1
|
Barratt LJ, Reynolds IJ, Franco Ortega S, Harper AL. Transcriptomic and co-expression network analyses on diverse wheat landraces identifies candidate master regulators of the response to early drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1212559. [PMID: 37426985 PMCID: PMC10326901 DOI: 10.3389/fpls.2023.1212559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Introduction Over four billion people around the world rely on bread wheat (Triticum aestivum L.) as a major constituent of their diet. The changing climate, however, threatens the food security of these people, with periods of intense drought stress already causing widespread wheat yield losses. Much of the research into the wheat drought response has centred on the response to drought events later in development, during anthesis or grain filling. But as the timing of periods of drought stress become increasingly unpredictable, a more complete understanding of the response to drought during early development is also needed. Methods Here, we utilized the YoGI landrace panel to identify 10,199 genes which were differentially expressed under early drought stress, before weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network and identify hub genes in modules particularly associated with the early drought response. Results Of these hub genes, two stood out as novel candidate master regulators of the early drought response - one as an activator (TaDHN4-D1; TraesCS5D02G379200) and the other as a repressor (uncharacterised gene; TraesCS3D02G361500). Discussion As well as appearing to coordinate the transcriptional early drought response, we propose that these hub genes may be able to regulate the physiological early drought response due to potential control over the expression of members of gene families well-known for their involvement in the drought response in many plant species, namely dehydrins and aquaporins, as well as other genes seemingly involved in key processes such as, stomatal opening, stomatal closing, stomatal morphogenesis and stress hormone signalling.
Collapse
|
2
|
Vineeth T, Krishna G, Pandesha P, Sathee L, Thomas S, James D, Ravikiran K, Taria S, John C, Vinaykumar N, Lokeshkumar B, Jat H, Bose J, Camus D, Rathor S, Krishnamurthy S, Sharma P. Photosynthetic machinery under salinity stress: Trepidations and adaptive mechanisms. PHOTOSYNTHETICA 2023; 61:73-93. [PMID: 39650121 PMCID: PMC11515832 DOI: 10.32615/ps.2023.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 12/11/2024]
Abstract
Chloroplasts and photosynthesis are the physiologically fateful arenas of salinity stress. Morphological and anatomical alterations in the leaf tissue, ultrastructural changes in the chloroplast, compromise in the integrity of the three-layered chloroplast membrane system, and defects in the light and dark reactions during the osmotic, ionic, and oxidative phases of salt stress are conversed in detail to bring the salinity-mediated physiological alterations in the chloroplast on to a single platform. Chloroplasts of salt-tolerant plants have evolved highly regulated salt-responsive pathways. Thylakoid membrane remodeling, ion homeostasis, osmoprotection, upregulation of chloroplast membrane and stromal proteins, chloroplast ROS scavenging, efficient retrograde signalling, and differential gene and metabolite abundance are the key attributes of optimal photosynthesis in tolerant species. This review throws light into the comparative mechanism of chloroplast and photosynthetic response to salinity in sensitive and tolerant plant species.
Collapse
Affiliation(s)
- T.V. Vineeth
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - G.K. Krishna
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, 680 656 Thrissur, Kerala, India
| | - P.H. Pandesha
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - L. Sathee
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
| | - S. Thomas
- Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, 686 563 Kumarakom, Kerala, India
| | - D. James
- Forest Genetics and Biotechnology Division, KSCSTE-Kerala Forest Research Institute, Peechi, 680 653 Thrissur, Kerala, India
| | - K.T. Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 226 002 Lucknow, Uttar Pradesh, India
| | - S. Taria
- Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), 110 012 New Delhi, India
- Indian Council of Agricultural Research-Central Agroforestry Research Institute (ICAR-CAFRI), 284 003 Jhansi, Uttar Pradesh, India
| | - C. John
- School of Natural Resource Management, Central Agricultural University-College of Post Graduate Studies in Agricultural Sciences (CAU), 793 103 Umiam, Meghalaya, India
| | - N.M. Vinaykumar
- Department of Biotechnology, Kuvempu University, Shankaraghatta, 577 451 Shivamogga, Karnataka, India
| | - B.M. Lokeshkumar
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - H.S. Jat
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - J. Bose
- School of Science, Western Sydney University, Penrith NSW, 275 1, Australia
| | - D. Camus
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station (RRS), 392 012 Bharuch, Gujarat, India
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S. Rathor
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - S.L. Krishnamurthy
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| | - P.C. Sharma
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), 132 001 Karnal, Haryana, India
| |
Collapse
|
3
|
Xiao G, Zhao M, Liu Q, Zhou J, Cheng Z, Wang Q, Xia G, Wang M. TaBAS1 encoding a typical 2-Cys peroxiredoxin enhances salt tolerance in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1152375. [PMID: 36998677 PMCID: PMC10043318 DOI: 10.3389/fpls.2023.1152375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Efficient antioxidant enzymatic system contributes to salt tolerance of plants via avoiding ROS over-accumulation. Peroxiredoxins are crucial components of the reactive oxygen species (ROS) scavenging machinery in plant cells, but whether they offer salt tolerance with potential for germplasm improvement has not been well addressed in wheat. In this work, we confirmed the role of a wheat 2-Cys peroxiredoxin gene TaBAS1 that was identified through the proteomic analysis. TaBAS1 overexpression enhanced the salt tolerance of wheat at both germination and seedling stages. TaBAS1 overexpression enhanced the tolerance to oxidative stress, promoted the activities of ROS scavenging enzymes, and reduced ROS accumulation under salt stress. TaBAS1 overexpression promoted the activity of ROS production associated NADPH oxidase, and the inhibition of NADPH oxidase activity abolished the role of TaBAS1 in salt and oxidative tolerance. Moreover, the inhibition of NADPH-thioredoxin reductase C activity erased the performance of TaBAS1 in the tolerance to salt and oxidative stress. The ectopic expression of TaBAS1 in Arabidopsis exhibited the same performance, showing the conserved role of 2-Cys peroxiredoxins in salt tolerance in plants. TaBAS1 overexpression enhanced the grain yield of wheat under salt stress but not the control condition, not imposing the trade-offs between yield and tolerance. Thus, TaBAS1 could be used for molecular breeding of wheat with superior salt tolerance.
Collapse
|
4
|
Kumar S, Lande NV, Barua P, Pareek A, Chakraborty S, Chakraborty N. Proteomic dissection of rice cytoskeleton reveals the dominance of microtubule and microfilament proteins, and novel components in the cytoskeleton-bound polysome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:75-86. [PMID: 34861586 DOI: 10.1016/j.plaphy.2021.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The plant cytoskeleton persistently undergoes remodeling to achieve its roles in supporting cell division, differentiation, cell expansion and organelle transport. However, the links between cell metabolism and cytoskeletal networks, particularly how the proteinaceous components execute such processes remain poorly understood. We investigated the cytoskeletal proteome landscape of rice to gain better understanding of such events. Proteins were extracted from highly enriched cytoskeletal fraction of four-week-old rice seedlings, and the purity of the fraction was stringently monitored. A total of 2577 non-redundant proteins were identified using both gel-based and gel-free approaches, which constitutes the most comprehensive dataset, thus far, for plant cytoskeleton. The data set includes both microtubule and microfilament-associated proteins and their binding proteins comprising hypothetical as well as novel cytoskeletal proteins. Further, various in-silico analyses were performed, and the proteins were functionally classified on the basis of their gene ontology. The catalogued proteins were validated through their sequence analysis. Extensive comparative analysis of our dataset with the non-redundant set of cytoskeletal proteins across plant species affirms unique as well as overlapping candidates. Together, these findings unveil new insights of how cytoskeletons undergo dynamic remodeling in rice to drive seedling development processes in rapidly changing in planta environment.
Collapse
Affiliation(s)
- Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
6
|
Myo T, Wei F, Zhang H, Hao J, Zhang B, Liu Z, Cao G, Tian B, Shi G. Genome-wide identification of the BASS gene family in four Gossypium species and functional characterization of GhBASSs against salt stress. Sci Rep 2021; 11:11342. [PMID: 34059742 PMCID: PMC8166867 DOI: 10.1038/s41598-021-90740-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Bile acid sodium symporter (BASS) family proteins encode a class of sodium/solute symporters. Even though the sodium transporting property of BASSs in mammals was well studied, their sodium transportability and functional roles in plant salt tolerance remained largely unknown. Here, BASS family members from 4 cotton species, as well as 30 other species were identified. Then, they were designated as members of BASS1 to BASS5 subfamilies according to their sequence similarity and phylogenetic relationships. There were 8, 11, 16 and 18 putative BASS genes in four cotton species. While whole-genome duplications (WGD) and segmental duplications rendered the expansion of the BASS gene family in cotton, BASS gene losses occurred in the tetraploid cotton during the evolution from diploids to allotetraploids. Concerning functional characterizations, the transcript profiling of GhBASSs revealed that they not only preferred tissue-specific expression but also were differently induced by various stressors and phytohormones. Gene silencing and overexpression experiments showed that GhBASS1 and GhBASS3 positively regulated, whereas GhBASS2, GhBASS4 and GhBASS5 negatively regulated plant salt tolerance. Taken together, BASS family genes have evolved before the divergence from the common ancestor of prokaryotes and eukaryotes, and GhBASSs are plastidial sodium-dependent metabolite co-transporters that can influence plant salt tolerance.
Collapse
Affiliation(s)
- Thwin Myo
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Fang Wei
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Honghao Zhang
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Jianfeng Hao
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Bin Zhang
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Zhixian Liu
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Gangqiang Cao
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Baoming Tian
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Gongyao Shi
- grid.207374.50000 0001 2189 3846Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001 Henan China ,grid.207374.50000 0001 2189 3846Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| |
Collapse
|
7
|
Zhu D, Luo F, Zou R, Liu J, Yan Y. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. J Proteomics 2021; 234:104097. [PMID: 33401000 DOI: 10.1016/j.jprot.2020.104097] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 01/20/2023]
Abstract
In this study, we performed an integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses by label-free based quantitative proteomic approach. Both salt and osmotic stresses significantly increased the levels of abscisic acid and methyl jasmonate and led to damages of chloroplast ultrastructure. Main parameters of chlorophyll fluorescence and gas exchange showed a significant decline under both stresses. Quantitative proteomic analysis identified 194 and 169 chloroplast-localized differentially accumulated proteins (DAPs) responsive to salt and osmotic stresses, respectively. The abundance of main DAPs involved in light-dependent reaction were increased under salt stress, but decreased in response to osmotic stress. On the contrary, salt stress induced a significant upregulation of the DAPs associated with Calvin cycle, transcription and translation, amino acid metabolism, carbon and nitrogen metabolism, and some of them exhibited a downregulation under osmotic stress. In particular, both treatments significantly upregulated the DAPs involved in plastoglobule development, protein folding and proteolysis, hormone and vitamin synthesis. Finally, we proposed a putative synergistic responsive network of wheat chloroplast proteome under salt and osmotic stresses, aiming to provide new insights into the underlying response and defense mechanisms of wheat chloroplast proteome in response to abiotic stresses. SIGNIFICANCE: Salt and osmotic stresses are the two most common abiotic stresses that severely affect crop growth and productivity. As the main site of photosynthesis of plant cells, the chloroplast also plays important role in plant tolerance to abiotic stress. However, the response of chloroplast proteome to salt and osmotic is still poorly understood by using the traditional two-dimensional electrophoresis (2-DE) method due to a poor resolution of chloroplast protein separation and low throughput identification of differentially accumulated proteins (DAPs). In this study, we employed label-free based quantitative proteomic approach to perform an integrated physiological and large-scale chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses, which laid a solid foundation for future studies into the response and defense mechanisms of wheat chloroplast in response to abiotic stresses.
Collapse
Affiliation(s)
- Dong Zhu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Fei Luo
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Rong Zou
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Junxian Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
8
|
Duan W, Zhu G, Zhu D, Yan Y. Dynamic proteome changes of wheat developing grains in response to water deficit and high-nitrogen fertilizer conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:471-483. [PMID: 33038690 DOI: 10.1016/j.plaphy.2020.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 05/12/2023]
Abstract
This study investigated grain proteomic profiles in response to water deficit, high nitrogen (N) fertilizer, and their combined treatments in elite Chinese bread wheat cultivar Jingdong 17, using a two-dimensional difference gel electrophoresis (2D-DIGE)-based approach. Water deficit negatively affected the main agronomic traits of wheat and grain yield, while high-N fertilizer had the opposite effects. The application of a high-N fertilizer under water deficit conditions moderately improved kernel development and grain yield. 2D-DIGE led to the identification of 124 differentially accumulated protein (DAP) spots during five different grain developmental stages, corresponding to 97 unique proteins. The more significant changes of DAPs occurred at 10-20 days after flowering. DAPs were involved in carbohydrate metabolism, protein turnover, protein folding, cell cycle control, stress response, nitrogen metabolism, photosynthesis, and energy metabolism. In particular, water deficit caused a significant downregulation of proteins involved in starch biosynthesis, whereas high-N fertilizer led to a significant upregulation of proteins involved in nitrogen metabolism, carbohydrate metabolism, and starch biosynthesis. The combined treatment resulted in a moderate upregulation of DAPs related to carbohydrate metabolism, starch biosynthesis, and nitrogen metabolism. Our results indicated that high-N fertilization could alleviate yield loss caused by water deficit by promoting the accumulation of proteins involved in nitrogen and carbohydrate metabolism.
Collapse
Affiliation(s)
- Wenjing Duan
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Gengrui Zhu
- College of Life Science, Capital Normal University, 100048, Beijing, China.
| | - Dong Zhu
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048, Beijing, China; Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, 434025, Jingzhou, China.
| |
Collapse
|
9
|
Negi P, Pandey M, Dorn KM, Nikam AA, Devarumath RM, Srivastava AK, Suprasanna P. Transcriptional reprogramming and enhanced photosynthesis drive inducible salt tolerance in sugarcane mutant line M4209. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6159-6173. [PMID: 32687570 DOI: 10.1093/jxb/eraa339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Sugarcane (Saccharum officinarum) is a globally cultivated cash crop whose yield is negatively affected by soil salinity. In this study, we investigated the molecular basis of inducible salt tolerance in M4209, a sugarcane mutant line generated through radiation-induced mutagenesis. Under salt-contaminated field conditions, M4209 exhibited 32% higher cane yield as compared with its salt-sensitive parent, Co86032. In pot experiments, post-sprouting phenotyping indicated that M4209 had significantly greater leaf biomass compared with Co86032 under treatment with 50 mM and 200 mM NaCl. This was concomitant with M4209 having 1.9-fold and 1.6-fold higher K+/Na+ ratios, and 4-fold and 40-fold higher glutathione reductase activities in 50 mM and 200 mM NaCl, respectively, which suggested that it had better ionic and redox homeostasis than Co86032. Transcriptome profiling using RNA-seq indicated an extensive reprograming of stress-responsive modules associated with photosynthesis, transmembrane transport, and metabolic processes in M4209 under 50 mM NaCl stress. Using ranking analysis, we identified Phenylalanine Ammonia Lyase (PAL), Acyl-Transferase Like (ATL), and Salt-Activated Transcriptional Activator (SATA) as the genes most associated with salt tolerance in M4209. M4209 also exhibited photosynthetic rates that were 3-4-fold higher than those of Co86032 under NaCl stress conditions. Our results highlight the significance of transcriptional reprogramming coupled with improved photosynthetic efficiency in determining salt tolerance in sugarcane.
Collapse
Affiliation(s)
- Pooja Negi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Kevin M Dorn
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
| | - Ashok A Nikam
- Vasantdada Sugar Institute, Manjari Bk, Pune, Maharashtra, India
| | | | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
10
|
Effects of Independent and Combined Water-Deficit and High-Nitrogen Treatments on Flag Leaf Proteomes during Wheat Grain Development. Int J Mol Sci 2020; 21:ijms21062098. [PMID: 32204325 PMCID: PMC7139553 DOI: 10.3390/ijms21062098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 11/29/2022] Open
Abstract
We present the first comprehensive proteome analysis of wheat flag leaves under water-deficit, high-nitrogen (N) fertilization, and combined treatments during grain development in the field. Physiological and agronomic trait analyses showed that leaf relative water content, total chlorophyll content, photosynthetic efficiency, and grain weight and yield were significantly reduced under water-deficit conditions, but dramatically enhanced under high-N fertilization and moderately promoted under the combined treatment. Two-dimensional electrophoresis detected 72 differentially accumulated protein (DAP) spots representing 65 unique proteins, primarily involved in photosynthesis, signal transduction, carbohydrate metabolism, redox homeostasis, stress defense, and energy metabolism. DAPs associated with photosynthesis and protein folding showed significant downregulation and upregulation in response to water-deficit and high-N treatments, respectively. The combined treatment caused a moderate upregulation of DAPs related to photosynthesis and energy and carbohydrate metabolism, suggesting that high-N fertilization can alleviate losses in yield caused by water-deficit conditions by enhancing leaf photosynthesis and grain storage compound synthesis.
Collapse
|
11
|
Bielsa B, Sanz MÁ, Rubio-Cabetas MJ. Uncovering early response to drought by proteomic, physiological and biochemical changes in the almond × peach rootstock 'Garnem'. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:994-1008. [PMID: 31526467 DOI: 10.1071/fp19050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Drought affects growth and metabolism in plants. To investigate the changes in root protein function involved in the early response to drought stress, a proteomic analysis in combination to a physiological and biochemical analysis was performed in plants of 'Garnem', an almond × peach hybrid rootstock, subjected to short-term drought stress. Abscisic acid (ABA) accumulation levels increased during the drought exposure, which induced stomatal closure, and thus, minimised water losses. These effects were reflected in stomatal conductance and leaf water potential levels. However, 'Garnem' was able to balance water content and maintain an osmotic adjustment in cell membranes, suggesting a dehydration avoidance strategy. The proteomic analysis revealed significant abundance changes in 29 and 24 spots after 2 and 24 h of drought stress respectively. Out of these, 15 proteins were identified by LC-ESI-MS/MS. The abundance changes of these proteins suggest the influence in drought-responsive mechanisms present in 'Garnem', allowing its adaptation to drought conditions. Overall, our study improves existing knowledge on the root proteomic changes in the early response to drought. This will lead to a better understanding of dehydration avoidance and tolerance strategies, and finally, help in new drought-tolerance breeding approaches.
Collapse
Affiliation(s)
- Beatriz Bielsa
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) - IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059, Zaragoza, Spain
| | - María Á Sanz
- Área de Laboratorios de Análisis y Asistencia Tecnológica, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Av. Montañana 930, 50059, Zaragoza, Spain
| | - María J Rubio-Cabetas
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) - IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059, Zaragoza, Spain; and Corresponding author.
| |
Collapse
|
12
|
Molecular Evolution and Functional Analysis of Rubredoxin-Like Proteins in Plants. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2932585. [PMID: 31355252 PMCID: PMC6634066 DOI: 10.1155/2019/2932585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/14/2019] [Accepted: 06/09/2019] [Indexed: 11/17/2022]
Abstract
Rubredoxins are a class of iron-containing proteins that play an important role in the reduction of superoxide in some anaerobic bacteria and also act as electron carriers in many biochemical processes. Unlike the more widely studied about rubredoxin proteins in anaerobic bacteria, very few researches about the function of rubredoxins have been proceeded in plants. Previous studies indicated that rubredoxins in A. thaliana may play a critical role in responding to oxidative stress. In order to identify more rubredoxins in plants that maybe have similar functions as the rubredoxin-like protein of A. thaliana, we identified and analyzed plant rubredoxin proteins using bioinformatics-based methods. Totally, 66 candidate rubredoxin proteins were identified based on public databases, exhibiting lengths of 187-360 amino acids with molecular weights of 19.856-37.117 kDa. The results of subcellular localization showed that these candidate rubredoxins were localized to the chloroplast, which might be consistent with the fact that rubredoxins were predominantly expressed in leaves. Analyses of conserved motifs indicated that these candidate rubredoxins contained rubredoxin and PDZ domains. The expression patterns of rubredoxins in glycophyte and halophytic plant under salt/drought stress revealed that rubredoxin is one of the important stress response proteins. Finally, the coexpression network of rubredoxin in Arabidopsis thaliana under abiotic was extracted from ATTED-II to explore the function and regulation relationship of rubredoxin in Arabidopsis thaliana. Our results showed that putative rubredoxin proteins containing PDZ and rubredoxin domains, localized to the chloroplast, may act with other proteins in chloroplast to responses to abiotic stress in higher plants. These findings might provide value inference to promote the development of plant tolerance to some abiotic stresses and other economically important crops.
Collapse
|
13
|
Han L, Xiao C, Xiao B, Wang M, Liu J, Bhanbhro N, Khan A, Wang H, Wang H, Yang C. Proteomic profiling sheds light on alkali tolerance of common wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:58-64. [PMID: 30852238 DOI: 10.1016/j.plaphy.2019.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 05/25/2023]
Abstract
Alkali (high-pH) stress is an important factor limiting agricultural production and has complex effects on plant metabolism. Transcriptomics is widely used in the discovery of stress-response genes, but it provides only a rough estimation for gene expression. Proteomics may be more helpful than transcriptomics for the discovery and identification of stress-response genes. In this study, wheat plants were treated with sodic alkaline stress (50 mM, NaHCO3: Na2CO3 = 1:1; pH 9.7), and then proteomic analysis was carried out on control and stressed plants. We detected 3,104 proteins, including 69 alkaline stress-response proteins. Five superoxide dismutases, three malate dehydrogenases, three dehydrin proteins, and one V-ATPase protein were upregulated in sodic alkaline-stressed wheat roots. We propose that these salinity response proteins may be important for ion homeostasis and osmotic regulation of sodic alkaline-stressed wheat. Additionally, two malic enzymes and many enzymes involved in the tricarboxylic acid cycle (TCA) were downregulated in the roots. The upregulation of malate dehydrogenase and the downregulation of TCA enzymes and malic enzymes may enhance the accumulation of malate in sodic alkaline-stressed wheat roots. Previous studies have demonstrated that the accumulation of malate in roots is a crucial adaptive mechanism of wheat to sodic alkaline stress. Herein, our proteomics results provided molecular insights into this adaptive mechanism.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chaoxia Xiao
- Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Binbin Xiao
- Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Meng Wang
- Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jingtong Liu
- Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Nadeem Bhanbhro
- Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Adnan Khan
- Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hao Wang
- Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Huan Wang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwu Yang
- Key Laboratory of Vegetation Ecology of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
14
|
Luo M, Zhao Y, Wang Y, Shi Z, Zhang P, Zhang Y, Song W, Zhao J. Comparative Proteomics of Contrasting Maize Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms. J Proteome Res 2017; 17:141-153. [DOI: 10.1021/acs.jproteome.7b00455] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meijie Luo
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Yanxin Zhao
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Yuandong Wang
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Zi Shi
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Panpan Zhang
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Yunxia Zhang
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Wei Song
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| | - Jiuran Zhao
- Beijing
Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding,
Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing 100097, China
| |
Collapse
|
15
|
Hussain B, Lucas SJ, Ozturk L, Budak H. Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stagein wheat. Sci Rep 2017. [PMID: 29142238 DOI: 10.1038/s41598‐017‐15726‐6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Soil salinization and degradation is one of the consequences of climate change. Identification of major salt tolerance genes and marker assisted selection (MAS) can accelerate wheat breeding for this trait. We genotyped 154 wheat F2 lines derived from a cross between salt tolerant and susceptible cultivars using the Axiom Wheat Breeder's Genotyping Array. A high-density linkage map of 988 single nucleotide polymorphisms (SNPs) was constructed and utilized for quantitative trait loci (QTL) mapping for salt tolerance traits and mineral concentrations under salinity. Of 49 mapped QTLs, six were for Na+ exclusion (NAX) and two QTLs (qSNAX.2 A.1, qSNAX.2 A.2) on chromosome 2 A coincided with a reported major NAX QTL (Nax1 or HKT1;4). Two other major NAX QTLs were mapped on 7 A, which contributed 11.23 and 18.79% of the salt tolerance respectively. In addition to Ca+2 and Mg+2 QTLs, twenty-seven QTLs for tissue Phosphorus, Zinc, Iron, Manganese, Copper, Sulphur and Boron concentrations under salinity were also mapped. The 1293 segregating SNPs were annotated/located within genes for various ion channels, signalling pathways, transcription factors (TFs), metabolic pathways and 258 of them showed differential expression in silico under salinity. These findings will create new opportunities for salt tolerance breeding programs.
Collapse
Affiliation(s)
- Babar Hussain
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Stuart James Lucas
- SU Nanotechnology Research and Application Centre, Sabanci University, Istanbul, Turkey
| | - Levent Ozturk
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey. .,Cereal genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
16
|
Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stagein wheat. Sci Rep 2017; 7:15662. [PMID: 29142238 PMCID: PMC5688110 DOI: 10.1038/s41598-017-15726-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022] Open
Abstract
Soil salinization and degradation is one of the consequences of climate change. Identification of major salt tolerance genes and marker assisted selection (MAS) can accelerate wheat breeding for this trait. We genotyped 154 wheat F2 lines derived from a cross between salt tolerant and susceptible cultivars using the Axiom Wheat Breeder’s Genotyping Array. A high-density linkage map of 988 single nucleotide polymorphisms (SNPs) was constructed and utilized for quantitative trait loci (QTL) mapping for salt tolerance traits and mineral concentrations under salinity. Of 49 mapped QTLs, six were for Na+ exclusion (NAX) and two QTLs (qSNAX.2 A.1, qSNAX.2 A.2) on chromosome 2 A coincided with a reported major NAX QTL (Nax1 or HKT1;4). Two other major NAX QTLs were mapped on 7 A, which contributed 11.23 and 18.79% of the salt tolerance respectively. In addition to Ca+2 and Mg+2 QTLs, twenty-seven QTLs for tissue Phosphorus, Zinc, Iron, Manganese, Copper, Sulphur and Boron concentrations under salinity were also mapped. The 1293 segregating SNPs were annotated/located within genes for various ion channels, signalling pathways, transcription factors (TFs), metabolic pathways and 258 of them showed differential expression in silico under salinity. These findings will create new opportunities for salt tolerance breeding programs.
Collapse
|