1
|
Asghar A, Vladimirova O, Sobotka A, Hayden J, Wickramasinghe J, Dheekollu J, Minakuchi M, Murphy ME, Nishikura K, Lieberman PM. LANA-Dependent Transcription-Replication Conflicts and R-Loops at the Terminal Repeats (TR) Correlate with KSHV Episome Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642343. [PMID: 40161765 PMCID: PMC11952399 DOI: 10.1101/2025.03.10.642343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Transcription-replication conflicts frequently occur at repetitive DNA elements involved in genome maintenance functions. The KSHV terminal repeats (TR) function as the viral episome maintenance element when bound by the viral encoded nuclear antigen LANA. Here, we show that transcription-replication conflicts occur at or near LANA binding sites in the TR. We show by proximity ligation assay (PLA) that PCNA and RNAPII colocalize with LANA-nuclear bodies (LANA-NBs). Using DNA-RNA-IP (DRIP) assays with S9.6 antibody, we demonstrate that R-loops form at the TR. We find that these R-loops are also associated with histone H3pS10 a marker for R-loops associated with transcription-replication conflicts. Inhibitors of RNA polymerase eliminated LANA binding to the TR, along with the loss of R-loops and activation associated histone modifications, and the accumulation of heterochromatic marks. We show that LANA can induce all of these features on a plasmid containing 8, but not 2 copies of the TR, correlating strongly with episome maintenance function. Taken together, our study indicates that LANA induces histone modifications associated with RNA and DNA polymerase activity and the formation of R-loops that correlate with episome maintenance function. These findings provide new insights into mechanisms of KSHV episome maintenance during latency and more generally for genome maintenance of repetitive DNA.
Collapse
Affiliation(s)
- Asim Asghar
- The Wistar Institute, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Han C, Niu D, Lan K. Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection. Viruses 2024; 16:1870. [PMID: 39772181 PMCID: PMC11680275 DOI: 10.3390/v16121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host. In latently infected cells, most viral genes are epigenetically silenced by components of cellular chromatin, DNA methylation and histone post-translational modifications. However, some specific latent genes are preserved and actively expressed to maintain the virus's latent state within the host cell. Latency is not a dead end, but the virus has the ability to reactivate. This reactivation is a complex process that involves the removal of repressive chromatin modifications and increased accessibility for both viral and cellular factors, allowing the activation of the full transcriptional program necessary for the subsequent lytic replication. This review will introduce the roles of epigenetic modifications in KSHV latent and lytic life cycles, including DNA methylation, histone methylation and acetylation modifications, chromatin remodeling, genome conformation, and non-coding RNA expression. Additionally, we will also review the transcriptional regulation of viral genes and host factors in KSHV infection. This review aims to enhance our understanding of the molecular mechanisms of epigenetic modifications and transcriptional regulation in the KSHV life cycle, providing insights for future research.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.H.); (D.N.)
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Schulz TF, Freise A, Stein SC. Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen: more than a key mediator of viral persistence. Curr Opin Virol 2023; 61:101336. [PMID: 37331160 DOI: 10.1016/j.coviro.2023.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus-8, is an oncogenic herpesvirus. Its latency-associated nuclear antigen (LANA) is essential for the persistence of KSHV in latently infected cells. LANA mediates replication of the latent viral genome during the S phase of a dividing cell and partitions episomes to daughter cells by attaching them to mitotic chromosomes. It also mediates the establishment of latency in newly infected cells through epigenetic mechanisms and suppresses the activation of the productive replication cycle. Furthermore, LANA promotes the proliferation of infected cell by acting as a transcriptional regulator and by modulating the cellular proteome through the recruitment of several cellular ubiquitin ligases. Finally, LANA interferes with the innate and adaptive immune system to facilitate the immune escape of infected cells.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany; German Center for Infection Research, Hannover-Braunschweig Site, Germany.
| | - Anika Freise
- Institute of Virology, Hannover Medical School, Germany
| | - Saskia C Stein
- Institute of Virology, Hannover Medical School, Germany; Cluster of Excellence 2155 RESIST, Germany
| |
Collapse
|
4
|
Guo N, Zheng D, Sun J, Lv J, Wang S, Fang Y, Zhao Z, Zeng S, Guo Q, Tong J, Wang Z. NAP1L5 Promotes Nucleolar Hypertrophy and Is Required for Translation Activation During Cardiomyocyte Hypertrophy. Front Cardiovasc Med 2021; 8:791501. [PMID: 34977198 PMCID: PMC8718910 DOI: 10.3389/fcvm.2021.791501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pathological growth of cardiomyocytes during hypertrophy is characterized by excess protein synthesis; however, the regulatory mechanism remains largely unknown. Using a neonatal rat ventricular myocytes (NRVMs) model, here we find that the expression of nucleosome assembly protein 1 like 5 (Nap1l5) is upregulated in phenylephrine (PE)-induced hypertrophy. Knockdown of Nap1l5 expression by siRNA significantly blocks cell size enlargement and pathological gene induction after PE treatment. In contrast, Adenovirus-mediated Nap1l5 overexpression significantly aggravates the pro-hypertrophic effects of PE on NRVMs. RNA-seq analysis reveals that Nap1l5 knockdown reverses the pro-hypertrophic transcriptome reprogramming after PE treatment. Whereas, immune response is dominantly enriched in the upregulated genes, oxidative phosphorylation, cardiac muscle contraction and ribosome-related pathways are remarkably enriched in the down-regulated genes. Although Nap1l5-mediated gene regulation is correlated with PRC2 and PRC1, Nap1l5 does not directly alter the levels of global histone methylations at K4, K9, K27 or K36. However, puromycin incorporation assay shows that Nap1l5 is both necessary and sufficient to promote protein synthesis in cardiomyocyte hypertrophy. This is attributable to a direct regulation of nucleolus hypertrophy and subsequent ribosome assembly. Our findings demonstrate a previously unrecognized role of Nap1l5 in translation control during cardiac hypertrophy.
Collapse
Affiliation(s)
- Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyi Zhao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | - Sai Zeng
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
- *Correspondence: Jingjing Tong
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Zhihua Wang
| |
Collapse
|
5
|
Zhu Q, Zhou Y, Ding J, Chen L, Liu J, Zhou T, Bian W, Ding G, Li G. Screening of Candidate Pathogenic Genes for Spontaneous Abortion using Whole Exome Sequencing. Comb Chem High Throughput Screen 2021; 25:1462-1473. [PMID: 34225611 DOI: 10.2174/1386207324666210628115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spontaneous abortion is a common disease in obstetrics and reproduction. OBJECTIVE This study aimed to screen candidate pathogenic genes for spontaneous abortion using whole-exome sequencing. METHODS Genomic DNA was extracted from abortion tissues of spontaneous abortion patients and sequenced using the Illumina HiSeq2500 high-throughput sequencing platform. Whole exome sequencing was performed to select harmful mutations, including SNP and insertion and deletion sites, associated with spontaneous abortion. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and gene fusion analyses were performed. MUC3A and PDE4DIP were two novel mutation genes that were screened and verified by PCR in abortion tissues of patients. RESULTS A total of 83,633 SNPs and 13,635 Indel mutations were detected, of which 29172 SNPs and 3093 Indels were screened as harmful mutations. The 7 GO-BP, 4 GO-CC, 9 GO-MF progress, and 3 KEGG pathways were enriched in GO and KEGG pathway analyses. A total of 746 gene fusion mutations were obtained, involving 492 genes. MUC3A and PDE4DIP were used for PCR verification because of their high number of mutation sites in all samples. CONCLUSION There are extensive SNPs and Indel mutations in the genome of spontaneous abortion tissues, and the effect of these gene mutations on spontaneous abortion needs further experimental verification.
Collapse
Affiliation(s)
- Qingwen Zhu
- Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Yiwen Zhou
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Jiayi Ding
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Li Chen
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Jia Liu
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Tao Zhou
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Wenjun Bian
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Guohui Ding
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Guang Li
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| |
Collapse
|
6
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
7
|
Concurrent Control of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle through Chromatin Modulation and Host Hedgehog Signaling: a New Prospect for the Therapeutic Potential of Lipoxin A4. J Virol 2020; 94:JVI.02177-19. [PMID: 32102879 DOI: 10.1128/jvi.02177-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Lipoxin A4 (LXA4) is an endogenous lipid mediator with compelling anti-inflammatory and proresolution properties. Studies done to assess the role of arachidonic acid pathways of the host in Kaposi's sarcoma-associated herpesvirus (KSHV) biology helped discover that KSHV infection hijacks the proinflammatory cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) pathways and concurrently reduces anti-inflammatory LXA4 secretion to maintain KSHV latency in infected cells. Treatment of KSHV-infected cells with LXA4 minimizes the activation of inflammatory and proliferative signaling pathways, including the NF-κB, AKT, and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, but the exact mechanism of action of LXA4 remains unexplored. Here, using mass spectrometry analysis, we identified components from the minichromosome maintenance (MCM) protein and chromatin-remodeling complex SMARCB1 and SMARCC2 to be LXA4-interacting host proteins in KSHV-infected cells. We identified a higher level of nuclear aryl hydrocarbon receptor (AhR) in LXA4-treated KSHV-infected cells than in untreated KSHV-infected cells, which probably facilitates the affinity interaction of the nucleosome complex protein with LXA4. We demonstrate that SMARCB1 regulates both replication and transcription activator (RTA) activity and host hedgehog (hh) signaling in LXA4-treated KSHV-infected cells. Host hedgehog signaling was modulated in an AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-S6 kinase-dependent manner in LXA4-treated KSHV-infected cells. Since anti-inflammatory drugs are beneficial as adjuvants to conventional and immune-based therapies, we evaluated the potential of LXA4 treatment in regulating programmed death-ligand 1 (PD-L1) on KSHV-carrying tumor cells. Overall, our study identified LXA4-interacting host factors in KSHV-infected cells, which could help provide an understanding of the mode of action of LXA4 and its therapeutic potential against KSHV.IMPORTANCE The latent-to-lytic switch in KSHV infection is one of the critical events regulated by the major replication and transcription activator KSHV protein called RTA. Chromatin modification of the viral genome determines the phase of the viral life cycle in the host. Here, we report that LXA4 interacts with a host chromatin modulator, especially SMARCB1, which upregulates the KSHV ORF50 promoter. SMARCB1 has also been recognized to be a tumor suppressor protein which controls many tumorigenic events associated with the hedgehog (hh) signaling pathway. We also observed that LXA4 treatment reduces PD-L1 expression and that PD-L1 expression is an important immune evasion strategy used by KSHV for its survival and maintenance in the host. Our study underscores the role of LXA4 in KSHV biology and emphasizes that KSHV is strategic in downregulating LXA4 secretion in the host to establish latency. This study also uncovers the therapeutic potential of LXA4 and its targetable receptor, AhR, in KSHV's pathogenesis.
Collapse
|
8
|
Fröhlich J, Grundhoff A. Epigenetic control in Kaposi sarcoma-associated herpesvirus infection and associated disease. Semin Immunopathol 2020; 42:143-157. [PMID: 32219477 PMCID: PMC7174275 DOI: 10.1007/s00281-020-00787-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several malignancies of endothelial and B-cell origin. The fact that latently infected tumor cells in these malignancies do not express classical viral oncogenes suggests that pathogenesis of KSHV-associated disease results from multistep processes that, in addition to constitutive viral gene expression, may require accumulation of cellular alterations. Heritable changes of the epigenome have emerged as an important co-factor that contributes to the pathogenesis of many non-viral cancers. Since KSHV encodes a number of factors that directly or indirectly manipulate host cell chromatin, it is an intriguing possibility that epigenetic reprogramming also contributes to the pathogenesis of KSHV-associated tumors. The fact that heritable histone modifications have also been shown to regulate viral gene expression programs in KSHV-infected tumor cells underlines the importance of epigenetic control during latency and tumorigenesis. We here review what is presently known about the role of epigenetic regulation of viral and host chromatin in KSHV infection and discuss how viral manipulation of these processes may contribute to the development of KSHV-associated disease.
Collapse
Affiliation(s)
- Jacqueline Fröhlich
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| |
Collapse
|
9
|
Minichromosome Maintenance Proteins Cooperate with LANA during the G 1/S Phase of the Cell Cycle To Support Viral DNA Replication. J Virol 2019; 93:JVI.02256-18. [PMID: 30651368 DOI: 10.1128/jvi.02256-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Latency-associated nuclear antigen (LANA) is essential for maintaining the viral genome by regulating replication and segregation of the viral episomes. The virus maintains 50 to 100 episomal copies during latency and replicates in synchrony with the cellular DNA of the infected cells. Since virus lacks its own replication machinery, it utilizes the cellular proteins for replication and maintenance, and LANA has been shown to make many of these proteins available for replication by directly recruiting them to the viral origin of replication within the terminal repeat (TR) region. Our studies identified members of the minichromosome maintenance (MCM) complex as potential LANA-interacting proteins. Here, we show that LANA specifically interacts with the components of the MCM complex, primarily during the G1/S phase of the cell cycle. MCM3 and -4 of the MCM complex specifically bound to the amino-terminal domain, while MCM6 bound to both the amino- and carboxyl-terminal domains of LANA. The MCM binding region in the N-terminal domain mapped to the chromatin binding domain (CBD). LANA with point mutations in the carboxyl-terminal domain identified an MCM6 binding domain, and overexpression of that domain (amino acids [aa] 1100 to 1150) abolished TR replication. Introduction of a peptide encompassing the LANA aa 1104 to 1123 reduced MCM6 association with LANA and TR replication. Moreover, a recombinant Kaposi's sarcoma-associated herpesvirus (KSHV) expressing LANA with a deletion of aa 1100 to 1150 (BAC16Δ1100-1150, where BAC is bacmid) showed reduced replication and persistence of viral genome copies compared to levels with the wild-type BAC16. Additionally, the role of MCMs in viral replication was confirmed by depleting MCMs and assaying transient and long-term maintenance of the viral episomes. The recruitment of MCMs to the replication origins through LANA was demonstrated through chromatin immunoprecipitation and isolation of proteins on nascent replicated DNA (iPOND). These data clearly show the role of MCMs in latent DNA replication and the potential for targeting the C-terminal domain of LANA to block viral persistence.IMPORTANCE LANA-mediated latent DNA replication is essential for efficient maintenance of KSHV episomes in the host. During latency, virus relies on the host cellular machinery for replication, which occurs in synchrony with the cellular DNA. LANA interacts with the components of multiple cellular pathways, including cellular replication machinery, and recruits them to the viral origin for DNA replication. In this study, we characterize the interactions between LANA and minichromosome maintenance (MCM) proteins, members of the cellular replication complex. We demonstrated a cell cycle-dependent interaction between LANA and MCMs and determined their importance for viral genome replication and maintenance through biochemical assays. In addition, we mapped a 50-amino acid region in LANA which was capable of abrogating the association of MCM6 with LANA and blocking DNA replication. We also detected LANA along with MCMs at the replication forks using a novel approach, isolation of proteins on nascent DNA (iPOND).
Collapse
|
10
|
Sorel O, Dewals BG. The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency. Front Microbiol 2019; 9:3315. [PMID: 30687291 PMCID: PMC6333680 DOI: 10.3389/fmicb.2018.03315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent infection. Among these functions, GMPs have acquired an intriguing capacity to evade the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen presentation, further ensuring virus persistence in the infected host. In this review, we provide an updated overview of the main functions of gammaherpesvirus GMPs during latency with an emphasis on their immune evasion properties.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Yin P, Li Y, Zhou L, Zhang L. NAP1L1 Regulates Hepatitis C Virus Entry and Interacts with NS3. Virol Sin 2018; 33:205-208. [PMID: 29541944 PMCID: PMC6178115 DOI: 10.1007/s12250-018-0006-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Peiqi Yin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Ye Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Liya Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Leiliang Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
12
|
KSHV LANA upregulates the expression of epidermal growth factor like domain 7 to promote angiogenesis. Oncotarget 2017; 9:1210-1228. [PMID: 29416688 PMCID: PMC5787431 DOI: 10.18632/oncotarget.23456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/09/2017] [Indexed: 12/29/2022] Open
Abstract
Kaposi’s sarcoma (KS) is a highly-vascularized tumor characterized by inflammation and extensive neo-angiogenesis. The KS tumor microenvironment is rich in inflammatory and pro-angiogenic cytokines. Here, we report that the expression of Epidermal growth factor-like domain 7 (EGFL7) is upregulated in Kaposi’s sarcoma-associated herpes virus (KSHV) infected cells. EGFL7 is a secreted pro-angiogenic cytokine that has been implicated in angiogenesis and the proliferation of endothelial cells during many pathological conditions. Our data show that KS tumors as well as primary effusion lymphoma cells have increased levels of EGFL7 compared to the uninfected cells. We determined that the expression of a KSHV latent protein, LANA (latency-associated nuclear antigen), is the main viral factor responsible for this upregulation. The modulation of EGFL7 expression by LANA involves sequestration of death domain-associated protein 6 (Daxx) from the EGFL7 promoter. Daxx acts as a suppressor of promoter activity by binding to the avian erythroblastosis virus E26 oncogene homolog 1 (Ets-1), which is the core transcription factor required for the expression of EGFL7. We additionally show that the upregulation of EGFL7 by LANA contributes to the promotion of angiogenesis since siRNA-mediated knockdown of EGFL7 reduced in vitro tubulogenesis in LANA-expressing HUVEC cells. EGFL7 promotes angiogenesis through autocrine as well as paracrine mechanisms as the supernatant from LANA expressing cells depleted of EGFL7 showed reduced tubulogenesis. This study for the first time demonstrates EGFL7 to be an important angiogenic molecule secreted during KSHV infection that could be exploited for blocking KSHV associated malignancies in conjugation with other anti-angiogenic therapies.
Collapse
|
13
|
Phosphorylation of Serine 225 in Hepatitis C Virus NS5A Regulates Protein-Protein Interactions. J Virol 2017; 91:JVI.00805-17. [PMID: 28615203 PMCID: PMC5553161 DOI: 10.1128/jvi.00805-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/03/2017] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a phosphoprotein that plays key, yet poorly defined, roles in both virus genome replication and virion assembly/release. It has been proposed that differential phosphorylation could act as a switch to regulate the various functions of NS5A; however, the mechanistic details of the role of this posttranslational modification in the virus life cycle remain obscure. We previously reported (D. Ross-Thriepland, J. Mankouri, and M. Harris, J Virol 89:3123–3135, 2015, doi:10.1128/JVI.02995-14) a role for phosphorylation at serine 225 (S225) of NS5A in the regulation of JFH-1 (genotype 2a) genome replication. A phosphoablatant (S225A) mutation resulted in a 10-fold reduction in replication and a perinuclear restricted distribution of NS5A, whereas the corresponding phosphomimetic mutation (S225D) had no phenotype. To determine the molecular mechanisms underpinning this phenotype we conducted a label-free proteomics approach to identify cellular NS5A interaction partners. This analysis revealed that the S225A mutation disrupted the interactions of NS5A with a number of cellular proteins, in particular the nucleosome assembly protein 1-like protein 1 (NAP1L1), bridging integrator 1 (Bin1, also known as amphiphysin II), and vesicle-associated membrane protein-associated protein A (VAP-A). These interactions were validated by immunoprecipitation/Western blotting, immunofluorescence, and proximity ligation assay. Importantly, small interfering RNA (siRNA)-mediated knockdown of NAP1L1, Bin1 or VAP-A impaired viral genome replication and recapitulated the perinuclear redistribution of NS5A seen in the S225A mutant. These results demonstrate that S225 phosphorylation regulates the interactions of NS5A with a defined subset of cellular proteins. Furthermore, these interactions regulate both HCV genome replication and the subcellular localization of replication complexes. IMPORTANCE Hepatitis C virus is an important human pathogen. The viral nonstructural 5A protein (NS5A) is the target for new antiviral drugs. NS5A has multiple functions during the virus life cycle, but the biochemical details of these roles remain obscure. NS5A is known to be phosphorylated by cellular protein kinases, and in this study, we set out to determine whether this modification is required for the binding of NS5A to other cellular proteins. We identified 3 such proteins and show that they interacted only with NS5A that was phosphorylated on a specific residue. Furthermore, these proteins were required for efficient virus replication and the ability of NS5A to spread throughout the cytoplasm of the cell. Our results help to define the function of NS5A and may contribute to an understanding of the mode of action of the highly potent antiviral drugs that are targeted to NS5A.
Collapse
|
14
|
Günther T, Grundhoff A. Epigenetic manipulation of host chromatin by Kaposi sarcoma-associated herpesvirus: a tumor-promoting factor? Curr Opin Virol 2017; 26:104-111. [PMID: 28802146 DOI: 10.1016/j.coviro.2017.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/07/2017] [Accepted: 07/18/2017] [Indexed: 01/21/2023]
Abstract
Molecular and epidemiological evidence links Kaposi sarcoma-associated herpesvirus (KSHV) to a number of malignancies of endothelial or B cell origin. As for most virus-associated cancers, however, the tumor initiating and promoting events remain poorly understood. Given the emerging role of epigenetic alterations as drivers of human cancers, an interesting (and as of yet under-explored) hypothesis is that viral manipulation of host cell chromatin may contribute to the pathogenesis of KSHV-associated tumors. We here review the current knowledge regarding the interplay between KSHV-encoded factors and host chromatin and discuss how epigenetic alterations may contribute to the pathogenesis of KSHV-associated tumors.
Collapse
Affiliation(s)
- Thomas Günther
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20252 Hamburg, Germany.
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20252 Hamburg, Germany.
| |
Collapse
|
15
|
Knipe DM, Raja P, Lee J. Viral gene products actively promote latent infection by epigenetic silencing mechanisms. Curr Opin Virol 2017; 23:68-74. [PMID: 28415052 DOI: 10.1016/j.coviro.2017.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022]
Abstract
Many viruses undergo an acute infection in the host organism and then are cleared by the ensuing host immune response, but other viruses establish a persistent infection involving a latent infection or a chronic infection. Latent infection by the herpesviruses or human immunodeficiency virus involves epigenetic silencing of the DNA genome or proviral genome, respectively. Latent infection was previously thought to be a default pathway resulting from infection of a nonpermissive cell, but recent studies have shown that viral gene products can promote epigenetic silencing and latent infection. This review will summarize the viral gene products that have been shown to promote epigenetic silencing of the genomes and their potential for therapeutics to target these viral gene products and disrupt or lock in latent infection.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Priya Raja
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Jennifer Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| |
Collapse
|