1
|
Virtanen H, Garton DR, Andressoo JO. Myenteric Neurons Do Not Replicate in Small Intestine Under Normal Physiological Conditions in Adult Mouse. Cell Mol Gastroenterol Hepatol 2022; 14:27-34. [PMID: 35421596 PMCID: PMC9117811 DOI: 10.1016/j.jcmgh.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The enteric nervous system (ENS) is the largest part of the peripheral nervous system; moreover, abnormal ENS development and function are associated with multiple human pathologies. Data from several groups suggest that under normal physiological conditions in adult animals, enteric nerve cells do not replicate. A study by Kulkarni et al in 2017 challenged this view and proposed that nearly 70% of enteric neurons in the myenteric ganglia are born in 1 week. The authors of this study suggested that differences in DNA labelling times and DNA denaturation conditions might explain discrepancies with previous reports. Previous studies were carried out using different conditions and labelling techniques in various regions of the gastrointestinal tract; thus, conclusions have remained elusive. METHODS Here, we have eliminated those variables by analyzing the whole small intestine using the reagents and conditions that Kulkarni et al used. To exclude variables related to immunohistochemistry, we carried out parallel experiments with "click chemistry"-based detection of DNA replication. RESULTS Although proliferation was readily detected in the epithelium, we found no evidence of neuronal replication in the myenteric ganglia. CONCLUSIONS We conclude that within 1 week under normal physiological conditions, myenteric neurons in the small intestine do not replicate.
Collapse
Affiliation(s)
- Heikki Virtanen
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Daniel R Garton
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine & Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Paiva L, Lozic M, Allchorne A, Grinevich V, Ludwig M. Identification of peripheral oxytocin-expressing cells using systemically applied cell-type specific adeno-associated viral vector. J Neuroendocrinol 2021; 33:e12970. [PMID: 33851744 DOI: 10.1111/jne.12970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Oxytocin is primarily synthesised in the brain and is widely known for its role in lactation and parturition after being released into the blood from the posterior pituitary gland. Nevertheless, peripheral tissues have also been reported to express oxytocin. Using systemic injection of a recombinant adeno-associated virus vector, we investigated the expression of the green fluorescent protein Venus under the control of the oxytocin promoter in the gastrointestinal tract, pancreas and testes of adult rats. Here, we confirm that the vector infects oxytocin neurones of the enteric nervous system in ganglia of the myenteric and submucosal plexuses. Venus was detected in 25%-60% of the ganglia in the myenteric and submucosal plexuses identified by co-staining with the neuronal marker PGP9.5. Oxytocin expression was also detected in the islets of Langerhans in the pancreas and the Leydig cells of the testes. Our data illustrate that peripheral administration of the viral vector represents a powerful method for selectively labelling oxytocin-producing cells outside the brain.
Collapse
Affiliation(s)
- Luis Paiva
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Maja Lozic
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew Allchorne
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University Heidelberg, Mannheim, Germany
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Immunology, Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Iemura Y, Katsushima H, Kataoka TR, Sakurai T, Hirota S, Shimada T. A ganglion-rich gastrointestinal stromal tumor: A case report. Pathol Int 2019; 69:414-419. [PMID: 31237002 DOI: 10.1111/pin.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/28/2022]
Abstract
We report a case of an extremely rare type of duodenal gastrointestinal stromal tumor (GIST) that included neuronal components. Although gastrointestinal autonomic nerve tumors (GANTs), a subtype of GISTs, exhibit ultrastructural features of the nerve plexus, neuronal cells have not been observed within GANTs or GISTs. GISTs originate from interstitial cells of Cajal (ICCs), which are markedly different from the progenitor cells of neural elements and neural-crest-derived stem cells. This may explain why GISTs typically lack neuronal elements. It remains unclear that the neuronal components of this tumor are neoplastic or hyperplastic, but proliferation and survival of ICCs have recently been reported to be closely related to neurons. Although we could not find the KIT, PDGFR, and BRAF mutation as far as we examined, it may have had a rare mutation in NF1, a fusion of EVT6-NTRK3, or an as-yet-unknown KIT mutation that affected neurogenesis. Further investigation of related genetic mutations and accumulation of data from other similar cases is needed.
Collapse
Affiliation(s)
- Yoshiki Iemura
- Department of Diagnostic Pathology, Osaka Red Cross Hospital, Osaka, Japan
| | - Hiroki Katsushima
- Department of Diagnostic Pathology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Toshihide Shimada
- Department of Diagnostic Pathology, Osaka Red Cross Hospital, Osaka, Japan
| |
Collapse
|
4
|
Grundmann D, Loris E, Maas-Omlor S, Schäfer KH. Enteric Neurogenesis During Life Span Under Physiological and Pathophysiological Conditions. Anat Rec (Hoboken) 2019; 302:1345-1353. [PMID: 30950581 DOI: 10.1002/ar.24124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) controls gastrointestinal key functions and is mainly characterized by two ganglionated plexus located in the gut wall: the myenteric plexus and the submucous plexus. The ENS harbors a high number and diversity of enteric neurons and glial cells, which generate neuronal circuitry to regulate intestinal physiology. In the past few years, the pivotal role of enteric neurons in the underlying mechanism of several intestinal diseases was revealed. Intestinal diseases are associated with neuronal death that could in turn compromise intestinal functionality. Enteric neurogenesis and regeneration is therefore a crucial aspect within the ENS and could be revealed not only during embryogenesis and early postnatal periods, but also in the adulthood. Enteric glia and/or enteric neural precursor/progenitor cells differentiate into enteric neurons, both under homeostatic and pathologic conditions beyond the perinatal period. The unique role of the intestinal microbiota and serotonin signaling in postnatal and adult neurogenesis has been shown by several studies in health and disease. In this review article, we will mainly focus on different recent studies, which advanced the concept of postnatal and adult ENS neurogenesis. Moreover, we will discuss the key factors and underlying mechanisms, which promote enteric neurogenesis. Finally, we will shortly describe neurogenesis of transplanted enteric neural progenitor cells. Anat Rec, 302:1345-1353, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Grundmann
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany
| | - Eva Loris
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany
| | - Silke Maas-Omlor
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany.,Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
5
|
Wang H, Jing R, Trexler C, Li Y, Tang H, Pan Z, Zhu S, Zhao B, Fang X, Liu J, Chen J, Ouyang K. Deletion of IP 3R1 by Pdgfrb-Cre in mice results in intestinal pseudo-obstruction and lethality. J Gastroenterol 2019; 54:407-418. [PMID: 30382364 PMCID: PMC8109192 DOI: 10.1007/s00535-018-1522-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/17/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the membrane of endoplasmic reticulum, which have been shown to play critical roles in various cellular and physiological functions. However, their function in regulating gastrointestinal (GI) tract motility in vivo remains unknown. Here, we investigated the physiological function of IP3R1 in the GI tract using genetically engineered mouse models. METHODS Pdgfrb-Cre mice were bred with homozygous Itpr1 floxed (Itpr1f/f) mice to generate conditional IP3R1 knockout (pcR1KO) mice. Cell lineage tracing was used to determine where Pdgfrb-Cre-mediated gene deletion occurred in the GI tract. Isometric tension recording was used to measure the effects of IP3R1 deletion on muscle contraction. RESULTS In the mouse GI tract, Itpr1 gene deletion by Pdgfrb-Cre occurred in smooth muscle cells, enteric neurons, and interstitial cells of Cajal. pcR1KO mice developed impaired GI motility, with prolonged whole-gut transit time and abdominal distention. pcR1KO mice also exhibited lethality as early as 8 weeks of age and 50% of pcR1KO mice were dead by 40 weeks after birth. The frequency of spontaneous contractions in colonic circular muscles was dramatically decreased and the amplitude of spontaneous contractions was increased in pcR1KO mice. Deletion of IP3R1 in the GI tract also reduced the contractile response to the muscarinic agonist, carbachol, as well as to electrical field stimulation. However, KCl-induced contraction and expression of smooth muscle-specific contractile genes were not significantly altered in pcR1KO mice. CONCLUSIONS Here, we provided a novel mouse model for impaired GI motility and demonstrated that IP3R1 plays a critical role in regulating physiological function of GI tract in vivo.
Collapse
Affiliation(s)
- Hong Wang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ran Jing
- Xiangya Hospital, Central South University, Changsha 410011, China
| | - Christa Trexler
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yali Li
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huayuan Tang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhixiang Pan
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Siting Zhu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Beili Zhao
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xi Fang
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ju Chen
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
6
|
Nam SM, Ahn SC, Go TH, Seo JS, Nahm SS, Chang BJ, Lee JH. Ascorbic Acid Ameliorates Gestational Lead Exposure-Induced Developmental Alteration in GAD67 and c-Kit Expression in the Rat Cerebellar Cortex. Biol Trace Elem Res 2018; 182:278-286. [PMID: 28685241 DOI: 10.1007/s12011-017-1086-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/22/2017] [Indexed: 01/24/2023]
Abstract
In the present study, we investigated the effects of ascorbic acid on lead-exposed developing cerebellum. Female rats were divided into the following three groups: control (distilled water), lead (0.2% lead acetate), and lead plus ascorbic acid (100 mg/kg/day, 10% solution). To evaluate the effect of lead exposure and ascorbic acid treatment accurately on the cerebellar development for the gestational period, we halted further treatment with lead and ascorbic acid in the dams after delivery of the pups. Although the ascorbic acid slightly decreased the lead level in pups, lead level was still high in the group treated with lead plus ascorbic acid group compared with the control group. The blood lead levels indicated that the ascorbic acid could facilitate both the excretion and transfer of lead from a dam to its pups via milk. At postnatal day 21, lead exposure significantly reduced the number of Purkinje cells in the cerebellar cortex of pups. Additionally, lead treatment induced degenerative changes such as reduction of glutamic acid decarboxylase (GAD67) and c-kit expressions are observed in the developing cerebellar cortex. In the cerebellum of the pups from the lead plus ascorbic acid group, reduction of the number of Purkinje cells, GAD67 expression, and c-kit immunopositivity were remarkably restored compared with the lead group. Our present results suggested that ascorbic acid treatment to lead-exposed dam exerted protective effects on the developing cerebellum against lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sung Chuel Ahn
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Tae-Hun Go
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Byung-Joon Chang
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jong-Hwan Lee
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
7
|
Belkind-Gerson J, Graham HK, Reynolds J, Hotta R, Nagy N, Cheng L, Kamionek M, Shi HN, Aherne CM, Goldstein AM. Colitis promotes neuronal differentiation of Sox2+ and PLP1+ enteric cells. Sci Rep 2017; 7:2525. [PMID: 28566702 PMCID: PMC5451421 DOI: 10.1038/s41598-017-02890-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
Mechanisms mediating adult enteric neurogenesis are largely unknown. Using inflammation-associated neurogenesis models and a transgenic approach, we aimed to understand the cell-source for new neurons in infectious and inflammatory colitis. Dextran sodium sulfate (DSS) and Citrobacter rodentium colitis (CC) was induced in adult mice and colonic neurons were quantified. Sox2GFP and PLP1GFP mice confirmed the cell-type specificity of these markers. Sox2CreER:YFP and PLP1creER:tdT mice were used to determine the fate of these cells after colitis. Sox2 expression was investigated in colonic neurons of human patients with Clostridium difficile or ulcerative colitis. Both DSS and CC led to increased colonic neurons. Following colitis in adult Sox2CreER:YFP mice, YFP initially expressed predominantly by glia becomes expressed by neurons following colitis, without observable DNA replication. Similarly in PLP1CreER:tdT mice, PLP1 cells that co-express S100b but not RET also give rise to neurons following colitis. In human colitis, Sox2-expressing neurons increase from 1–2% to an average 14% in colitis. The new neurons predominantly express calretinin, thus appear to be excitatory. These results suggest that colitis promotes rapid enteric neurogenesis in adult mice and humans through differentiation of Sox2- and PLP1-expressing cells, which represent enteric glia and/or neural progenitors. Further defining neurogenesis will improve understanding and treatment of injury-associated intestinal motility/sensory disorders.
Collapse
Affiliation(s)
- Jaime Belkind-Gerson
- Neurogastroenterology Program, Digestive Health Institute, Children's Hospital Colorado University of Colorado, Aurora, USA.
| | - Hannah K Graham
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Justin Reynolds
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryo Hotta
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lily Cheng
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michal Kamionek
- Pathology department, Carolinas Healthcare System, Charlotte, NC, USA
| | - Hai Ning Shi
- Neurogastroenterology Program, Digestive Health Institute, Children's Hospital Colorado University of Colorado, Aurora, USA
| | - Carol M Aherne
- Department of Anesthesiology, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, USA
| | - Allan M Goldstein
- Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|