1
|
Xu Y, Kong W, Zhao S, Xiong D, Wang Y. Capsaicin enhances cisplatin-induced anti-metastasis of nasopharyngeal carcinoma by inhibiting EMT and ERK signaling via serpin family B member 2. Carcinogenesis 2024; 45:556-568. [PMID: 38756095 DOI: 10.1093/carcin/bgae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Cisplatin (DDP)-based combined chemotherapy or concurrent chemoradiotherapy is the mainstay treatment for advanced-stage nasopharyngeal carcinoma (NPC), but needs improvement due to its severe side effects. Capsaicin (CAP) can enhance the anti-tumor activity of cytotoxic drugs. The aim of this study was to investigate the anti-metastasis activity of CAP in combination with DDP in NPC. Herein, CAP and DDP showed synergistic cytotoxic effects on NPC cells. CAP alone and DDP alone inhibited NPC migration and invasion in vitro and in vivo, and the combination of CAP and DDP had the greatest effect. Moreover, CAP upregulated the mRNA and protein expressions of serpin family B member 2 (SERPINB2). Further results showed that both SERPINB2 mRNA and protein expressions were downregulated in NPC cell lines and tissues and SERPINB2 overexpression inhibited NPC migration and invasion in vitro and in vivo, while silencing SERPINB2 acted oppositely. In addition, SERPINB2 was abnormally expressed in head and neck squamous cell carcinoma and other multiple cancers, and downregulation of SERPINB2 predicted poor prognosis in head and neck squamous cell carcinoma according to the Cancer Genome Atlas database. We further found that SERPINB2 overexpression inhibited epithelial-mesenchymal transition (EMT) and the phosphorylated extracellular signal-regulated kinase (p-ERK), and the inhibitory effect was enhanced by CAP and DDP. Altogether, our results suggest that the combined inhibition of CAP and DDP on NPC metastasis may be related to the inhibition of epithelial-mesenchymal transition and ERK signals mediated by SERPINB2, and CAP may help to improve the efficacy of DDP in the treatment of NPC and develop new therapeutic approaches.
Collapse
Affiliation(s)
- Yafei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Weimiao Kong
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Simin Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Dan Xiong
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, 47 Youyi Road, Luohu District, Shenzhen, Guangdong 518005, China
| | - Yejun Wang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| |
Collapse
|
2
|
Lim JU, Lee E, Lee SY, Cho HJ, Ahn DH, Hwang Y, Choi JY, Yeo CD, Park CK, Kim SJ. Current literature review on the tumor immune micro-environment, its heterogeneity and future perspectives in treatment of advanced non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:857-876. [PMID: 37197639 PMCID: PMC10183402 DOI: 10.21037/tlcr-22-633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 03/21/2023]
Abstract
Background and Objective Immune checkpoint inhibitors (ICI) were a major clinical advancement that provided an opportunity to improve the prognosis of patients with non-small cell lung cancer (NSCLC). However, programmed death-ligand-1 (PD-L1) expression does not sufficiently predict ICI efficacy in NSCLC patients. In recent studies, the tumor immune microenvironment (TIME) was shown to have a central role in lung cancer progression and to affect clinical outcome of patients diagnosed with lung cancer. As development of new therapeutic targets to overcome ICI resistance is a priority, understanding the TIME is important. Recently, a series of studies was conducted to target each component of TIME to improve efficacy of cancer treatment. In this review, important features related to TIME, its heterogeneity and current trends in treatment targeting the component of TIME are discussed. Methods PubMed and PMC were searched from January 1st, 2012 to August 16th, 2022 using the following key words: "NSCLC", "Tumor microenvironment", "Immune", "Metastasis" and "Heterogeneity". Key Content and Findings Heterogeneity in the TIME can be either spatial or temporal. Subsequent to heterogeneous changes in the TIME, treatment of lung cancer can be more challenging because drug resistance is more likely to occur. In terms of the TIME, the main concept for increasing the chance of successful NSCLC treatment is to activate immune responses against tumor cells and inhibit immunosuppressive activities. In addition, relevant research is focused on normalizing an otherwise aberrant TIME in NSCLC patients. Potential therapeutic targets include immune cells, cytokine interactions, and non-immune cells such as fibroblasts or vessels. Conclusions In management of lung cancer, understanding TIME and its heterogeneity is significant to treatment outcomes. Ongoing trials including various treatment modalities such as radiotherapy, cytotoxic chemotherapy, and anti-angiogenic treatment and regimens inhibiting other immunoinhibitory molecules are promising.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyuck Ahn
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Bailly C. Yuanhuacin and Related Anti-Inflammatory and Anticancer Daphnane Diterpenes from Genkwa Flos-An Overview. Biomolecules 2022; 12:192. [PMID: 35204693 PMCID: PMC8961543 DOI: 10.3390/biom12020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The dried flower buds of the plant Daphne genkwa Sieb. et Zucc. have been largely used in traditional Chinese medicine for the treatment of inflammatory diseases. Numerous diterpenoids have been isolated from the Genkwa Flos (yuanhua in Chinese), including a series of daphnane-type diterpene designated as yuanhuacin (YC, often improperly designated as yuanhuacine) and analogues with a patronymic name. The series includes ten daphnane-type diterpenes: yuanhuacin, yuanhuadin (YD), yuanhuafin (YF), yuanhuagin (YG), yuanhuahin (YH), yuanhuajin (YJ), yuanhualin (YL), yuanhuamin (YM), yuanhuapin (YP), and yuanhuatin (YT). They are distinct from the rare flavonoid yuanhuanin. The series comprises several anticancer agents, such as the lead compound YC, which has revealed potent activity in vitro and in vivo against models of lung and breast cancers. The main signaling pathways implicated in the antitumor effects have been delineated. Protein kinase C is a key factor of activity for YC, but in general the molecular targets at the origin of the activity of these compounds remain little defined. Promising anticancer effects have been reported with analogues YD and YT, whereas compounds YF and YP are considered more toxic. The pharmacological activity of each compound is presented, as well as the properties of Genkwa Flos extracts. The potential toxic effects associated with the use of these compounds are also underlined.
Collapse
|
4
|
Belluomini L, Dodi A, Caldart A, Kadrija D, Sposito M, Casali M, Sartori G, Ferrara MG, Avancini A, Bria E, Menis J, Milella M, Pilotto S. A narrative review on tumor microenvironment in oligometastatic and oligoprogressive non-small cell lung cancer: a lot remains to be done. Transl Lung Cancer Res 2021; 10:3369-3384. [PMID: 34430373 PMCID: PMC8350097 DOI: 10.21037/tlcr-20-1134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Objective In this review, we aim to collect and discuss available data about the role and composition of tumor microenvironment (TME) in oligometastatic (OMD) and oligoprogressive (OPD) non-small cell lung cancer (NSCLC). Furthermore, we aim to summarize the ongoing clinical trials evaluating as exploratory objective the TME composition, through tissue and/or blood samples, in order to clarify whether TME and its components could explain, at least partially, the oligometastatic/oligoprogressive process and could unravel the existence of predictive and/or prognostic factors for local ablative therapy (LAT). Background OMD/OPD NSCLC represent a heterogeneous group of diseases. Several data have shown that TME plays an important role in tumor progression and therefore in treatment response. The crucial role of several types of cells and molecules such as immune cells, cytokines, integrins, protease and adhesion molecules, tumor-associated macrophages (TAMs) and mesenchymal stem cells (MSCs) has been widely established. Due to the peculiar activation of specific pathways and expression of adhesion molecules, metastatic cells seem to show a tropism for specific anatomic sites (the so-called “seed and soil” hypothesis). Based on this theory, metastases appear as a biologically driven process rather than a random release of cancer cells. Although the role and the function of TME at the time of progression in patients with NSCLC treated with tyrosine-kinase inhibitors and immune checkpoint inhibitors (ICIs) have been investigated, limited data about the role and the biological meaning of TME are available in the specific OMD/OPD setting. Methods Through a comprehensive PubMed and ClinicalTrials.gov search, we identified available and ongoing studies exploring the role of TME in oligometastatic/oligoprogressive NSCLC. Conclusions Deepening the knowledge on TME composition and function in OMD/OPD may provide innovative implications in terms of both prognosis and prediction of outcome in particular from local treatments, paving the way for future investigations of personalized approaches in both advanced and early disease settings.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alessandra Dodi
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alberto Caldart
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Dzenete Kadrija
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Marco Sposito
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Casali
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Giulia Sartori
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alice Avancini
- Biomedical, Clinical and Experimental Sciences, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
5
|
Aldonza MBD, Reyes RDD, Kim YS, Ku J, Barsallo AM, Hong JY, Lee SK, Ryu HS, Park Y, Cho JY, Kim Y. Chemotherapy confers a conserved secondary tolerance to EGFR inhibition via AXL-mediated signaling bypass. Sci Rep 2021; 11:8016. [PMID: 33850249 PMCID: PMC8044124 DOI: 10.1038/s41598-021-87599-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/31/2021] [Indexed: 02/01/2023] Open
Abstract
Drug resistance remains the major culprit of therapy failure in disseminated cancers. Simultaneous resistance to multiple, chemically different drugs feeds this failure resulting in cancer relapse. Here, we investigate co-resistance signatures shared between antimitotic drugs (AMDs) and inhibitors of receptor tyrosine kinases (RTKs) to probe mechanisms of secondary resistance. We map co-resistance ranks in multiple drug pairs and identified a more widespread occurrence of co-resistance to the EGFR-tyrosine kinase inhibitor (TKI) gefitinib in hundreds of cancer cell lines resistant to at least 11 AMDs. By surveying different parameters of genomic alterations, we find that the two RTKs EGFR and AXL displayed similar alteration and expression signatures. Using acquired paclitaxel and epothilone B resistance as first-line AMD failure models, we show that a stable collateral resistance to gefitinib can be relayed by entering a dynamic, drug-tolerant persister state where AXL acts as bypass signal. Delayed AXL degradation rendered this persistence to become stably resistant. We probed this degradation process using a new EGFR-TKI candidate YD and demonstrated that AXL bypass-driven collateral resistance can be suppressed pharmacologically. The findings emphasize that AXL bypass track is employed by chemoresistant cancer cells upon EGFR inhibition to enter a persister state and evolve resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Mark Borris D Aldonza
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
- KI for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Korea
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, Korea
| | | | - Young Seo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Tomocube Inc, Daejeon, 34051, Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- KI for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea
| | - Ana Melisa Barsallo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Ji-Young Hong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - YongKeun Park
- KI for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea
- Tomocube Inc, Daejeon, 34051, Korea
- Department of Physics, KAIST, Daejeon, 34141, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Korea.
- BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- KI for Health Science and Technology (KIHST), KAIST, Daejeon, 34141, Korea.
| |
Collapse
|
6
|
Kulus M, Kranc W, Wojtanowicz-Markiewicz K, Celichowski P, Światły-Błaszkiewicz A, Matuszewska E, Sujka-Kordowska P, Konwerska A, Zdun M, Bryl R, Wieczorkiewicz M, Kulus J, Stelmach B, Stefańska K, Budna-Tukan J, Petitte JN, Mozdziak P, Ratajczak K, Matysiak J, Jaśkowski JM, Nowicki M, Kempisty B. New Gene Markers Expressed in Porcine Oviductal Epithelial Cells Cultured Primary In Vitro Are Involved in Ontological Groups Representing Physiological Processes of Porcine Oocytes. Int J Mol Sci 2021; 22:ijms22042082. [PMID: 33669854 PMCID: PMC7923230 DOI: 10.3390/ijms22042082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Changes that occur within oviducts after fertilization are dependent on post-ovulation events, including oocyte-oviduct interactions. Although general processes are well-defined, the molecular basis are poorly understood. Recently, new marker genes involved in ‘cell development’, ‘cell growth’, ‘cell differentiation’ and ‘cell maturation’ processes have been identified in porcine oocytes. The aim of the study was to assess the expression profile of genes in primary in vitro cultured oviductal epithelial cells (OECs), clustered in Gene Ontology groups which enveloped markers also identified in porcine oocytes. OECs (from 45 gilts) were surgically removed and cultured in vitro for ≤ 30 days, and then subjected to molecular analyses. The transcriptomic and proteomic profiles of cells cultured during 7, 15 and 30 days were investigated. Additionally, morphological/histochemical analyzes were performed. The results of genes expression profiles were validated after using RT-qPCR. The results showed a significant upregulation of UNC45B, NOX4, VLDLR, ITGB3, FMOD, SGCE, COL1A2, LOX, LIPG, THY1 and downregulation of SERPINB2, CD274, TXNIP, CELA1, DDX60, CRABP2, SLC5A1, IDO1, ANPEP, FST. Detailed knowledge of the molecular pathways occurring in the OECs and the gametes that contact them may contribute both to developments of basic science of physiology, and new possibilities in advanced biotechnology of assisted reproduction.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.W.-M.); (K.R.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.)
| | - Katarzyna Wojtanowicz-Markiewicz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.W.-M.); (K.R.)
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.C.); (P.S.-K.); (A.K.); (K.S.); (J.B.-T.); (M.N.)
| | - Agata Światły-Błaszkiewicz
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.Ś.-B.); (E.M.); (J.M.)
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.Ś.-B.); (E.M.); (J.M.)
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.C.); (P.S.-K.); (A.K.); (K.S.); (J.B.-T.); (M.N.)
- Department of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.C.); (P.S.-K.); (A.K.); (K.S.); (J.B.-T.); (M.N.)
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.)
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.)
| | - Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (J.M.J.)
| | - Bogusława Stelmach
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.C.); (P.S.-K.); (A.K.); (K.S.); (J.B.-T.); (M.N.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.C.); (P.S.-K.); (A.K.); (K.S.); (J.B.-T.); (M.N.)
| | - James N. Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (J.N.P.); (P.M.)
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (J.N.P.); (P.M.)
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.W.-M.); (K.R.)
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; (A.Ś.-B.); (E.M.); (J.M.)
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (J.M.J.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.C.); (P.S.-K.); (A.K.); (K.S.); (J.B.-T.); (M.N.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.W.-M.); (K.R.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.C.); (P.S.-K.); (A.K.); (K.S.); (J.B.-T.); (M.N.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (J.N.P.); (P.M.)
- Correspondence:
| |
Collapse
|
7
|
SERPINB2-its regulation and interplay with aryl hydrocarbon receptor. J Appl Genet 2021; 62:99-105. [PMID: 33387293 DOI: 10.1007/s13353-020-00606-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Despite many years of intensive investigation, real biological role of SERPINB2 is largely unknown. However, recent high throughput studies suggest its function in inflammation, influence on autoimmune disorders, and modulation of processes leading to carcinogenesis. SERPINB2 expression is acutely upregulated by many different stimuli, among others by aryl hydrocarbon receptor ligands. Mechanisms of regulation of SERPINB2 expression, involvement of the gene in processes leading to inflammation or carcinogenesis, and its interplay with aryl hydrocarbon receptor are subject of present review.
Collapse
|
8
|
Liang Q, Gu WM, Huang K, Luo MY, Zou JH, Zhuang GL, Lei HM, Chen HZ, Zhu L, Zhou L, Shen Y. HKB99, an allosteric inhibitor of phosphoglycerate mutase 1, suppresses invasive pseudopodia formation and upregulates plasminogen activator inhibitor-2 in erlotinib-resistant non-small cell lung cancer cells. Acta Pharmacol Sin 2021; 42:115-119. [PMID: 32404981 DOI: 10.1038/s41401-020-0399-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/15/2020] [Indexed: 12/23/2022]
Abstract
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib, remains a major challenge in the targeted therapy of non-small cell lung cancer (NSCLC). HKB99 is a novel allosteric inhibitor of phosphoglycerate mutase 1 (PGAM1) that preferentially suppresses cell proliferation and induces more apoptosis in acquired erlotinib-resistant HCC827ER cells compared with its parental HCC827 cells. In this study we identified the molecular biomarkers for HKB99 response in erlotinib-resistant HCC827ER cells. We showed that HCC827ER cells displayed enhanced invasive pseudopodia structures as well as downregulated plasminogen activator inhibitor-2 (PAI-2). Meanwhile, PAI-2 knockdown by siPAI-2 candidates decreased the sensitivity of HCC827 parental cells to erlotinib. Moreover, HKB99 (5 μM) preferentially inhibited the invasive pseudopodia formation and increased the level of PAI-2 in HCC827ER cells. Collectively, this study provides new insight into the role of PAI-2 in regulating the sensitivity of erlotinib resistant NSCLC cells to PGAM1 inhibitor. Furthermore, PAI-2 level might be considered as a potential biomarker for predicting the efficacy of the PGAM1 allosteric inhibitor on the erlotinib resistant NSCLC cells.
Collapse
|
9
|
Park SR, Kim SR, Lee JW, Park CH, Yu WJ, Lee SJ, Chon SJ, Lee DH, Hong IS. Development of a novel dual reproductive organ on a chip: recapitulating bidirectional endocrine crosstalk between the uterine endometrium and the ovary. Biofabrication 2020; 13. [PMID: 32998123 DOI: 10.1088/1758-5090/abbd29] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022]
Abstract
Conventional 2D or even 3Din vitroculture models for human reproductive organs cannot properly recapitulate the bidirectional endocrine crosstalk between the uterine endometrium and the ovary. This crosstalk is essential for maintaining the various physiological features and functions of each tissue. Moreover, mostin vitromodels for the female reproductive tract also fail to mimic its multicellular structure. We therefore developed a novel 'dual reproductive organ on a chip' that reflects the bidirectional endocrine cross-talk and the complex multicellular structures by integrating various cellular components of both the human uterine endometrium and the ovary with several biodegradable natural polymers. Indeed, the bidirectional endocrine crosstalk between these two tissues is achieved through media sharing between channels, and it can markedly improve the viability of loaded cells within each chamber of the chip platform. In addition, we also identified a reliable reproductive toxicity marker, SERPINB2, which is significantly increased in response to various toxic exposures in both endometrial and ovarian follicular cells. Based on these findings, we next established a SERPINB2 luciferase reporter system that was specifically designed for detecting and quantifying the toxicity of certain substances. By introducing this SERPINB2 luciferase reporter system into the loaded cells within the chip platform, we ultimately developed an effective 'dual reproductive organ-on-chip' that was successfully used to predict the reproductive toxicity of various hazardous materials.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| |
Collapse
|
10
|
Zhu C, Jiang L, Xu J, Ren A, Ju F, Shu Y. The urokinase-type plasminogen activator and inhibitors in resectable lung adenocarcinoma. Pathol Res Pract 2020; 216:152885. [PMID: 32113794 DOI: 10.1016/j.prp.2020.152885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND The urokinase-type plasminogen activator (uPA) system is closely related to the occurrence and progression of cancer in many aspects. Previous studies demonstrated that the conclusions about the prognosis value of uPA, plasminogen activator inhibitor 1 (PAI-1) and plasminogen activator inhibitor 2 (PAI-2) in lung cancer are controversial, so this study was performed for the exploration of the predictive effect of uPA, PAI-1 and PAI-2 on the overall survival (OS) of resectable pulmonary adenocarcinoma patients. METHODS UPA, PAI-1 and PAI-2 expression levels were assayed by immunohistochemical staining based on tissue microarray (TMA) that is composed of formalin-fixed paraffin-embedded specimens from 84 resectable lung adenocarcinoma patients from July 2004 to June 2009. The relationship of IHC, mRNA expression levels of three molecules were investigated respectively. The three molecules' relationship with clinicopathologic parameters and OS was explored by Chi-square, Kaplan-Meier, and Cox regression analyses. The Cancer Genome Atlas (TCGA) database was used to analyze differential gene expressions of RNA-sequencing data of pulmonary adenocarcinoma and normal tissues, and Kaplan-Meier methods were adopted to confirm the prognostic value of uPA, PAI-1 and PAI-2 in resectable lung adenocarcinoma in TCGA database and the R package MethylMix was used to conduct an analysis integrating methylation data and gene expression of RNA-sequencing data based on TCGA. RESULTS UPA, PAI-1 and PAI-2 had much higher IHC expression levels in tumor than those in the normal tissues (uPA, Z = -10.511; PAI-1, Z = -4.836; PAI-2, Z = -6.794; all P < 0.0001). High DNA methylation level of gene uPA resulted in the decrease of its expression. In addition, expression level of PAI-2 was positively associated with tumor size (χ2 = 8.372, P = 0.004). Multivariate analyses showed TNM stage III was an independent adverse prognostic factor (hazard ratio = 3.736, 95 % confidence interval = 1.097-12.72, P = 0.035). Kaplan-Meier method revealed that uPA, PAI-1 and PAI-2 expression levels were not related to the OS for 84 resectable lung adenocarcinoma patients. According to TCGA data, PAI-1 expression level was identified as a potential adverse predictor for prognosis of resectable lung adenocarcinoma (Gehan-Breslow-Wilcoxon test, P = 0.025). CONCLUSIONS Our data show that, the expression levels of uPA, PAI-1 and PAI-2 are significantly up-regulated in resectable lung adenocarcinoma. Besides, this study highlights PAI-1 as a latent adverse prognostic factor in resectable adenocarcinoma of lung.
Collapse
Affiliation(s)
- Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, China
| | - Lu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, China
| | - Jun Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, 213003, China
| | - Anjing Ren
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, China
| | - Feng Ju
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, #29 Yudao Road, Nanjing, 210016, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, #300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
11
|
‘Cell cycle’ and ‘cell death’- related genes are differentially expressed during long – term in vitro real-time cultivation of porcine oviductal epithelial cells. ACTA ACUST UNITED AC 2019. [DOI: 10.2478/acb-2019-0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Alterations in cells depend on their genetic material, its activation and translation of the products. The genes responsible for the cell cycle processes and apoptosis of porcine oviductal cells have been presented in our study. The processes occurring in the reproductive system of females are extremely complex and require in-depth knowledge. Thanks to in vitro studies on the fallopian tube epithelium cells, we can get closer to understanding the biochemical and morphological changes occurring in mammalian organisms. Our research was conducted on fallopian tubes obtained from commercially bred pigs and its aim was to assess the expression profile of genes responsible for the most important processes of cellular life. Cell cultures were carried out for 30 days, with the obtained cells subjected to molecular analysis. We have shown significant regulation of “cell death” and “cell cycle” genes, some of which are related to the reproductive system. The alterations in transcriptomic profile and mutual relations between the genes were analyzed and related to the literature findings. The knowledge gained could help in identifying new potential markers of the in vitro occurrence of processes described by the ontology groups of interest.
Running title: pig, oocytes, microarray assays, in vitro maturation (IVM)
Collapse
|
12
|
Schroder WA, Hirata TD, Le TT, Gardner J, Boyle GM, Ellis J, Nakayama E, Pathirana D, Nakaya HI, Suhrbier A. SerpinB2 inhibits migration and promotes a resolution phase signature in large peritoneal macrophages. Sci Rep 2019; 9:12421. [PMID: 31455834 PMCID: PMC6712035 DOI: 10.1038/s41598-019-48741-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
SerpinB2 (plasminogen activator inhibitor type 2) has been called the "undecided serpin" with no clear consensus on its physiological role, although it is well described as an inhibitor of urokinase plasminogen activator (uPA). In macrophages, pro-inflammatory stimuli usually induce SerpinB2; however, expression is constitutive in Gata6+ large peritoneal macrophages (LPM). Interrogation of expression data from human macrophages treated with a range of stimuli using a new bioinformatics tool, CEMiTool, suggested that SerpinB2 is most tightly co- and counter-regulated with genes associated with cell movement. Using LPM from SerpinB2-/- and SerpinB2R380A (active site mutant) mice, we show that migration on Matrigel was faster than for their wild-type controls. Confocal microscopy illustrated that SerpinB2 and F-actin staining overlapped in focal adhesions and lamellipodia. Genes associated with migration and extracellular matrix interactions were also identified by RNA-Seq analysis of migrating RPM from wild-type and SerpinB2R380A mice. Subsequent gene set enrichment analyses (GSEA) suggested SerpinB2 counter-regulates many Gata6-regulated genes associated with migration. These data argue that the role of SerpinB2 in macrophages is inhibition of uPA-mediated plasmin generation during cell migration. GSEA also suggested that SerpinB2 expression (likely via ensuing modulation of uPA-receptor/integrin signaling) promotes the adoption of a resolution phase signature.
Collapse
Affiliation(s)
- Wayne A Schroder
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Thiago D Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Joy Gardner
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Jonathan Ellis
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Dilan Pathirana
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.
| |
Collapse
|
13
|
Ge Q, Cong P, Ji Y. Serous IFNA3 predicts unfavorable prognosis in lung cancer via abnormal activation of AKT signaling. IUBMB Life 2019; 71:1806-1814. [PMID: 31419016 DOI: 10.1002/iub.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/15/2019] [Indexed: 11/11/2022]
Abstract
This study addresses the demand through datamining The Cancer Genome Atlas (TCGA) database and elucidates mechanistic involvements of interferon alpha 8 (IFNA8) in lung cancer. The overall survival and disease-free survival of lung cancer patients in respect to IFNA8 expression level were analyzed. IFNA8 expression levels in both serum and tumor tissue were determined by real-time polymerase chain reaction. The diagnostic value of serous IFNA8 in lung cancer was assessed by receiver operating characteristic (ROC) curve analysis. Cell viability and proliferation were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Cell Counting Kit-8 assays. in vivo pro-tumor effect of IFNA8 was evaluated using xenograft tumor model. The metastasis-prone behaviors were determined by Transwell chamber assay and tail vein-injection in mice. Protein levels of p-AKT, total AKT, and endogenous reference actin were analyzed by western blot. We uncovered high IFNA8 associated with unfavorable overall survival and disease-free survival in lung cancer patients from TCGA. We further characterized the aberrant over-expression of IFNA8 in both peripheral blood and solid tumor from our clinical patient panel, and ROC analysis suggested its potential diagnostic value. Ectopic over-expression of IFNA8 promoted viability and proliferation in both A549 and H1299 cells in vitro and accelerated xenograft tumor growth in vivo. Furthermore, IFNA8 facilitated migration, invasion, and metastasis of A549 cells in vivo. Mechanistically, we disclosed the over-activation of AKT signaling in IFNA8-proficient A549 cells, inhibition of which completely abolished the pro-tumor effects of IFNA8. We have identified IFNA8 as a novel biomarker for either diagnostic or prognostic purpose in lung cancer, which is mechanistically associated with abnormal activation of AKT signaling.
Collapse
Affiliation(s)
- Quanxu Ge
- Department of Radiology, Weihai Municipal Hospital, Weihai, China
| | - Peixia Cong
- Department of General Surgery, Weihai Municipal Hospital, Weihai, China
| | - Ying Ji
- Department of Healthcare, Weihai Municipal Hospital, Weihai, China
| |
Collapse
|
14
|
Brauze D, Kiwerska K, Bednarek K, Grenman R, Janiszewska J, Giefing M, Jarmuz-Szymczak M. Expression of Serpin Peptidase Inhibitor B2 (SERPINB2) is regulated by Aryl hydrocarbon receptor (AhR). Chem Biol Interact 2019; 309:108700. [DOI: 10.1016/j.cbi.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
|
15
|
AXL degradation in combination with EGFR-TKI can delay and overcome acquired resistance in human non-small cell lung cancer cells. Cell Death Dis 2019; 10:361. [PMID: 31043587 PMCID: PMC6494839 DOI: 10.1038/s41419-019-1601-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
Abstract
Acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has been a major obstacle in the treatment of non-small cell lung cancer (NSCLC) patients. AXL has been reported to mediate EGFR-TKIs. Recently, third generation EGFR-TKI osimertinib has been approved and yet its acquired resistance mechanism is not clearly understood. We found that AXL is involved in both gefitinib and osimertinib resistance using in vitro and in vivo model. In addition, AXL overexpression was correlated with extended protein degradation rate. We demonstrate targeting AXL degradation is an alternative route to restore EGFR-TKIs sensitivity. We confirmed that the combination effect of YD, an AXL degrader, and EGFR-TKIs can delay or overcome EGFR-TKIs-driven resistance in EGFR-mutant NSCLC cells, xenograft tumors, and patient-derived xenograft (PDX) models. Therefore, combination of EGFR-TKI and AXL degrader is a potentially effective treatment strategy for overcoming and delaying acquired resistance in NSCLC.
Collapse
|
16
|
Bach DH, Kim D, Bae SY, Kim WK, Hong JY, Lee HJ, Rajasekaran N, Kwon S, Fan Y, Luu TTT, Shin YK, Lee J, Lee SK. Targeting Nicotinamide N-Methyltransferase and miR-449a in EGFR-TKI-Resistant Non-Small-Cell Lung Cancer Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:455-467. [PMID: 29858080 PMCID: PMC5992482 DOI: 10.1016/j.omtn.2018.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/05/2018] [Accepted: 03/26/2018] [Indexed: 12/29/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used clinically as target therapies for lung cancer patients, but the occurrence of acquired drug resistance limits their efficacy. Nicotinamide N-methyltransferase (NNMT), a cancer-associated metabolic enzyme, is commonly overexpressed in various human tumors. Emerging evidence also suggests a crucial loss of function of microRNAs (miRNAs) in modulating tumor progression in response to standard therapies. However, their precise roles in regulating the development of drug-resistant tumorigenesis are still poorly understood. Herein, we established EGFR-TKI-resistant non-small-cell lung cancer (NSCLC) models and observed a negative correlation between the expression levels of NNMT and miR-449a in tumor cells. Additionally, knockdown of NNMT suppressed p-Akt and tumorigenesis, while re-expression of miR-449a induced phosphatase and tensin homolog (PTEN), and inhibited tumor growth. Furthermore, yuanhuadine, an antitumor agent, significantly upregulated miR-449a levels while critically suppressing NNMT expression. These findings suggest a novel therapeutic approach for overcoming EGFR-TKI resistance to NSCLC treatment.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Donghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Song Yi Bae
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Ji-Young Hong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Hye-Jung Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Nirmal Rajasekaran
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Soonbum Kwon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yanhua Fan
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Thi-Thu-Trang Luu
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
17
|
Abstract
The expanding spectrum of both established and candidate oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC), coupled with the increasing number of clinically available signal transduction pathway inhibitors targeting these driver mutations, offers a tremendous opportunity to enhance patient outcomes. Despite these molecular advances, advanced-stage NSCLC remains largely incurable due to therapeutic resistance. In this Review, we discuss alterations in the targeted oncogene ('on-target' resistance) and in other downstream and parallel pathways ('off-target' resistance) leading to resistance to targeted therapies in NSCLC, and we provide an overview of the current understanding of the bidirectional interactions with the tumour microenvironment that promote therapeutic resistance. We highlight common mechanistic themes underpinning resistance to targeted therapies that are shared by NSCLC subtypes, including those with oncogenic alterations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1), serine/threonine-protein kinase b-raf (BRAF) and other less established oncoproteins. Finally, we discuss how understanding these themes can inform therapeutic strategies, including combination therapy approaches, and overcome the challenge of tumour heterogeneity.
Collapse
Affiliation(s)
- Julia Rotow
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
- Cellular and Molecular Pharmacology, University of California San Francisco, Box 2140, San Francisco, California 94158, USA
| |
Collapse
|
18
|
Ramnefjell M, Aamelfot C, Helgeland L, Akslen LA. Low expression of SerpinB2 is associated with reduced survival in lung adenocarcinomas. Oncotarget 2017; 8:90706-90718. [PMID: 29207598 PMCID: PMC5710879 DOI: 10.18632/oncotarget.21456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is a leading cause of cancer deaths worldwide and new biomarkers are of utmost importance. Studies have indicated that the anti-plasminogen activators SerpinB2 and Neuroserpin, and the adhesion molecule L1CAM, have a coordinated impact on development of metastasis. Here, we examined whether expression of these markers was associated with clinico-pathologic characteristics and prognosis in resected non-small cell lung cancer (NSCLC). Surgical specimens from 438 NSCLC patients treated at Haukeland University Hospital, Bergen, Norway (1993-2010) were included (median age 68 years; 213 adenocarcinomas, 135 squamous cell carcinomas, 90 others). Representative tumor sections were stained for SerpinB2, Neuroserpin, and L1CAM. Low expression of SerpinB2 was associated with reduced lung cancer specific survival (LCSS) in adenocarcinomas (p = 0.017), also in stage I (p = 0.031). In contrast, high SerpinB2 was associated with reduced LCSS in stage I squamous cell carcinomas (p = 0.022). Although Neuroserpin and L1CAM showed some associations with clinico-pathologic phenotype, there were no associations with survival. In multivariate survival analysis of adenocarcinomas, low SerpinB2 demonstrated independent prognostic value (HR 1.8, p = 0.008). In summary, low expression of SerpinB2 in lung adenocarcinomas was an independent prognostic factor. In contrast to findings by others, we found no impact of L1CAM on survival. Introduction
Collapse
Affiliation(s)
- Maria Ramnefjell
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Christina Aamelfot
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, Haukeland University Hospital, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
19
|
Bach DH, Hong JY, Park HJ, Lee SK. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J Cancer 2017; 141:220-230. [PMID: 28240776 DOI: 10.1002/ijc.30669] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Hong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|