Vanessa Schütz
- Department. Of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe-University Frankfurt Am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Germany
| | - Adam Strzelczyk
- Department. Of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe-University Frankfurt Am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Germany
| | - Felix Rosenow
- Department. Of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt, Goethe-University Frankfurt Am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (Cepter), Germany
| |
Collapse
|
22
|
Hou W, Zhu X, Liu J, Ma J. Inhibition of miR-153 ameliorates ischemia/reperfusion-induced cardiomyocytes apoptosis by regulating Nrf2/HO-1 signaling in rats. Biomed Eng Online 2020; 19:15. [PMID: 32143647 PMCID: PMC7059292 DOI: 10.1186/s12938-020-0759-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/23/2020] [Indexed: 01/13/2023] Open
Abstract
Background Previous in vitro studies demonstrated that suppression of microRNAs might protect cardiomyocytes and neurons against oxygen–glucose deprivation and reoxygenation (OGD/R)-induced cell apoptosis. However, whether the protective effect of miR-153-inhibition on cardiomyocytes can be observed in the animal model is unknown. We aimed to address this question using a rat model of ischemia–reperfusion (I/R). Methods Rats were received the intramyocardial injection of saline or adenovirus-carrying target or control gene, and the rats were subjected to ischemia/reperfusion (I/R) treatment. The effects of miR-153 on I/R-induced inflammatory response and oxidative stress in the rat model were assessed using various assays. Results We found that suppression of miR-153 decreased cleaved caspase-3 and Bcl-2-associated X (Bax) expression, and increased B cell lymphoma 2 (Bcl-2) expression. We further confirmed that Nuclear transcription factor erythroid 2-like 2 (Nrf2) is a functional target of miR-153, and Nrf2/Heme oxygenase-1 (HO-1) signaling was involved in miR-153-regulated I/R-induced cardiomyocytes apoptosis. Inhibition of miR-153 reduced I/R-induced inflammatory response and oxidative stress in rat myocardium. Conclusion Suppression of miR-153 exerts a cardioprotective effect against I/R-induced injury through the regulation of Nrf2/HO-1 signaling, suggesting that targeting miR-153, Nrf2, or both may serve as promising therapeutic targets for the alleviation of I/R-induced injury.
Collapse
Affiliation(s)
- Wei Hou
- Department of Emergency, Yidu Central Hospital of Wei Fang, No.4138, South Linglongshan Road, Weifang, 262500, Shandong, China
| | - Xianting Zhu
- Department of Nursing, Yidu Central Hospital of Wei Fang, No.4138, South Linglongshan Road, Weifang, 262500, Shandong, China
| | - Juan Liu
- Department of Pediatrics, Ward 1, Yidu Central Hospital of Wei Fang, No. 4138, South Linglongshan Road, Weifang, 262500, Shandong, China
| | - Jiaguo Ma
- Department of Cardiology, Qing Zhou Traditional Chinese Hospital, No. 2727, Haidai Middle Road, Weifang, 262500, Shandong, China.
| |
Collapse
|
23
|
Wang L, Song L, Chen X, Suo J, Ma Y, Shi J, Liu K, Chen G. microRNA-139-5p confers sensitivity to antiepileptic drugs in refractory epilepsy by inhibition of MRP1. CNS Neurosci Ther 2019; 26:465-474. [PMID: 31750616 PMCID: PMC7080432 DOI: 10.1111/cns.13268] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Aim Drug resistance is an intractable issue urgently needed to be overcome for improving efficiency of antiepileptic drugs in treating refractory epilepsy. microRNAs (miRNAs) have been proved as key regulators and therapeutic targets in epilepsy. Accordingly, the aim of the present study was to identify a novel differentially expressed miRNA which could improve the efficiency of antiepileptic drugs during the treatment of refractory epilepsy. Methods and Results Serum samples were collected from children with refractory epilepsy. An in vivo refractory epilepsy model was developed in SD rats by electrical amygdala kindling. We identified that miR‐139‐5p was decreased and multidrug resistance‐associated protein 1 (MRP1) was remarkably upregulated in the serum samples from children with refractory epilepsy and the brain tissues from rat models of refractory epilepsy. After phenobarbitone injection in rat models of refractory epilepsy, the after discharging threshold in kindled amygdala was detected to screen out drug‐resistant rats. Dual‐luciferase reporter gene assay demonstrated that MRP1 was a target of miR‐139‐5p. In order to evaluate the effect of miR‐139‐5p/MRP1 axis on drug resistance of refractory epilepsy, we transfected plasmids into the hippocampus of drug‐resistant rats to alter the expression of miR‐139‐5p and MRP1. TUNEL staining and Nissl staining showed that miR‐139‐5p overexpression or MRP1 downregulation could reduce the apoptosis and promote survival of neurons, accompanied by alleviated neuronal damage. Conclusion Collectively, these results suggest an important role of miR‐139‐5p/MRP1 axis in reducing the resistance of refractory epilepsy to antiepileptic drugs.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Lifang Song
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Xiaoyi Chen
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Junfang Suo
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Yanli Ma
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Jinghe Shi
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Kai Liu
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| | - Guohong Chen
- Department of Neurology, Zhengzhou University Affiliated Children's Hospital (Zhengzhou Children's Hospital), Zhengzhou, China
| |
Collapse
|
24
|
Li H, Lou B, Zhang Y, Zhang C. Retracted: Ganoderic Acid A exerts the cytoprotection against hypoxia‐triggered impairment in PC12 cells via elevating microRNA‐153. Phytother Res 2019; 34:640-648. [PMID: 31742778 DOI: 10.1002/ptr.6556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Li
- Department of NeurologyThe Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Bo Lou
- Department of Rehabilitation MedicineThe Third People's Hospital of Liaocheng Liaocheng Shandong China
| | - Yingying Zhang
- Department of NeurologyThe Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Changyuan Zhang
- Department of PharmacyJining No.1 People's Hospital Jining Shandong China
| |
Collapse
|
25
|
He M, Sun H, Pang J, Guo X, Huo Y, Wu X, Liu Y, Ma J. Propofol alleviates hypoxia-induced nerve injury in PC-12 cells by up-regulation of microRNA-153. BMC Anesthesiol 2018; 18:197. [PMID: 30579328 PMCID: PMC6303956 DOI: 10.1186/s12871-018-0660-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background Although the neuroprotective role of propofol has been identified recently, the regulatory mechanism associated with microRNAs (miRNAs/miRs) in neuronal cells remains to be poorly understood. We aimed to explore the regulatory mechanism of propofol in hypoxia-injured rat pheochromocytoma (PC-12) cells. Methods PC-12 cells were exposed to hypoxia, and cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry assay/Western blot analysis, respectively. Effects of propofol on hypoxia-injured cells were measured, and the expression of miR-153 was determined by stem-loop RT-PCR. After that, whether propofol affected PC-12 cells under hypoxia via miR-153 was verified, and the downstream protein of miR-153 as well as the involved signaling cascade was finally explored. Results Hypoxia-induced decrease of cell viability and increase of apoptosis were attenuated by propofol. Then, we found hypoxia exposure up-regulated miR-153 expression, and the level of miR-153 was further elevated by propofol in hypoxia-injured PC-12 cells. Following experiments showed miR-153 inhibition reversed the effects of propofol on hypoxia-treated PC-12 cells. Afterwards, we found BTG3 expression was negatively regulated by miR-153 expression, and BTG3 overexpression inhibited the mTOR pathway and AMPK activation. Besides, hypoxia inhibited the mTOR pathway and AMPK, and these inhibitory effects could be attenuated by propofol. Conclusion Propofol protected hypoxia-injured PC-12 cells through miR-153-mediataed down-regulation of BTG3. BTG3 could inhibit the mTOR pathway and AMPK activation.
Collapse
Affiliation(s)
- Mingwei He
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jinlei Pang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiangfei Guo
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yansong Huo
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xianhong Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yaguang Liu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, No.2, Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
26
|
Fitzgerald E, Boardman JP, Drake AJ. Preterm Birth and the Risk of Neurodevelopmental Disorders - Is There a Role for Epigenetic Dysregulation? Curr Genomics 2018; 19:507-521. [PMID: 30386170 PMCID: PMC6158617 DOI: 10.2174/1389202919666171229144807] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/06/2017] [Accepted: 12/17/2017] [Indexed: 12/29/2022] Open
Abstract
Preterm Birth (PTB) accounts for approximately 11% of all births worldwide each year and is a profound physiological stressor in early life. The burden of neuropsychiatric and developmental impairment is high, with severity and prevalence correlated with gestational age at delivery. PTB is a major risk factor for the development of cerebral palsy, lower educational attainment and deficits in cognitive functioning, and individuals born preterm have higher rates of schizophrenia, autistic spectrum disorder and attention deficit/hyperactivity disorder. Factors such as gestational age at birth, systemic inflammation, respiratory morbidity, sub-optimal nutrition, and genetic vulnerability are associated with poor outcome after preterm birth, but the mechanisms linking these factors to adverse long term outcome are poorly understood. One potential mechanism linking PTB with neurodevelopmental effects is changes in the epigenome. Epigenetic processes can be defined as those leading to altered gene expression in the absence of a change in the underlying DNA sequence and include DNA methylation/hydroxymethylation and histone modifications. Such epigenetic modifications may be susceptible to environmental stimuli, and changes may persist long after the stimulus has ceased, providing a mechanism to explain the long-term consequences of acute exposures in early life. Many factors such as inflammation, fluctuating oxygenation and excitotoxicity which are known factors in PTB related brain injury, have also been implicated in epigenetic dysfunction. In this review, we will discuss the potential role of epigenetic dysregulation in mediating the effects of PTB on neurodevelopmental outcome, with specific emphasis on DNA methylation and the α-ketoglutarate dependent dioxygenase family of enzymes.
Collapse
Affiliation(s)
| | | | - Amanda J. Drake
- Address correspondence to this author at the University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK; Tel: 44 131 2426748; Fax: 44 131 2426779; E-mail:
| |
Collapse
|
27
|
Enright N, Simonato M, Henshall DC. Discovery and validation of blood microRNAs as molecular biomarkers of epilepsy: Ways to close current knowledge gaps. Epilepsia Open 2018; 3:427-436. [PMID: 30525113 PMCID: PMC6276772 DOI: 10.1002/epi4.12275] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2018] [Indexed: 12/24/2022] Open
Abstract
There is a major unmet need for biomarkers of epilepsy. Biofluids such as blood offer a potential source of molecular biomarkers. MicroRNAs (miRNAs) fulfill several key requirements for a blood‐based molecular biomarker being enriched in the brain and dysregulated in epileptic brain tissue, and manipulation of miRNAs can have seizure‐suppressive and disease‐modifying effects in preclinical models. Biofluid miRNAs also possess qualities that are favorable for translation, including stability and easy and cheap assay techniques. Herein we review findings from both clinical and animal models. Studies have featured a mix of unbiased profiling and hypothesis‐driven efforts. Blood levels of several brain‐enriched miRNAs are altered in patients with epilepsy and in patients with drug‐resistant compared to drug‐responsive seizures, with encouraging receiver‐operating characteristic (ROC) curve analyses, both in terms of sensitivity and specificity. Both focal and generalized epilepsies are associated with altered blood miRNA profiles, and associations with clinical parameters including seizure burden have been reported. Results remain preliminary, however. There is a need for continued discovery and validation efforts that include multicenter studies and attention to study design, sample collection methodology, and quality control. Studies focused on epileptogenesis as well as associations with covariables such as sex, etiology, and timing of sampling remain limited. We identify 10 knowledge gaps and propose experiments to close these. If adequately addressed, biofluid miRNAs may be an important future source of diagnostic biomarkers that could also support forthcoming trials of antiepileptogenesis or disease‐modifying therapies.
Collapse
Affiliation(s)
- Noelle Enright
- Department of Physiology & Medical Physics Royal College of Surgeons in Ireland (RCSI) Dublin Ireland.,FutureNeuro Research Centre RCSI Dublin Ireland.,Temple St. Children's University Hospital Dublin Ireland
| | - Michele Simonato
- Department of Medical Sciences University of Ferrara Ferrara Italy.,School of Medicine University Vita-Salute San Raffaele Milan Italy
| | - David C Henshall
- Department of Physiology & Medical Physics Royal College of Surgeons in Ireland (RCSI) Dublin Ireland.,FutureNeuro Research Centre RCSI Dublin Ireland
| |
Collapse
|
28
|
Gong GH, An FM, Wang Y, Bian M, Wang D, Wei CX. MiR-153 regulates expression of hypoxia-inducible factor-1α in refractory epilepsy. Oncotarget 2018; 9:8542-8547. [PMID: 29492215 PMCID: PMC5823594 DOI: 10.18632/oncotarget.24012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/13/2017] [Indexed: 01/28/2023] Open
Abstract
Mesial temporal lobe epilepsy (mTLE), the most common type of temporal lobe epilepsy (TLE), is particularly relevant due to its high frequency of therapeutic resistance of anti-epileptic therapies. MicroRNAs (miRNAs) have been shown to be dysregulated in epilepsy and neurodegenerative diseases, and we hypothesized that miRNAs could be involved in the pathogenesis of MTLE. The present study aimed to explore the expression and functions of miRNA-153 in mTLE. The expression levels of miRNA-153 in refractory TLE patients were evaluated. The bioinformatics analysis showed that the potential target genes of miR-153 were involved in biological processes, molecular functions, and cellular components. miRNA-153 is significantly dysregulated in temporal cortex and plasma of mTLE patients. We identify HIF-1α as a direct target of miRNA-153, and luciferase reporter assays demonstrated that miR-153 could regulate the HIF-1αexpression via 3'-UTR pairing. These data suggest that miR-153 might represent a useful biomarker and treatment target for patients with mTLE.
Collapse
Affiliation(s)
- Guo-Hua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China.,First Clinical Medical of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
| | - Feng-Mao An
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Yu Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Di Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Cheng-Xi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| |
Collapse
|
29
|
Li L, Wang M, Mei Z, Cao W, Yang Y, Wang Y, Wen A. lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother 2017; 96:165-172. [DOI: 10.1016/j.biopha.2017.09.113] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 12/15/2022] Open
|
30
|
Shao Y, Chen Y. Pathophysiology and Clinical Utility of Non-coding RNAs in Epilepsy. Front Mol Neurosci 2017; 10:249. [PMID: 28848386 PMCID: PMC5554344 DOI: 10.3389/fnmol.2017.00249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a common neurologic disorder. The underlying pathological processes include synaptic strength, inflammation, ion channels, and apoptosis. Acting as epigenetic factors, non-coding RNAs (ncRNAs) participate in the regulation of pathophysiologic processes of epilepsy and are dysregulated during epileptogenesis. Aberrant expression of ncRNAs are observed in epilepsy patients and animal models of epilepsy. Furthermore, ncRNAs might also be used as biomarkers for diagnosis and the prognosis of treatment response in epilepsy. In this review, we will summarize the role of ncRNAs in the pathophysiology of epilepsy and the putative utilization of ncRNAs as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China.,Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China.,Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|