1
|
Elkholy AEA, Poon K, Singh G, Giansiracusa M, Callaghan KL, Boskovic C, Ellis AV, Kingshott P. Electrosynthesis of Silane-Modified Magnetic Nanoparticles for Efficient Lead Ion Removal. CHEMSUSCHEM 2025; 18:e202402098. [PMID: 39824771 PMCID: PMC12094153 DOI: 10.1002/cssc.202402098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/25/2024] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase. IONPs were characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). A novel electrochemical method was developed for the silanization of IONPs using tetraethoxysilane (TEOS), (3-mercaptopropyl)trimethoxysilane (MPTMS) and (3-aminopropyl)triethoxysilane (APTES). The resulting silane-modified IONPs were evaluated for the magnetic removal of Pb2+ ions, with TEOS-modified IONPs demonstrating superior performance. This material exhibited a high adsorption capacity of 519 mg/g at a Pb2+ ion concentration of 300 ppm, and high removal efficiency across a range of Pb2+ ion concentrations, attributed to its Fe2O3@SiO2 core-shell structure. This study highlights the potential of the electrochemical synthesis and silanization of nanoparticles for heavy metal remediation in water.
Collapse
Affiliation(s)
- Ayman E. Ahmed Elkholy
- Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn3122VICAustralia
| | - Kingsley Poon
- School of Biomedical Engineering and Sydney Nano InstituteThe University of SydneySydney2006NSWAustralia
| | - Gurvinder Singh
- School of Biomedical Engineering and Sydney Nano InstituteThe University of SydneySydney2006NSWAustralia
| | | | | | - Colette Boskovic
- School of ChemistryThe University of MelbourneParkville3010VICAustralia
| | - Amanda V. Ellis
- Department of Chemical EngineeringThe University of MelbourneParkville3010VICAustralia
| | - Peter Kingshott
- Department of Chemistry and BiotechnologySwinburne University of TechnologyHawthorn3122VICAustralia
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM)Swinburne University of TechnologyHawthorn3122VICAustralia
| |
Collapse
|
2
|
Abidli I, Bououdina M, Latrous L, Megriche A. Electrochemical sensing of caffeic acid on natural biomass-pyrrole-functionalized magnetic biochar (PFMB) as promising SPE material. Mikrochim Acta 2025; 192:239. [PMID: 40102308 DOI: 10.1007/s00604-025-07087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
A peanut shell-modified screen-printed carbon electrode (SPE) was developed for the sensing of caffeic acid (CA) in saliva samples using cheap miniaturized analyzer composed of a laptop and an electrochemical workstation. Peanut shells, sourced from abundant biomass residues, were used to fabricate magnetic biochar (MB) and pyrrole-functionalized magnetic biochar (PFMB) with varying pyrrole/Fe ratios through a hydrothermal process. The surface morphology and electrochemical properties of the synthesized PFMB material were analyzed using XRD, FTIR, Raman, SEM, VSM, cyclic voltammetry, and differential pulse voltammetry techniques. The PFMB-modified SPE displayed excellent electrocatalytic response towards CA in a wide linear range from 10 to 600 μM with a low limit of detection of 0.08 μM. The enhanced electrocatalytic response could be ascribed to the synergistic effect of pyrrole-functionalized biochar and Fe3O4 on the newly designed probe. Moreover, the fabricated sensor was successfully utilized for real-time detection of CA in various samples. Quantum chemical modeling was performed to confirm the relevant findings to clarify the structure-activity relationship of CA adsorption on biochar.
Collapse
Affiliation(s)
- Imen Abidli
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092, Tunis, Tunisia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Latifa Latrous
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092, Tunis, Tunisia.
- Institut Préparatoire Aux Etudes d'Ingénieurs d'El Manar, B.P.244 El Manar II, 2092, Tunis, Tunisia.
| | - Adel Megriche
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092, Tunis, Tunisia
| |
Collapse
|
3
|
Youssif MM, El-Attar HG, Małecki S, Włoch G, Czapkiewicz M, Kornaus K, Wojnicki M. Mercury Ion Selective Adsorption from Aqueous Solution Using Amino-Functionalized Magnetic Fe 2O 3/SiO 2 Nanocomposite. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4254. [PMID: 39274644 PMCID: PMC11396377 DOI: 10.3390/ma17174254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
This study focuses on the development of new amino-functionalized magnetic Fe2O3/SiO2 nanocomposites with varying silicate shell ratios (1:0.5, 1:1, and 1:2) for the efficient elimination of Hg2+ ions found in solutions. The Fe2O3/SiO2-NH2 adsorbents were characterized for their structural, surface, and magnetic properties using various techniques, including Fourier transform infrared spectrum (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Braunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), zeta-potential, and particle size measurement. We investigated the adsorption circumstances, such as pH, dosage of the adsorbent, and duration of adsorption. The pH value that yielded the best results was determined to be 5.0. The Fe2O3/SiO2-NH2 adsorbent with a silicate ratio of (1:2) exhibited the largest amount of adsorption capacity of 152.03 mg g-1. This can be attributed to its significantly large specific surface area of 100.1 m2 g-1, which surpasses that of other adsorbents. The adsorbent with amino functionalization demonstrated a strong affinity for Hg2+ ions due to the chemical interactions between the metal ions and the amino groups on the surface. The analysis of adsorption kinetics demonstrated that the adsorption outcomes adhere to the pseudo-second-order kinetic model. The study of adsorption isotherms revealed that the adsorption followed the Langmuir model, indicating that the adsorption of Hg2+ ions with the adsorbent occurred as a monomolecular layer adsorption process. Furthermore, the thermodynamic analyses revealed that the adsorption of Hg2+ ions using the adsorbent was characterized by a spontaneous and endothermic process. Additionally, the adsorbent has the ability to selectively extract mercury ions from a complex mixture of ions. The Fe2O3/SiO2-NH2 nanocomposite, which is loaded with metal, can be easily recovered from a water solution due to its magnetic properties. Moreover, it can be regenerated effortlessly through acid treatment. This study highlights the potential use of amino-functionalized Fe2O3/SiO2 magnetic nanoparticles as a highly efficient, reusable adsorbent for the removal of mercury ions from contaminated wastewater.
Collapse
Affiliation(s)
- Mahmoud M Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Heba G El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Stanisław Małecki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| | - Grzegorz Włoch
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| | - Maciej Czapkiewicz
- Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Kamil Kornaus
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractory Materials, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Naser DM, Lafta SH, Hashim MS. Antioxidant activity and cytotoxicity of greigite nanoparticles synthesized by hydrothermal technique. Biotechnol Appl Biochem 2024; 71:960-973. [PMID: 38764255 DOI: 10.1002/bab.2590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/06/2024] [Indexed: 05/21/2024]
Abstract
The effects of 180, 210, and 230°C reaction temperatures on the structural and magnetic properties of synthesized iron sulfide nanoparticles were studied. The Rietveld refinement analysis result of the X-ray diffraction data indicated that greigite was the dominant phase in all samples. The sample was prepared at 210°C for 18 h and had a greater wt% ratio of the greigite phase. The crystallite and particle sizes increased with increasing reaction temperatures. Scanning electron microscope images confirmed the presence of aggregation of synthesized rod-shaped nanoparticles. The magnetic hysteresis curves of all samples showed ferromagnetic behavior at room temperature. The magnetic saturation of three samples increases with increased reaction temperature, but the coercive force has the opposite behavior. Antioxidant activity and cytotoxicity of the sample synthesized at 210°C were investigated. This sample killed cancer cells at relatively moderate and high concentrations with high viability of normal cells, demonstrating the sample's suitability for use in killing cancer cells while avoiding normal cells.
Collapse
Affiliation(s)
- Dalal Maseer Naser
- Physics department, Education College, Mustansiriyah University, Baghdad, Iraq
| | - Sadeq H Lafta
- Applied Sciences Department, University of Technology - Iraq, Baghdad, Iraq
| | | |
Collapse
|
5
|
Biswas B, Rahman ML, Ahmed MF, Sharmin N. Extraction of gamma iron oxide (γ-Fe 2O 3) nanoparticles from waste can: Structure, morphology and magnetic properties. Heliyon 2024; 10:e30810. [PMID: 38778945 PMCID: PMC11109832 DOI: 10.1016/j.heliyon.2024.e30810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
In this work, the transformation of waste iron cans to gamma iron oxide (γ-Fe2O3) nanoparticles following acid leaching precipitation method along with their structural, surface chemistry, and magnetic properties was studied. Highly magnetic iron-based nanomaterials, maghemite with high saturation magnetization have been synthesized through an acid leaching technique by carefully tuning of pH and calcination temperature. The phase composition and crystal structure, surface morphology, surface chemistry, and surface composition of the synthesized γ-Fe2O3 nanoparticles were explored by X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDS). The XRD results confirm the cubic spinel structure having crystallite size 26.90-52.15 nm. The XPS study reveals the presence of Fe, O element and the binding energy of Fe (710.31 and 724.48 eV) confirms the formation of γ-Fe2O3 as well. By dynamic light scattering (DLS) method and zeta potential analyzer, the particle size distribution and stability of the systems were investigated. The magnetic behavior of the synthesized γ-Fe2O3 nanoparticles were studied using a vibrating sample magnetometer (VSM) which confirmed the ferrimagnetic particles with saturation magnetization of 54.94 emu/g. The resultant maghemite nanoparticles will be used in photocatalysts and humidity sensing. The net impact of the work stated here is based on the principle of converting waste into useful nanomaterials. Finally, it was concluded that our results can give insights into the design of the synthesis procedure from the precursor to the high-quality gamma iron oxide nanoparticles with high saturation magnetization for different potential applications which are inexpensive and very simple.
Collapse
Affiliation(s)
- Bristy Biswas
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md. Lutfor Rahman
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md. Farid Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Nahid Sharmin
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| |
Collapse
|
6
|
Yue Q, Wang S, Jones ST, Fielding LA. Multifunctional Self-Assembled Block Copolymer/Iron Oxide Nanocomposite Hydrogels Formed from Wormlike Micelles. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38592714 PMCID: PMC11056933 DOI: 10.1021/acsami.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
This article reports the preparation of multifunctional magnetic nanocomposite hydrogels formed from wormlike micelles. Specifically, iron oxide nanoparticles were incorporated into a temperature responsive block copolymer, poly(glycerol monomethacrylate)-b-poly(2-hydroxypropyl methacrylate) (PGMA-b-PHPMA), and graphene oxide (GO) dispersion at a low temperature (∼2 °C) through high-speed mixing and returning the mixture to room temperature, resulting in the formation of nanocomposite gels. The optimal concentrations of iron oxide and GO enhanced the gel strength of the nanocomposite gels, which exhibited a strong magnetic response when a magnetic field was applied. These materials retained the thermoresponsiveness of the PGMA-PHPMA wormlike micelles allowing for a solid-to-liquid transition to occur when the temperature was reduced. The mechanical and rheological properties and performance of the nanocomposite gels were demonstrated to be adjustable, making them suitable for a wide range of potential applications. These nanocomposite worm gels were demonstrated to be relatively adhesive and to act as strain and temperature sensors, with the measured electrical resistance of the nanocomposite gels changing with applied strain and temperature sweeps. The nanocomposite gels were found to recover efficiently after the application of high shear with approximately 100% healing efficiency within seconds. Additionally, these nanocomposite worm gels were injectable, and the addition of GO and iron oxide nanomaterials seemed to have no significant adverse impact on the biocompatibility of the copolymer gels, making them suitable not only for 3D printing in nanocomposite engineering but also for potential utilization in various biomedical applications as an injectable magnetic responsive hydrogel.
Collapse
Affiliation(s)
- Qi Yue
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Shiyu Wang
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Samuel T. Jones
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
7
|
Karuppasamy K, Sharma A, Vikraman D, Lee YA, Sivakumar P, Korvink JG, Kim HS, Sharma B. Room-temperature response of MOF-derived Pd@PdO core shell/γ-Fe 2O 3 microcubes decorated graphitic carbon based ultrasensitive and highly selective H 2 gas sensor. J Colloid Interface Sci 2023; 652:692-704. [PMID: 37453873 DOI: 10.1016/j.jcis.2023.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
With the current upsurge in hydrogen economies all over the world, an increased demand for improved chemiresistive H2 sensors that are highly responsive and fast acting when exposed to gases is expected. Owing to safety concerns about explosive and highly flammable H2 gas, it is important to develop resistive sensors that can detect the leakage of H2 gas swiftly and selectively. Currently, interest in metal-organic frameworks (MOFs) for gas-sensor applications is increasing due to their open-metal sites, large surface area, and unique surface morphologies. In this research, a highly selective and sensitive H2-sensor was established based on graphitic carbon (GC) anchored spherical Pd@PdO core-shells over γ-Fe2O3 microcube (Pd@PdO/γ-Fe2O3@GC which is termed as S3) heterostructure materials. The combined solvothermal followed by controlled calcination-assisted S3 exhibited a specific morphology with the highest surface area of 79.12 m2 g-1, resulting in fast response and recovery times (21 and 29 s, respectively), and excellent sensing performance (ΔR/R0∼ 96.2 ± 1.5), outstanding long-term stability, and a 100 ppb detection limit when detecting H2-gas at room temperature (mainly in very humid surroundings). This result proves that adsorption sites provided by S3 can promote surface reactions (adsorption and desorption) for ultrasensitive and selective H2gas sensors.
Collapse
Affiliation(s)
- K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Gyeonggi-do, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Yoon-A Lee
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Periyasamy Sivakumar
- Department of Chemistry, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermonn-Von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Bharat Sharma
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermonn-Von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
8
|
Gomes P, Costa B, Carvalho JPF, Soares PIP, Vieira T, Henriques C, Valente MA, Teixeira SS. Cobalt Ferrite Synthesized Using a Biogenic Sol-Gel Method for Biomedical Applications. Molecules 2023; 28:7737. [PMID: 38067467 PMCID: PMC10708217 DOI: 10.3390/molecules28237737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Conventional treatments such as surgery, chemotherapy, and radiotherapy have limitations and severe side effects. Magnetic hyperthermia (MH) is an alternative method that can be used alone or in conjunction with chemotherapy or radiotherapy to treat cancer. Cobalt ferrite particles were synthesized using an innovative biogenic sol-gel method with powder of coconut water (PCW). The obtained powders were subjected to heat treatments between 500 °C and 1100 °C. Subsequently, they were characterized by thermal, structural, magnetic, and cytotoxic analyses to assess their suitability for MH applications. Through X-ray diffraction and Raman spectroscopy, it was possible to confirm the presence of the pure phase of CoFe2O4 in the sample treated at 1100 °C, exhibiting a saturation magnetization of 84 emu/g at 300 K and an average grain size of 542 nm. Furthermore, the sample treated at 1100 °C showed a specific absorption rate (SAR) of 3.91 W/g, and at concentrations equal to or below 5 mg/mL, is non-cytotoxic, being the most suitable for biomedical applications.
Collapse
Affiliation(s)
- Patrícia Gomes
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| | - Bárbara Costa
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| | - João P. F. Carvalho
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| | - Paula I. P. Soares
- CENIMAT, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| | - Tânia Vieira
- CENIMAT/i3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (T.V.); (C.H.)
| | - Célia Henriques
- CENIMAT/i3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (T.V.); (C.H.)
| | - Manuel Almeida Valente
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| | - Sílvia Soreto Teixeira
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| |
Collapse
|
9
|
Zarei H, Sobhani S, Sansano JM. First Reusable Catalyst for the Reductive Coupling Reaction of Organohalides with Aldehydes. ACS OMEGA 2023; 8:36801-36814. [PMID: 37841197 PMCID: PMC10568700 DOI: 10.1021/acsomega.3c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
In this study, we simulate the reductive coupling (Barbier-Grignard-type) reaction of organohalides with aldehydes using a new reusable catalyst. In this regard, bimetallic alloys of NiCo encapsulated in melamine-based dendrimers (MBD) immobilized on magnetic nanoparticles symbolized as γ-Fe2O3-MBD/NiCo were designed and synthesized. The structure and properties of the catalyst were studied by a variety of techniques such as Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy-dispersive spectrometry (EDS) mapping, and inductively coupled plasma (ICP). The presence of NiCo nanoalloys was confirmed by XRD and XPS analysis, TEM images, and EDS mapping. Various secondary alcohols were produced in good to high yields by reductive coupling of different types of aldehydes and organohalides in the presence of HCO2K as a nonmetallic reducing agent in aqueous media catalyzed by γ-Fe2O3-MBD/NiCo. In these reactions, the high catalytic performance of γ-Fe2O3-MBD/NiCo was achieved in comparison to monometallic counterparts due to the synergistic cooperative effect of Co and Ni in the NiCo nanoalloys. Magnetic and hydrophilic properties of the catalyst facilitate the catalyst recyclability for seven runs. The reusability of γ-Fe2O3-MBD/NiCo, use of water as an environmentally friendly solvent, ease of processing, and absence of metal additives make this process an excellent choice for the reductive coupling reaction to produce secondary alcohols from aldehydes. This is the first report on these kinds of reactions using a reusable catalyst.
Collapse
Affiliation(s)
- Hamed Zarei
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 414, Iran
| | - Sara Sobhani
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 414, Iran
| | - José Miguel Sansano
- Departamento
de Química Orgánica, Facultad de Ciencias, Centro de
Innovación en Química Avanzada (ORFEOCINQA) and Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
10
|
Biswas A, Lemcoff N, Shelonchik O, Yesodi D, Yehezkel E, Finestone EY, Upcher A, Weizmann Y. Photothermally heated colloidal synthesis of nanoparticles driven by silica-encapsulated plasmonic heat sources. Nat Commun 2023; 14:6355. [PMID: 37816769 PMCID: PMC10564728 DOI: 10.1038/s41467-023-42167-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
Using photons to drive chemical reactions has become an increasingly important field of chemistry. Plasmonic materials can provide a means to introduce the energy necessary for nucleation and growth of nanoparticles by efficiently converting visible and infrared light to heat. Moreover, the formation of crystalline nanoparticles has yet to be included in the extensive list of plasmonic photothermal processes. Herein, we establish a light-assisted colloidal synthesis of iron oxide, silver, and palladium nanoparticles by utilizing silica-encapsulated gold bipyramids as plasmonic heat sources. Our work shows that the silica surface chemistry and localized thermal hotspot generated by the plasmonic nanoparticles play crucial roles in the formation mechanism, enabling nucleation and growth at temperatures considerably lower than conventional heating. Additionally, the photothermal method is extended to anisotropic geometries and can be applied to obtain intricate assemblies inaccessible otherwise. This study enables photothermally heated nanoparticle synthesis in solution through the plasmonic effect and demonstrates the potential of this methodology.
Collapse
Affiliation(s)
- Aritra Biswas
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nir Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ofir Shelonchik
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Doron Yesodi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Elad Yehezkel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ella Yonit Finestone
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
11
|
Li H, Niu D, Zhang Z, Yang F, Wang H, Cheng W. One-Dimensional Mn 5Si 3 Nanorods: Fabrication, Microstructure, and Magnetic Properties via a Novel Casting-Extraction Route. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093540. [PMID: 37176422 PMCID: PMC10179953 DOI: 10.3390/ma16093540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
This study presents a simple and innovative approach for producing one-dimensional Mn5Si3 nanorods through a casting-extraction process. In this technique, the Mn5Si3 nanorods were synthesized by reacting Mn and Si during brass solidification and extracted by electrochemical etching of the brass matrix. The effect of the cooling rate during casting on the nanorods' dimension, morphology, and magnetic properties was investigated. The results demonstrate that the prepared high-purity Mn5Si3 nanorods had a single-crystal D88 structure and exhibited ferromagnetism at room temperature. The morphology of the nanorods was an elongated hexagonal prism, and their preferred growth was along the [0001] crystal direction. Increasing the cooling rate from 5 K/s to 50 K/s lead to a decrease in the dimension of the nanorods but an increase in their ferromagnetism. At the optimal cooling rate of 50 K/s, the nanorods had a diameter and length range of approximately 560 nm and 2~11 μm, respectively, with a highest saturation magnetization of 7.5 emu/g, and a maximum coercivity of 120 Oe. These properties make the fabricated Mn5Si3 nanorods potentially useful for magnetic storage applications, and this study also provides a new perspective on the preparation of one-dimensional nanomaterials.
Collapse
Affiliation(s)
- Hang Li
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Golden Dragon Precise Copper Tube Group Inc., Chongqing 404100, China
| | - Dongtao Niu
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhongtao Zhang
- Golden Dragon Precise Copper Tube Group Inc., Chongqing 404100, China
| | - Fan Yang
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongxia Wang
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weili Cheng
- School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
12
|
Jiang R, Zhu HY, Fu YQ, Li X, Jiang ST, Li JB. Adsorptive removal of anionic azo dye by Al 3+-modified magnetic biochar obtained from low pyrolysis temperatures of chitosan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44985-44998. [PMID: 36701055 DOI: 10.1007/s11356-023-25439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Magnetic γ-Fe2O3/Al3+@chitosan-derived biochar (m-Fe2O3/Al3+@CB) was prepared by introducing magnetic maghemite (γ-Fe2O3) nanoparticles and aluminum sulfate [Al2(SO4)3] into chitosan-derived biochar (CB) obtained at low pyrolysis temperatures. m-Fe2O3/Al3+@CB was used to remove typical anionic azo dye (Congo red, CR). Effects of initial CR concentration, contact time, initial pH value, background electrolytes, and temperature on CR adsorption by m-Fe2O3/Al3+@CB were studied. Compared with magnetic chitosan-derived biochar (m-Fe2O3@CB), m-Fe2O3/Al3+@CB exhibited excellent performance for a wider range of pH values (pH 1-7) and in the presence of background electrolyte. The introduction of Al3+ is an effective method for improving the properties of magnetic chitosan-derived biochar. High CR adsorption capacity (636.94 mg g-1) of m-Fe2O3/Al3+@CB could result from collaborative effect of flocculation/coagulation and electrostatic attraction. These results demonstrated that m-Fe2O3/Al3+@CB is a potential adsorbent for effective removal of organic dyes from aqueous solution due to its high adsorption capacity and convenient magnetic recovery and stronger anti-interference ability against coexisting anions in wastewater.
Collapse
Affiliation(s)
- Ru Jiang
- Department of Environmental Engineering, Taizhou University, Taizhou, 318000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, No.1139, Municipal Government Avenue, Taizhou, 318000, Zhejiang, China
| | - Hua-Yue Zhu
- Department of Environmental Engineering, Taizhou University, Taizhou, 318000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China.
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, No.1139, Municipal Government Avenue, Taizhou, 318000, Zhejiang, China.
| | - Yong-Qian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, No.1139, Municipal Government Avenue, Taizhou, 318000, Zhejiang, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Sheng-Tao Jiang
- Department of Environmental Engineering, Taizhou University, Taizhou, 318000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Jian-Bing Li
- Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9, Canada
| |
Collapse
|
13
|
A simple polyol one-shot synthesis of Maghemite and Hematite from inexpensive precursors. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
14
|
Hung CM, Dang DTX, Chanda A, Detellem D, Alzahrani N, Kapuruge N, Pham YTH, Liu M, Zhou D, Gutierrez HR, Arena DA, Terrones M, Witanachchi S, Woods LM, Srikanth H, Phan MH. Enhanced Magnetism and Anomalous Hall Transport through Two-Dimensional Tungsten Disulfide Interfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:771. [PMID: 36839139 PMCID: PMC9967397 DOI: 10.3390/nano13040771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 05/14/2023]
Abstract
The magnetic proximity effect (MPE) has recently been explored to manipulate interfacial properties of two-dimensional (2D) transition metal dichalcogenide (TMD)/ferromagnet heterostructures for use in spintronics and valleytronics. However, a full understanding of the MPE and its temperature and magnetic field evolution in these systems is lacking. In this study, the MPE has been probed in Pt/WS2/BPIO (biphase iron oxide, Fe3O4 and α-Fe2O3) heterostructures through a comprehensive investigation of their magnetic and transport properties using magnetometry, four-probe resistivity, and anomalous Hall effect (AHE) measurements. Density functional theory (DFT) calculations are performed to complement the experimental findings. We found that the presence of monolayer WS2 flakes reduces the magnetization of BPIO and hence the total magnetization of Pt/WS2/BPIO at T > ~120 K-the Verwey transition temperature of Fe3O4 (TV). However, an enhanced magnetization is achieved at T < TV. In the latter case, a comparative analysis of the transport properties of Pt/WS2/BPIO and Pt/BPIO from AHE measurements reveals ferromagnetic coupling at the WS2/BPIO interface. Our study forms the foundation for understanding MPE-mediated interfacial properties and paves a new pathway for designing 2D TMD/magnet heterostructures for applications in spintronics, opto-spincaloritronics, and valleytronics.
Collapse
Affiliation(s)
- Chang-Ming Hung
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Diem Thi-Xuan Dang
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Amit Chanda
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Derick Detellem
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Noha Alzahrani
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Nalaka Kapuruge
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Yen T. H. Pham
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Mingzu Liu
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Darío A. Arena
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarath Witanachchi
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Lilia M. Woods
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Hariharan Srikanth
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
15
|
Sharif HMA, Asif MB, Wang Y, Hou YN, Yang B, Xiao X, Li C. Spontaneous intra-electron transfer within rGO@Fe 2O 3-MnO catalyst promotes long-term NO x reduction at ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129951. [PMID: 36115094 DOI: 10.1016/j.jhazmat.2022.129951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe)-based catalysts are widely used for taming nitrogen oxides (NOx) containing flue gas, but the regeneration and long-term reusability remains a concern. The reusability can be acquired by external additives, and resultantly can not only increase the cost but can also add to process complexity as well as secondary pollutants. Herein, a self-sustainable material is designed to regenerate the catalyst for long-term reusability without adding to process complexity. The catalyst is based on reduced graphene-oxide impregnated by Fe2O3-MnO (rGO@Fe2O3-MnO; G-F-M) for spontaneous intra electron (e-)-transfer from Mn to Fe. The developed catalyst; G-M-F exhibited 93.7% NOx reduction, which suggests its high catalytic activity. The morphological and structure characterizations confirmed the Fe/Mn loading, contributing to e--transfer between Mn and Fe due to its conductivity. The synthesized G-F-M showed higher NOx reduction about 2.5 folds, than rGO@Fe2O3 (G-FeO) and rGO@MnOx (G-MnOx). The performance of G-M-F without and with an electrochemical system was also compared, and the difference was only 5%, which is an evidence of the spontaneous e- transfer between the Mn and Fe-NOx complex. The designed catalyst can be used for a long time without external assistance, and its efficiency was not affected significantly (<3.7%) in the presence of high oxygen contents (8%). The as-prepared G-M-F catalyst has great potential for executing a dual role NOx removal and self-regeneration of catalyst (SRC), promoting a sustainable remediation approach for large-scale applications.
Collapse
Affiliation(s)
- Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yuwei Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xu Xiao
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China
| | - Changping Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
16
|
El-Attar HG, Salem MA, Ibrahim SA, Bakr EA. Highly efficient and recyclable novel spindles Fe2O3@SiO2/In2O3 nanomagnetic catalyst designed for green synthesis of azomethine compounds. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractA novel and reusable nanomagnetic catalyst, Fe2O3@SiO2/In2O3, was synthesized by a facile chemical approach in three successive steps. The nanocatalyst was characterized by FT-IR, XRD, SEM, EDX, TEM, and VSM. The XRD pattern displays the characteristic peaks of Fe2O3 and SiO2, accompanied by new peaks assigned to different planes of In2O3 that confirm the formation of In2O3 on the surface of Fe2O3@SiO2 core/shell spindles. The TEM micrographs show spindle-like particles of Fe2O3 covered with SiO2 shell, and the In2O3 nanoparticles in an average diameter of 20 nm are hung on the surface of the Fe2O3@SiO2. The nanomagnetic catalyst Fe2O3@SiO2/In2O3 was used for the transformation of the (4-nitrophenyl)-1-phenyl-1H-pyrazole-5-amine, and chalcones derivatives, into valuable azomethine compounds of 3-(substituted)-1-(pyridine-2-yl)allylidene)-3-(4-nitrophenyl)-1-phenyl-1H-pyrazole-5-amine with high rate and efficient catalyst recovery. The yield obtained through the catalytic route reached 90–95% in shorter reaction times compared with uncatalyzed reaction method.
Graphical abstract
Collapse
|
17
|
Pulsed-Laser Induced Photolysis of Synthesizing Magnetic Fe3O4 Nanoparticles for Visible-Light Photocatalysis. Catalysts 2022. [DOI: 10.3390/catal12111459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Our report is the first example describing the successful synthesis of magnetic Fe3O4 nanoparticles (NPs), for which we used pulsed-laser induced photolysis (PLIP). Compared with the previous method of using pulsed-laser ablation of a target, or strong energy of pulsed-laser light to decompose precursors in generating a solvated-ion reaction, the PLIP method used here is dependent on hydrogen peroxide (H2O2) to generate a hydrolysis reaction. Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were used to demonstrate the Fe3O4 crystalline structure of the synthesized NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that the average size of the NPs was about 20–50 nm. Regarding their magnetic characteristics, the synthesized NPs exhibited a saturation magnetization of 5.62 emu/g, remanence of 3.82 emu/g, and coercive force of 49.8 Oe. The photocatalytic experiments confirmed that the synthesized magnetic Fe3O4 NPs have visible light-degradation effects based on their ability to photocatalytically degrade methylene blue (MB). The MB degradation efficiency was 60–80% under white-light exposure for 180 min. This study presents a new route for synthesizing magnetic Fe3O4 NPs for their potential use in photocatalysis.
Collapse
|
18
|
Gradinaru LM, Vlad S, Ciobanu RC. The Development and Study of Some Composite Membranes Based on Polyurethanes and Iron Oxide Nanoparticles. MEMBRANES 2022; 12:1127. [PMID: 36363682 PMCID: PMC9695552 DOI: 10.3390/membranes12111127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
To improve the performance of composite membranes, their morphology can be tailored by precise control of the fabrication methods and processing conditions. To this end, the aim of this study was to develop novel high-performance composite membranes based on polyurethane matrix and magnetic nanoparticles with the desired morphology and stability, by selecting the proper method and fabrication systems. These well-prepared composite membranes were investigated from the point of view of their morphological, physico-chemical, mechanical, dielectric, and magnetic properties. In addition, their in vitro cytocompatibility was also verified by the MTT assay and their cell morphology. The results of this study can provide valuable information regarding the preparation of magnetic polyurethane-based composite membranes that could be used to design some suitable devices with tailored properties, in order to improve the image quality in magnetic resonance imaging investigations and to suppress local image artifacts and blurring.
Collapse
Affiliation(s)
- Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Stelian Vlad
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Electrical Engineering Faculty, “Gheorghe Asachi” Technical University of Iasi, Dimitrie Mangeron Bd., 67, 700050 Iasi, Romania
- SC All Green SRL, I. Bacalu Street, 5, 700029 Iasi, Romania
| |
Collapse
|
19
|
Tuncaboylu DC, Wischke C. Opportunities and Challenges of Switchable Materials for Pharmaceutical Use. Pharmaceutics 2022; 14:2331. [PMID: 36365149 PMCID: PMC9696173 DOI: 10.3390/pharmaceutics14112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/27/2024] Open
Abstract
Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.
Collapse
|
20
|
Sarki N, Kumar R, Singh B, Ray A, Naik G, Natte K, Narani A. Lignin Residue-Derived Carbon-Supported Nanoscale Iron Catalyst for the Selective Hydrogenation of Nitroarenes and Aromatic Aldehydes. ACS OMEGA 2022; 7:19804-19815. [PMID: 35721941 PMCID: PMC9202032 DOI: 10.1021/acsomega.2c01566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 05/05/2023]
Abstract
Heterogeneous iron-based catalysts governing selectivity for the reduction of nitroarenes and aldehydes have received tremendous attention in the arena of catalysis, but relatively less success has been achieved. Herein, we report a green strategy for the facile synthesis of a lignin residue-derived carbon-supported magnetic iron (γ-Fe2O3/LRC-700) nanocatalyst. This active nanocatalyst exhibits excellent activity and selectivity for the hydrogenation of nitroarenes to anilines, including pharmaceuticals (e.g., flutamide and nimesulide). Challenging and reducible functionalities such as halogens (e.g., chloro, iodo, and fluoro) and ketone, ester, and amide groups were tolerated. Moreover, biomass-derived aldehyde (e.g., furfural) and other aromatic aldehydes were also effective for the hydrogenation process, often useful in biomedical sciences and other important areas. Before and after the reaction, the γ-Fe2O3/LRC-700 nanocatalyst was thoroughly characterized by X-ray diffraction (XRD), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, and thermogravimetric analysis (TGA). Additionally, the γ-Fe2O3/LRC-700 nanocatalyst is stable and easily separated using an external magnet and recycled up to five cycles with no substantial drop in the activity. Eventually, sustainable and green credentials for the hydrogenation reactions of 4-nitrobenzamide to 4-aminobenzamide and benzaldehyde to benzyl alcohol were assessed with the help of the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Naina Sarki
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Raju Kumar
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Baint Singh
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Anjan Ray
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ganesh Naik
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Kishore Natte
- Department
of Chemistry, Indian Institute of Technology
(IIT) Hyderabad, Kandi 502285, Sangareddy District, Telangana, India
- ,
| | - Anand Narani
- Chemical
and Material Sciences Division, Biofuels Division,
and Analytical Sciences
Division, CSIR-Indian Institute of Petroleum, Haridwar Road,
Mohkampur, Dehradun 248005, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- ,
| |
Collapse
|
21
|
Magnetic Core-Shell Iron Oxides-Based Nanophotocatalysts and Nanoadsorbents for Multifunctional Thin Films. MEMBRANES 2022; 12:membranes12050466. [PMID: 35629792 PMCID: PMC9144956 DOI: 10.3390/membranes12050466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023]
Abstract
In recent years, iron oxides-based nanostructured composite materials are of particular interest for the preparation of multifunctional thin films and membranes to be used in sustainable magnetic field adsorption and photocatalysis processes, intelligent coatings, and packing or bio-medical applications. In this paper, superparamagnetic iron oxide (core)-silica (shell) nanoparticles suitable for thin films and membrane functionalization were obtained by co-precipitation and ultrasonic-assisted sol-gel methods. The comparative/combined effect of the magnetic core co-precipitation temperature (80 and 95 °C) and ZnO-doping of the silica shell on the photocatalytic and nano-sorption properties of the resulted composite nanoparticles were investigated by ultraviolet-visible (UV-VIS) spectroscopy monitoring the discoloration of methylene blue (MB) solution under ultraviolet (UV) irradiation and darkness, respectively. The morphology, structure, textural, and magnetic parameters of the investigated powders were evidenced by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements, and saturation magnetization (vibrating sample magnetometry, VSM). The intraparticle diffusion model controlled the MB adsorption. The pseudo- and second-order kinetics described the MB photodegradation. When using SiO2-shell functionalized nanoparticles, the adsorption and photodegradation constant rates are three–four times higher than for using starting core iron oxide nanoparticles. The obtained magnetic nanoparticles (MNPs) were tested for films deposition.
Collapse
|
22
|
Laser-Ablative Synthesis of Ultrapure Magneto-Plasmonic Core-Satellite Nanocomposites for Biomedical Applications. NANOMATERIALS 2022; 12:nano12040649. [PMID: 35214980 PMCID: PMC8880494 DOI: 10.3390/nano12040649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023]
Abstract
The combination of magnetic and plasmonic properties at the nanoscale promises the development of novel synergetic image-guided therapy strategies for the treatment of cancer and other diseases, but the fabrication of non-contaminated magneto-plasmonic nanocomposites suitable for biological applications is difficult within traditional chemical methods. Here, we describe a methodology based on laser ablation from Fe target in the presence of preliminarily ablated water-dispersed Au nanoparticles (NPs) to synthesize ultrapure bare (ligand-free) core-satellite nanostructures, consisting of large (several tens of nm) Fe-based core decorated by small (mean size 7.5 nm) Au NPs. The presence of the Fe-based core conditions a relatively strong magnetic response of the nanostructures (magnetization of >12.6 emu/g), while the Au NPs-based satellite shell provides a broad extinction peak centered at 550 nm with a long tale in the near-infrared to overlap with the region of relative tissue transparency (650-950 nm). We also discuss possible mechanisms responsible for the formation of the magnetic-plasmonic nanocomposites. We finally demonstrate a protocol to enhance colloidal stability of the core-satellites in biological environment by their coating with different polymers. Exempt of toxic impurities and combining strong magnetic and plasmonic responses, the formed core-satellite nanocomposites can be used in biomedical applications, including photo- and magneto-induced therapies, magnetic resonance imaging or photoacoustic imaging.
Collapse
|
23
|
Loc TT, Dat ND, Tran HN. Nano-sized hematite-assembled carbon spheres for effectively adsorbing paracetamol in water: Important role of iron. KOREAN J CHEM ENG 2022; 40:1-10. [PMID: 35095157 PMCID: PMC8786625 DOI: 10.1007/s11814-021-1013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022]
Abstract
This study developed a new α-Fe2O3 (hematite) nanoparticles-loaded spherical biochar (H-SB) through the direct pyrolysis of glucose-derived spherical hydrochar and FeCl3. The optimal impregnation ratio (hydrochar and FeCl3) was 1/1.25 (wt/wt). H-SB was applied to remove paracetamol (PRC) from water. Results indicated that H-SB exhibited a relatively low surface area (127 m2/g) and total pore volume (0.089 cm3/g). The presence of iron particles in its surface was confirmed by scanning electron microscopy with energy dispersive spectroscopy. The dominant form of iron nanoparticles (α-Fe2O3) in its surface was confirmed by X-ray powder diffraction and Raman spectrum. The crystallite size of α-Fe2O3 in H-SB was 27.4 nm. The saturation magnetization of H-SB was 6.729 cmu/g. The analysis of Fourier-transform infrared spectroscopy demonstrated that the C-O and O-H groups were mainly responsible for loading α-Fe2O3 nanoparticles in its surface. The adsorption study indicated the amount of PRC adsorbed by H-SB slightly decreased within solution pH from 2 to 11. The adsorption reached a fast saturation after 120 min. The Langmuir maximum adsorption capacity of H-SB was 49.9 mg/g at 25 °C and pH 7.0. Ion-dipole interaction and π-π interaction played an important role in adsorption mechanisms, while hydrogen bonding and pore filling were minor. Therefore, H-SB can serve as a promising material for treating PRC-contaminated water streams. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11814-021-1013-z.
Collapse
Affiliation(s)
- Ton That Loc
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000 Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000 Vietnam
| | - Nguyen Duy Dat
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh City, 700000 Vietnam
| | - Hai Nguyen Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000 Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000 Vietnam
| |
Collapse
|
24
|
Kushwaha P, Chauhan P. Influence of annealing temperature on microstructural and magnetic properties of Fe 2O 3 nanoparticles synthesized via sol-gel method. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Pratima Chauhan
- Department of Physics, University of Allahabad, Prayagraj, India
| |
Collapse
|
25
|
Li Y, Chen Y, Wu Q, Zhang R, Li M, Lin Y, Wang D, Xie T. Revealing long-lived electron–hole migration in core–shell α/γ-Fe2O3/FCP for efficient photoelectrochemical water oxidation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01628h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A γ/α-Fe2O3/FCP photoanode with rapid interfacial hole injection and long-lived charge separation states (∼50.64 ps) showed that the synergistic effect of a phase junction and FeCo Prussian blue (FCP) could optimize the kinetics in water oxidation.
Collapse
Affiliation(s)
- Yinyin Li
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yifan Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qiannan Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Rui Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yanhong Lin
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dejun Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tengfeng Xie
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
26
|
Zhang H, Luan Q, Li Y, Wang J, Bao Y, Tang H, Huang F. Fabrication of highly porous, functional cellulose-based microspheres for potential enzyme carriers. Int J Biol Macromol 2021; 199:61-68. [PMID: 34954297 DOI: 10.1016/j.ijbiomac.2021.12.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
Here, we present highly porous, cellulose-based microspheres using (2,2,6,6-tetramethylpiperidine-1-oxyl) TEMPO-oxidized cellulose fibers (TOCFs) as starting materials. The TOCFs were first dissolved in NaOH/urea solvent and transformed into microspheres via an emulsification method. The carboxyl groups on the surface of TOCFs were successfully carried on the cellulose-based microspheres, which provides them numerous reacting or binding sites, allowing them to be easily functionalized or immobilized with biomolecules for multi-functional applications. Furthermore, the introduction of magnetic nanoparticles awards these microspheres magnetic properties, allowing them to be attracted by a magnetic field. As a proof of concept, we demonstrate the application of using these carboxylate cellulose-based microspheres for enzyme immobilization. The cellulose-based microspheres can successfully create stable covalent bonds with enzymes after the activation of carboxyl groups. The enhanced pH tolerance, thermal stability, convenient recovery, and reusability position the emulsified microspheres as promising carriers for enzyme immobilization.
Collapse
Affiliation(s)
- Hao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Qian Luan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yan Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Jiahui Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yuping Bao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
27
|
Modifications of EHPDB Physical Properties through Doping with Fe2O3 Nanoparticles (Part II). Int J Mol Sci 2021; 23:ijms23010050. [PMID: 35008471 PMCID: PMC8744552 DOI: 10.3390/ijms23010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of our study was to analyze the influence of various concentrations of γ-Fe2O3 nanoparticles on the physical properties of the liquid crystalline ferroelectric SmC* phase, as well as to check the effect of introducing nanoparticles in the LC matrix on their properties in the prepared five nanocomposites. UV-vis spectroscopy showed that the admixture reduced the absorption of nanocomposites in the UV range, additional absorption bands appeared, and all nanocomposites were transparent in the range of 500–850 nm. The molecular dynamics in particular phases of the nanocomposites were investigated by the dielectric spectroscopy method, and it was found that nanoparticles caused a significant increase in the dielectric constant at low frequencies, a strong modification of the dielectric processes in the SmC* phase, and the emergence of new relaxation processes for the highest dopant concentrations. SQUID magnetometry allowed us to determine the magnetic nature of the nanoparticles used, and to show that the blocked state of nanoparticles was preserved in nanocomposites (hysteresis loops were also registered in the ferroelectric SmC* phase). The dependence of the coercive field on the admixture concentration and the widening of the hysteresis loop in nanocomposites in relation to pure nanoparticles were also found. In turn, the FT-MIR spectroscopy method was used to check the influence of the impurity concentration on the formation/disappearance or modification of the absorption bands, and the modification of both the FWHM and the maximum positions for the four selected vibrations in the MIR range, as well as the discontinuous behavior of these parameters at the phase transitions, were found.
Collapse
|
28
|
Effect of dispersants on cytotoxic properties of magnetic nanoparticles: a review. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Affiliation(s)
- Gungun Lin
- Institute for Biomedical Materials and Devices Faculty of Science University of Technology Sydney Ultimo New South Wales Australia
- ARC Research Hub for Integrated Device for End‐User Analysis at Low Levels Faculty of Science University of Technology Sydney Sydney New South Wales Australia
| |
Collapse
|
30
|
Jia Z, Wang W, Li Z, Sun R, Zhou S, Deepak FL, Su C, Li Y, Wang Z. Morphology-Tunable Synthesis of Intrinsic Room-Temperature Ferromagnetic γ-Fe 2O 3 Nanoflakes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24051-24061. [PMID: 33999608 DOI: 10.1021/acsami.1c05342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intrinsic two-dimensional (2D) magnetic materials with room-temperature ferromagnetism and air stability are highly desirable for spintronic applications. However, the experimental observations of such 2D or ultrathin ferromagnetic materials are rarely reported owing to the scarcity of these materials in nature and for the intricacy in their synthesis. Here, we report a successful controllable growth of ultrathin γ-Fe2O3 nanoflakes with a variety of morphologies tunable by the growth temperature alone using a facile chemical vapor deposition method and demonstrate that all ultrathin nanoflakes still show intrinsic room-temperature ferromagnetism and a semiconducting nature. The γ-Fe2O3 nanoflakes epitaxially grown on α-Al2O3 substrates take a triangular shape at low temperature and develop gradually in lateral size, forming eventually a large-scale γ-Fe2O3 thin film as the growth time increases due to a thermodynamic control process. The morphology of the nanoflakes could be tuned from triangular to stellated, petaloid, and dendritic crystalloids in sequence with the rise of precursor temperature, revealing a growth process from thermodynamically to kinetically dominated control. Moreover, the petaloid and dendritic nanoflakes exhibit enhanced coercivity compared with the triangular and stellated nanoflakes, and all the nanoflakes with diverse shapes possess differing electrical conductivity. The findings of such ultrathin, air-stable, and room-temperature ferromagnetic γ-Fe2O3 nanoflakes with tunable shape and multifunctionality may offer guidance in synthesizing other non-layered magnetic materials for next-generation electronic and spintronic devices.
Collapse
Affiliation(s)
- Zhiyan Jia
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Wenjie Wang
- Department of Applied Physics, China Agricultural University, Beijing 100080, China
| | - Zichao Li
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, D-01328 Dresden 01328, Germany
| | - Rong Sun
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, D-01328 Dresden 01328, Germany
| | - Francis Leonard Deepak
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ying Li
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga 4715-330, Portugal
- School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
31
|
Vroegindeweij LHP, Bossoni L, Boon AJW, Wilson JHP, Bulk M, Labra-Muñoz J, Huber M, Webb A, van der Weerd L, Langendonk JG. Quantification of different iron forms in the aceruloplasminemia brain to explore iron-related neurodegeneration. NEUROIMAGE-CLINICAL 2021; 30:102657. [PMID: 33839643 PMCID: PMC8055714 DOI: 10.1016/j.nicl.2021.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Ferrihydrite-iron is the most abundant iron form in the aceruloplasminemia brain. Iron concentrations over 1 mg/g are found in deep gray matter structures. The deep gray matter contains over three times more iron than the temporal cortex. Iron-sensitive MRI contrast is primarily driven by the amount of ferrihydrite-iron. R2* is more illustrative of the pattern of iron accumulation than QSM at 7 T.
Aims Aceruloplasminemia is an ultra-rare neurodegenerative disorder associated with massive brain iron deposits, of which the molecular composition is unknown. We aimed to quantitatively determine the molecular iron forms in the aceruloplasminemia brain, and to illustrate their influence on iron-sensitive MRI metrics. Methods The inhomogeneous transverse relaxation rate (R2*) and magnetic susceptibility obtained from 7 T MRI were combined with Electron Paramagnetic Resonance (EPR) and Superconducting Quantum Interference Device (SQUID) magnetometry. The basal ganglia, thalamus, red nucleus, dentate nucleus, superior- and middle temporal gyrus and white matter of a post-mortem aceruloplasminemia brain were studied. MRI, EPR and SQUID results that had been previously obtained from the temporal cortex of healthy controls were included for comparison. Results The brain iron pool in aceruloplasminemia detected in this study consisted of EPR-detectable Fe3+ ions, magnetic Fe3+ embedded in the core of ferritin and hemosiderin (ferrihydrite-iron), and magnetic Fe3+ embedded in oxidized magnetite/maghemite minerals (maghemite-iron). Ferrihydrite-iron represented above 90% of all iron and was the main driver of iron-sensitive MRI contrast. Although deep gray matter structures were three times richer in ferrihydrite-iron than the temporal cortex, ferrihydrite-iron was already six times more abundant in the temporal cortex of the patient with aceruloplasminemia compared to the healthy situation (162 µg/g vs. 27 µg/g), on average. The concentrations of Fe3+ ions and maghemite-iron in the temporal cortex in aceruloplasminemia were within the range of those in the control subjects. Conclusions Iron-related neurodegeneration in aceruloplasminemia is primarily associated with an increase in ferrihydrite-iron, with ferrihydrite-iron being the major determinant of iron-sensitive MRI contrast.
Collapse
Affiliation(s)
- Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Lucia Bossoni
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Agnita J W Boon
- Department of Neurology, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - J H Paul Wilson
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Marjolein Bulk
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacqueline Labra-Muñoz
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
32
|
Wu K, Liu J, Saha R, Peng C, Su D, Wang YA, Wang JP. Investigation of Commercial Iron Oxide Nanoparticles: Structural and Magnetic Property Characterization. ACS OMEGA 2021; 6:6274-6283. [PMID: 33718717 PMCID: PMC7948237 DOI: 10.1021/acsomega.0c05845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/09/2021] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively used as tiny heating sources in magnetic hyperthermia therapy, contrast agents in magnetic resonance imaging, tracers in magnetic particle imaging, carriers for drug/gene delivery, etc. There have emerged many MNP/microbead suppliers since the past decade, such as Ocean NanoTech, Nanoprobes, US Research Nanomaterials, Miltenyi Biotec, micromod Partikeltechnologie GmbH, nanoComposix, and so forth. In this paper, we report the physical and magnetic characterizations on iron oxide nanoparticle products from Ocean NanoTech. Standard characterization tools such as vibrating-sample magnetometry, X-ray diffraction, dynamic light scattering, transmission electron microscopy, and zeta potential analysis are used to provide MNP customers and researchers with an overview of these iron oxide nanoparticle products. In addition, the dynamic magnetic responses of these iron oxide nanoparticles in aqueous solutions are investigated under low- and high-frequency alternating magnetic fields, giving a standardized operating procedure for characterizing the MNPs from Ocean NanoTech, thereby yielding the best of MNPs for different applications.
Collapse
Affiliation(s)
- Kai Wu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinming Liu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renata Saha
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chaoyi Peng
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Diqing Su
- Department
of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Jian-Ping Wang
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Sarkodie B, Hu Y, Bi W, Jiang J, Li C. Optimizing the catalytic activity of flame‐spray‐pyrolyzed Pt/Fe
2
O
3
catalyst toward CO oxidation: Effect of fluorination and reduction. NANO SELECT 2021. [DOI: 10.1002/nano.202000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Bismark Sarkodie
- Shanghai Engineering Research Center of Hierarchical Nanomaterials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science & Technology Shanghai China
| | - Yanjie Hu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science & Technology Shanghai China
| | - Wei Bi
- Shanghai Engineering Research Center of Hierarchical Nanomaterials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science & Technology Shanghai China
| | - Jiechao Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science & Technology Shanghai China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science & Technology Shanghai China
| |
Collapse
|
34
|
Durhuus FL, Wandall LH, Boisen MH, Kure M, Beleggia M, Frandsen C. Simulated clustering dynamics of colloidal magnetic nanoparticles. NANOSCALE 2021; 13:1970-1981. [PMID: 33443246 DOI: 10.1039/d0nr08561h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetically guided self-assembly of nanoparticles is a promising bottom-up method to fabricate novel materials and superstructures, such as, for example, magnetic nanoparticle clusters for biomedical applications. The existence of assembled structures has been verified by numerous experiments, yet a comprehensive theoretical framework to explore design possibilities and predict emerging properties is missing. Here we present a model of magnetic nanoparticle interactions built upon a Langevin dynamics algorithm to simulate the time evolution and aggregation of colloidal suspensions. We recognise three main aggregation regimes: non-aggregated, linear and clustered. Through systematic simulations we have revealed the link between single particle parameters and which aggregates are formed, both in terms of the three regimes and the chance of finding specific aggregates, which we characterise by nanoparticle arrangement and net magnetic moment. Our findings are shown to agree with past experiments and may serve as a stepping stone to guide the design and interpretation of future studies.
Collapse
|
35
|
Singh V, Batoo KM, Singh M. Fabrication of chitosan-coated mixed spinel ferrite integrated with graphene oxide (GO) for magnetic extraction of viral RNA for potential detection of SARS-CoV-2. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:960. [PMID: 34866806 PMCID: PMC8627170 DOI: 10.1007/s00339-021-05067-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/04/2021] [Indexed: 05/13/2023]
Abstract
Genetic variants of the COVID-19 causative virus have been arising and circulating globally. In many countries, especially in developing ones with a huge population, vaccination has become one of the major challenges. SARS-CoV-2 variants' fast transmission rate has an upsurge in the COVID cases, leading to more stress on health systems. In the current COVID-19 scenario, there is the requirement of more adequate diagnostic approaches to check the COVID-19 spread. Out of many diagnostic approaches, a magnetic nanoparticle-based reverse transcription polymerase chain reaction could be nontrivial. The use of magnetic nanoparticles is to separate nucleic acid of SARS-CoV-2 from the patient samples and apply for SARS-CoV-2 detection in an easy and more effective way. Herein, the magnetic nanoparticles are synthesized using the solgel autocombustion methods and then successfully coated with biopolymer (chitosan) using ultrasonication. Chitosan-coated nanoparticles are successfully integrated into the graphene oxide sheets to introduce carboxyl groups. Crystallite size calculation, morphological and magnetic studies of synthesized magnetic nanoparticles, and multifunctional magnetic nanoparticles are done using XRD, SEM, TEM, and VSM, respectively. Besides, the potentiality of the fabricated nanocomposites in RNA extraction protocol is also discussed with schematic representation.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Physics, Himachal Pradesh University, Shimla, 171005 India
| | - Khalid Mujasam Batoo
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh, 11451 Saudi Arabia
| | - Mahavir Singh
- Department of Physics, Himachal Pradesh University, Shimla, 171005 India
| |
Collapse
|
36
|
Green synthesis, antimicrobial, antibiofilm and antitumor activities of superparamagnetic γ-Fe 2O 3 NPs and their molecular docking study with cell wall mannoproteins and peptidoglycan. Int J Biol Macromol 2020; 171:44-58. [PMID: 33373634 DOI: 10.1016/j.ijbiomac.2020.12.162] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Fatty acids-assisted superparamagnetic maghemite (γ-Fe2O3) NPs was biologically synthesized using extract of polyherbal drug Liv52 (L52E). The NPs were characterized by UV-vis spectroscopy, FT-IR, SEM, TEM, EDX, XRD and VSM. The major biological molecules present in L52E analysed by GC-MS were saturated fatty acids (palmitic acid 21.95%; stearic acid 13.99%; myristic acid 1.14%), monounsaturated fatty acid (oleic acid 18.43%), polyunsaturated fatty acid (linoleic acid 20.45%), and aromatic phenol (cardanol monoene 11.92%) that could imply in bio-fabrication and stabilization of γ-Fe2O3 NPs. The FT-IR spectra revealed involvement of carboxylic group of fatty acids, amide group of proteins and hydroxyl group of phenolic compounds that acts as reducing and capping agents. The synthesized NPs were used to investigate their antimicrobial, antibiofilm activity against P. aeruginosa, MRSA and C. albicans and anticancer activity on colon cancer cells (HCT-116) for biomedical applications. Further, molecular docking study was performed to explore the interaction of Fe2O3 NPs with major cell wall components i.e., peptidoglycan and mannoproteins. The docking studies revealed that Fe2O3 interacted efficiently with peptidoglycan and mannoproteins and Fe2O3 get accommodated into catalytic cleft of mannoprotein. Due to magnetic property, the biological activity of γ-Fe2O3 can be further enhanced by applying external magnetic field alone or in amalgamation with other therapeutics drugs.
Collapse
|
37
|
Yadav RK, Govindaraj R. An atomic scale study of defects in Co 2FeAl. Phys Chem Chem Phys 2020; 22:26876-26886. [PMID: 33205790 DOI: 10.1039/d0cp04572a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in the local structure and magnetic properties at Fe sites due to defects were addressed in a detailed manner in Co2FeAl by 57Fe Mössbauer spectroscopy. Based on the systematic correlation of these results a comprehensive understanding of the defects and hence of the different types of disordering that occur in Co2FeAl subjected to different non-equilibrium treatments have been obtained in this study. As high as 35% of the Fe atoms were deduced to be associated with the A2 type of disordering in Co2FeAl, which provides a basic understanding of the observed much lower value of spin polarization as observed in this system against the high value predicted theoretically. Also this study revealed a striking linear correlation between the valence electron concentration and the effective magnetic hyperfine fields as deduced at different sites of occupation of 57Fe atoms.
Collapse
Affiliation(s)
- Ravi Kumar Yadav
- Materials Science Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam-63102, India.
| | | |
Collapse
|
38
|
Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4644. [PMID: 33080937 PMCID: PMC7603130 DOI: 10.3390/ma13204644] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Iron oxides are chemical compounds which have different polymorphic forms, including γ-Fe2O3 (maghemite), Fe3O4 (magnetite), and FeO (wustite). Among them, the most studied are γ-Fe2O3 and Fe3O4, as they possess extraordinary properties at the nanoscale (such as super paramagnetism, high specific surface area, biocompatible etc.), because at this size scale, the quantum effects affect matter behavior and optical, electrical and magnetic properties. Therefore, in the nanoscale, these materials become ideal for surface functionalization and modification in various applications such as separation techniques, magnetic sorting (cells and other biomolecules etc.), drug delivery, cancer hyperthermia, sensing etc., and also for increased surface area-to-volume ratio, which allows for excellent dispersibility in the solution form. The current methods used are partially and passively mixed reactants, and, thus, every reaction has a different proportion of all factors which causes further difficulties in reproducibility. Direct active and complete mixing and automated approaches could be solutions to this size- and shape-controlled synthesis, playing a key role in its exploitation for scientific or technological purposes. An ideal synthesis method should be able to allow reliable adjustment of parameters and control over the following: fluctuation in temperature; pH, stirring rate; particle distribution; size control; concentration; and control over nanoparticle shape and composition i.e., crystallinity, purity, and rapid screening. Iron oxide nanoparticle (IONP)-based available clinical applications are RNA/DNA extraction and detection of infectious bacteria and viruses. Such technologies are important at POC (point of care) diagnosis. IONPs can play a key role in these perspectives. Although there are various methods for synthesis of IONPs, one of the most crucial goals is to control size and properties with high reproducibility to accomplish successful applications. Using multiple characterization techniques to identify and confirm the oxide phase of iron can provide better characterization capability. It is very important to understand the in-depth IONP formation mechanism, enabling better control over parameters and overall reaction and, by extension, properties of IONPs. This work provides an in-depth overview of different properties, synthesis methods, and mechanisms of iron oxide nanoparticles (IONPs) formation, and the diverse range of their applications. Different characterization factors and strategies to confirm phase purity in the IONP synthesis field are reviewed. First, properties of IONPs and various synthesis routes with their merits and demerits are described. We also describe different synthesis strategies and formation mechanisms for IONPs such as for: wustite (FeO), hematite (α-Fe2O3), maghemite (ɤ-Fe2O3) and magnetite (Fe3O4). We also describe characterization of these nanoparticles and various applications in detail. In conclusion, we present a detailed overview on the properties, size-controlled synthesis, formation mechanisms and applications of IONPs.
Collapse
Affiliation(s)
- Nene Ajinkya
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.Y.); (H.L.)
| | - Xuefeng Yu
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.Y.); (H.L.)
| | - Poonam Kaithal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, SHUATS, Allahabad 211007, India;
| | - Hongrong Luo
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.Y.); (H.L.)
| | - Prakash Somani
- Center for Grand Challenges and Green Technologies, Applied Science Innovations Pvt. Ltd., Pune 411041, India;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576, Singapore;
| |
Collapse
|
39
|
van der Weerd L, Lefering A, Webb A, Egli R, Bossoni L. Effects of Alzheimer's disease and formalin fixation on the different mineralised-iron forms in the human brain. Sci Rep 2020; 10:16440. [PMID: 33020534 PMCID: PMC7536241 DOI: 10.1038/s41598-020-73324-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Iron accumulation in the brain is a phenomenon common to many neurodegenerative diseases, perhaps most notably Alzheimer’s disease (AD). We present here magnetic analyses of post-mortem brain tissue of patients who had severe Alzheimer’s disease, and compare the results with those from healthy controls. Isothermal remanent magnetization experiments were performed to assess the extent to which different magnetic carriers are affected by AD pathology and formalin fixation. While Alzheimer’s brain material did not show higher levels of magnetite/maghemite nanoparticles than corresponding controls, the ferrihydrite mineral, known to be found within the core of ferritin proteins and hemosiderin aggregates, almost doubled in concentration in patients with Alzheimer’s pathology, strengthening the conclusions of our previous studies. As part of this study, we also investigated the effects of sample preparation, by performing experiments on frozen tissue as well as tissue which had been fixed in formalin for a period of 5 months. Our results showed that the two different preparations did not critically affect the concentration of magnetic carriers in brain tissue, as observable by SQUID magnetometry.
Collapse
Affiliation(s)
- Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Anton Lefering
- Reactor Institute, Delft University of Technology, Delft, The Netherlands
| | - Andrew Webb
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Ramon Egli
- Central Institute for Meteorology and Geo-dynamics (ZAMG), Vienna, Austria
| | - Lucia Bossoni
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
40
|
Spivakov A, Lin CR, Chang YC, Wang CC, Sarychev D. Magnetic and Magneto-Optical Oroperties of Iron Oxides Nanoparticles Synthesized under Atmospheric Pressure. NANOMATERIALS 2020; 10:nano10091888. [PMID: 32967130 PMCID: PMC7559331 DOI: 10.3390/nano10091888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023]
Abstract
Magnetite nanoparticles were synthesized by a simple thermal decomposition process, involving only iron (III) nitrate nonahydrate as a precursor, and hexadecylamine as a solvent and stabilizer at reaction temperatures varied from 200 to 380 °C. The results of the structural analysis showed that the average crystallite size depends on the reaction temperature and increases from 4.8 to 13.3 nm. The behavior of the coercivity indicates that all synthesized samples are single domain; herewith, it was found that the critical size corresponding to the transition to the superparamagnetic state at room temperature is about 9 nm. The effect of the reaction temperature on changes in the saturation magnetization was studied. It was found that the size effect in the MCD spectra is observed for the IVCT transition and one ISCT transition, and the influence of the reaction temperature on the change in the MCD spectra was discussed.
Collapse
Affiliation(s)
- Aleksandr Spivakov
- Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan; (A.S.); (Y.-C.C.)
- Research Institute of Physics, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chun-Rong Lin
- Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan; (A.S.); (Y.-C.C.)
- Correspondence: (C.-R.L.); (D.S.)
| | - Yu-Chuan Chang
- Department of Applied Physics, National Pingtung University, Pingtung County 90003, Taiwan; (A.S.); (Y.-C.C.)
| | - Cheng-Chien Wang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan city 710, Taiwan;
| | - Dmitriy Sarychev
- Research Institute of Physics, Southern Federal University, Rostov-on-Don 344090, Russia
- Correspondence: (C.-R.L.); (D.S.)
| |
Collapse
|
41
|
Serga V, Burve R, Maiorov M, Krumina A, Skaudžius R, Zarkov A, Kareiva A, Popov AI. Impact of Gadolinium on the Structure and Magnetic Properties of Nanocrystalline Powders of Iron Oxides Produced by the Extraction-Pyrolytic Method. MATERIALS 2020; 13:ma13184147. [PMID: 32957733 PMCID: PMC7560244 DOI: 10.3390/ma13184147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022]
Abstract
Interest in magnetic nanoparticles is primarily due to their practical use. In this work, for the production of nanocrystalline powders of pure and gadolinium doped iron oxides, the extraction-pyrolytic method (EPM) was used. As a precursor, either iron-containing extract (iron (III) caproate in caproic acid) or its mixture with gadolinium-containing extract (gadolinium (III) valerate in valeric acid) was used. The mixed precursor contained 0.5 mol %, 2.5 mol %, 12.5 mol %, 50 mol %, and 75 mol % gadolinium in relation to the iron content. The formation of iron oxide phases, depending on the preparation conditions, was investigated. According to the results obtained, it was demonstrated that the presence of more than 2.5 mol % gadolinium additive in the mixed precursor inhibits the magnetite-to-hematite transformation process during thermal treatment. Produced samples were characterized by XRD and SEM methods, and the magnetic properties were studied.
Collapse
Affiliation(s)
- Vera Serga
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (V.S.); (R.B.); (A.I.P.)
- Institute of Inorganic Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia;
| | - Regina Burve
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (V.S.); (R.B.); (A.I.P.)
- Institute of Inorganic Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia;
| | - Mikhail Maiorov
- Institute of Physics, University of Latvia, Miera 32, LV-2169 Salaspils, Latvia;
| | - Aija Krumina
- Institute of Inorganic Chemistry, Riga Technical University, P. Valdena 3/7, LV-1048 Riga, Latvia;
| | - Ramūnas Skaudžius
- Institute of Chemistry, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (R.S.); (A.Z.)
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (R.S.); (A.Z.)
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (R.S.); (A.Z.)
- Correspondence:
| | - Anatoli I. Popov
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (V.S.); (R.B.); (A.I.P.)
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| |
Collapse
|
42
|
Borah BJ, Bharali P. Direct Hydrogenation of Nitroaromatics at Room Temperature Catalyzed by Magnetically Recoverable Cu@Fe
2
O
3
Nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Biraj Jyoti Borah
- Department of Chemical SciencesTezpur University Napaam Assam 784 028 India
| | - Pankaj Bharali
- Department of Chemical SciencesTezpur University Napaam Assam 784 028 India
| |
Collapse
|
43
|
Gómez-Pastora J, Wu X, Sundar N, Alawi J, Nabar G, Winter JO, Zborowski M, Chalmers JJ. Self-Assembly and sedimentation of 5 nm SPIONs using horizontal, high magnetic fields and gradients. Sep Purif Technol 2020; 248. [PMID: 32655283 DOI: 10.1016/j.seppur.2020.117012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are employed in multiple applications, especially within medical and chemical engineering fields. However, their magnetic separation is very challenging as the magnetophoretic motion is hindered by thermal energy and viscous drag. Recent studies have addressed the recovery of SPIONs by a combination of cooperative magnetophoresis and sedimentation. Nevertheless, the effect of horizontal, high fields and gradients on the vertical sedimentation of SPIONs has not been described. In this work, we report, for the first time, the magnetically facilitated sedimentation of 5 nm particles by applying fields and gradients perpendicular to gravity. The magnetic field was generated by quadrupole magnetic sorters and the process was measured with time by tracking the concentration along the length of a channel contacting the 5 nm SPIONs within the quadrupole field. Our experimental data suggest that aggregates of 60-90 particles are formed in the system; thus, particle agglomeration by dipole-dipole interactions was promoted, and these clusters settled down as a result of gravitational forces. Multiple variables and parameters were evaluated, including the initial SPION concentration, the temperature, the magnetic field and gradient and operation time. It was found that the process was improved by decreasing the initial concentration and the temperature, but the magnitude of the magnetic field and gradient did not significantly affect the sedimentation. Finally, the separation process was rapid, with the systems reaching the equilibrium in approximately 20 minutes, which is a significant advantage in comparison to other systems that require longer times and larger particle sizes.
Collapse
Affiliation(s)
- Jenifer Gómez-Pastora
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 320 Koffolt Laboratories, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Xian Wu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 320 Koffolt Laboratories, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Neeraja Sundar
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 320 Koffolt Laboratories, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Jamal Alawi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 320 Koffolt Laboratories, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Gauri Nabar
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 320 Koffolt Laboratories, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Jessica O Winter
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 320 Koffolt Laboratories, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Maciej Zborowski
- Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jeffrey J Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 320 Koffolt Laboratories, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Biswas A, Patra AK, Sarkar S, Das D, Chattopadhyay D, De S. Synthesis of highly magnetic iron oxide nanomaterials from waste iron by one-step approach. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Norouzi F, Javanshir S. Magnetic γFe 2O 3@Sh@Cu 2O: an efficient solid-phase catalyst for reducing agent and base-free click synthesis of 1,4-disubstituted-1,2,3-triazoles. BMC Chem 2020; 14:1. [PMID: 31922150 PMCID: PMC6945398 DOI: 10.1186/s13065-019-0657-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
A hybrid magnetic material γFe2O3@Sh@cu2O was easily prepared from Shilajit (Sh) decorated Fe3O4 and copper acetate. The prepared magnetic hybrid material was fully characterized using different analysis, including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), inductively coupled plasma (ICP), scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) thermal gravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET). All these analysis revealed that during coating of Fe3O4@Sh using copper salt (II), synchronized redox sorption of CuII to CuI occurs at the same time as the oxidation of Fe3O4 to γFe2O3. This magnetic catalyst exhibited excellent catalytic activity for regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles via one pot three-component click reaction of sodium azide, terminal alkynes and benzyl halides in the absence of any reducing agent. High yields, short reaction time, high turnover number and frequency (TON = 3.5 * 105 and TOF = 1.0 * 106 h−1 respectively), easy separation, and efficient recycling of the catalyst are the strengths of the present method.![]()
Collapse
Affiliation(s)
- Fereshteh Norouzi
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Shahrzad Javanshir
- Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| |
Collapse
|
46
|
Kamali S, Chen CJ, Bates B, Johnson CE, Chiang RK. Size-dependent magnetic properties of γ-Fe 2O 3 nanocrystallites. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:015302. [PMID: 31487694 DOI: 10.1088/1361-648x/ab41be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A route for synthesizing monodisperse magnetic nanocrystallites of maghemite, [Formula: see text]-Fe2O3, with various sizes has been revisited. A systematic investigation of three [Formula: see text]-Fe2O3 nanocrystalline samples by different techniques has been performed to characterize their size-dependent magnetic properties. Zero-field-cooled and field-cooled magnetization measurements reveal that the superparamagnetic blocking temperatures are around 230 K, 170 K, and 50 K for the 15.0 nm, 11.8 nm, and 6.1 nm nanocrystallites, respectively. Low-temperature Mössbauer spectra show that all three nanocrystallites have the maghemite structure with all the vacancies in the B-sites. Furthermore, detailed analysis shows that there are more vacancies on the B-sites for the 6.1 nm nanocrystallites compared to 0.33 for the bulk maghemite.
Collapse
Affiliation(s)
- S Kamali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, United States of America. Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN 37132, United States of America
| | | | | | | | | |
Collapse
|
47
|
Comparision on the Low-Temperature NH3-SCR Performance of γ-Fe2O3 Catalysts Prepared by Two Different Methods. Catalysts 2019. [DOI: 10.3390/catal9121018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Maghemite (γ-Fe2O3) catalysts were prepared by two different methods, and their activities and selectivities for selective catalytic reduction of NO with NH3 were investigated. The methods of X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), ammonia temperature-programmed desorption (NH3-TPD), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) were used to characterize the catalysts. The resulted demonstrated that the γ-Fe2O3 nanoparticles prepared by the facile method (γ-Fe2O3–FM) not only exhibited better NH3-SCR activity and selectivity than the catalyst prepared by the coprecipitation method but also showed improved SO2 tolerance. This superior NH3-SCR performance was credited to the existence of the larger surface area, better pore structure, a high concentration of lattice oxygen and surface-adsorbed oxygen, good reducibility, a lot of acid sites, lower activation energy, adsorption of the reactants, and the existence of unstable nitrates on the surface of the γ-Fe2O3–FM.
Collapse
|
48
|
Low-Temperature Selective Catalytic Reduction of NO with NH3 over Natural Iron Ore Catalyst. Catalysts 2019. [DOI: 10.3390/catal9110956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The selective catalytic reduction of NO with NH3 at low temperatures has been investigated with natural iron ore catalysts. Four iron ore raw materials from different locations were taken and processed to be used as catalysts. The methods of X-ray diffraction (XRD), X-ray fluorescence (XRF), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), ammonia temperature-programmed desorption (NH3-TPD), scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the materials. The results showed that the sample A (comprised mainly of α-Fe2O3 and γ-Fe2O3), calcined at 250 °C, achieved excellent selective catalytic reduction (SCR) activity (above 80% at 170–350 °C) and N2 selectivity (above 90% up to 250 °C) at low temperatures. Suitable calcination temperature, large surface area, high concentration of surface-adsorbed oxygen, good reducibility, lots of acid sites and adsorption of the reactants were responsible for the excellent SCR performance of the iron ore. However, the addition of H2O and SO2 in the feed gas showed some adverse effects on the SCR activity. The FT-IR analysis indicated the formation of sulfate salts on the surface of the catalyst during the SCR reaction in the presence of SO2, which could cause pore plugging and result in the suppression of the catalytic activity.
Collapse
|
49
|
Stadler D, Mueller DN, Brede T, Duchoň T, Fischer T, Sarkar A, Giesen M, Schneider CM, Volkert CA, Mathur S. Magnetic Field-Assisted Chemical Vapor Deposition of Iron Oxide Thin Films: Influence of Field-Matter Interactions on Phase Composition and Morphology. J Phys Chem Lett 2019; 10:6253-6259. [PMID: 31500420 DOI: 10.1021/acs.jpclett.9b02381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetic field-assisted CVD offers a direct pathway to manipulate the evolution of microstructure, phase composition, and magnetic properties of the as-prepared film. We report on the role of applied magnetic fields (0.5 T) during a cold-wall CVD deposition of iron oxide from [FeIII(OtBu)3]2 leading to higher crystallinity, larger particulates, and better out-of-plane magnetic anisotropy, if compared with zero-field depositions. Whereas selective formation of homogeneous magnetite films was observed for the field-assisted process, coexistence of hematite and amorphous iron(III) oxide was confirmed under zero-field conditions. Comparison of the coercive field (11 vs 60 mT) indicated lower defect concentration for the field-assisted process with nearly superparamagnetic behavior. X-ray photoemission electron microscopy (X-PEEM) in absorption mode at the O-K and Fe-L3,2 edges confirmed the selective formation of magnetite (field-assisted) and hematite (zero-field) with coexisting amorphous phases, respectively, emphasizing the importance of field-matter interactions in the phase-selective synthesis of magnetic thin films.
Collapse
Affiliation(s)
- Daniel Stadler
- Institute of Inorganic Chemistry , University of Cologne , Greinstrasse 6 , D-50939 Cologne , Germany
| | - David N Mueller
- Forschungszentrum Jülich GmbH , Peter Grünberg Institute (PGI-6) , D-52425 Jülich , Germany
| | - Thomas Brede
- Institute of Materials Physics , Georg-August-University Goettingen , Friedrich-Hund-Platz 1 , D-37077 Goettingen , Germany
| | - Tomáš Duchoň
- Forschungszentrum Jülich GmbH , Peter Grünberg Institute (PGI-6) , D-52425 Jülich , Germany
| | - Thomas Fischer
- Institute of Inorganic Chemistry , University of Cologne , Greinstrasse 6 , D-50939 Cologne , Germany
| | - Anirban Sarkar
- Center for Neutron Science (JCNS-2) and Peter Grünberg Institute (PGI-4), JARA-FIT , Forschungszentrum Jülich , D-52425 Jülich , Germany
| | - Margret Giesen
- Forschungszentrum Jülich GmbH , Peter Grünberg Institute (PGI-6) , D-52425 Jülich , Germany
| | - Claus M Schneider
- Forschungszentrum Jülich GmbH , Peter Grünberg Institute (PGI-6) , D-52425 Jülich , Germany
| | - Cynthia A Volkert
- Institute of Materials Physics , Georg-August-University Goettingen , Friedrich-Hund-Platz 1 , D-37077 Goettingen , Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry , University of Cologne , Greinstrasse 6 , D-50939 Cologne , Germany
| |
Collapse
|
50
|
Tamaddon F, Arab D, Ahmadi-AhmadAbadi E. Urease immobilization on magnetic micro/nano-cellulose dialdehydes: Urease inhibitory of Biginelli product in Hantzsch reaction by urea. Carbohydr Polym 2019; 229:115471. [PMID: 31826427 DOI: 10.1016/j.carbpol.2019.115471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 01/30/2023]
Abstract
Micro/nano celluloses (MC)/NC) were magnetized by nanoγ-Fe2O3 into the nanoγ-Fe2O3@MC (NMMC) and nanoγ-Fe2O3@NC (NMMC) which oxidized to NMMCD and NMNCD dialdehydes for Schiff-base immobilization of urease as NMMCD/urease and NMMCD/urease. The relative enzyme-activity of the immobilized ureases were comparable with the free-urease, although 75%-80% of the enzyme activity preserved for NMMCD/urease and NMNCD/urease after six cycles. The compared catalytic activities of the NMMCD/urease and NMMCD/urease in Biginelli/Hantzsch reactions in water at 60 °C surprised us by 100% selectivity for the Biginelli product 3,4-dihydropyrimidin-2(1H)-one (DHPM1). With the superiority of NMNCD/urease, this high selectivity using immobilized ureases is owing to the admirable urease inhibitory of the formed Biginelli product DHPM1 by urea condensation instead of urea hydrolysis. The robust enzyme inhibitory of the DHPM1 for free urease was also confirmed by phenol red test to show the deactivation of enzyme for enzymatic hydrolysis of urea and ammonia production in water.
Collapse
Affiliation(s)
- Fatemeh Tamaddon
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | - Davood Arab
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | | |
Collapse
|