1
|
Jiang M, Deng X, Qiu Z, Li J, Song Z, Chen X, Chen R, Huang X, Cui X, Fu Y. Bibliometric analysis of global research trends in magnetic resonance imaging studies of substantia nigra in Parkinson's disease (2001-2024). Front Aging Neurosci 2024; 16:1455562. [PMID: 39291277 PMCID: PMC11405190 DOI: 10.3389/fnagi.2024.1455562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Parkinson's disease (PD) is a globally prevalent neurodegenerative disorder, primarily characterized by muscle rigidity, resting tremor, and bradykinesia. The incidence of PD is rapidly escalating worldwide. Numerous studies have been conducted on the application of magnetic resonance imaging (MRI) in investigating the substantia nigra (SN) in PD patients. However, to date, no bibliometric analysis has been performed on this specific research area. Therefore, this study aimed to provide a comprehensive analysis of the current status in MRI research on the SN in PD patients. Materials and methods MRI study records related to the SN in PD patients from 2001 to 2024 were searched by using the Web of Science Core Collection (WOSCC) database and then the CiteSpace and VOSviewer were used to conduct bibliometric analysis. Results Our analysis found that the number of published articles related studies on MRI of the SN in PD showed an overall upward trend over the past decade, in which Lehericy, Stephane, Du, Guangwei, and Huang, Xuemei are the top three authors with the most articles. Additionally, United States, China and Germany are the main contributors to MRI studies of SN in PD. And Shanghai Jiao Tong University, University of Florida and Seoul National University are the leading institutions in the field. Finally, the keyword analysis showed that the hotspots and trends of research in this field are mainly concentrated in quantitative susceptibility mapping, neuroimaging, and neuromelanin-sensitive MRI. Conclusion These analysis identified the most influential authors, institutions, countries and research hotspots in the field of SN-MRI research in PD, which has reference significance for the research interest in this field and provides a new idea for PD prevention.
Collapse
Affiliation(s)
- Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Jie Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Zifan Song
- School of Sports Health, Guangdong Vocational Institute of Sport, Guangzhou, China
| | - Xiaoshuai Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Ruiqi Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xianzhi Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Gaurav R, Valabrègue R, Yahia-Chérif L, Mangone G, Narayanan S, Arnulf I, Vidailhet M, Corvol JC, Lehéricy S. NigraNet: An automatic framework to assess nigral neuromelanin content in early Parkinson's disease using convolutional neural network. Neuroimage Clin 2022; 36:103250. [PMID: 36451356 PMCID: PMC9668659 DOI: 10.1016/j.nicl.2022.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Parkinson's disease (PD) demonstrates neurodegenerative changes in the substantia nigra pars compacta (SNc) using neuromelanin-sensitive (NM)-MRI. As SNc manual segmentation is prone to substantial inter-individual variability across raters, development of a robust automatic segmentation framework is necessary to facilitate nigral neuromelanin quantification. Artificial intelligence (AI) is gaining traction in the neuroimaging community for automated brain region segmentation tasks using MRI. OBJECTIVE Developing and validating AI-based NigraNet, a fully automatic SNc segmentation framework allowing nigral neuromelanin quantification in patients with PD using NM-MRI. METHODS We prospectively included 199 participants comprising 144 early-stage idiopathic PD patients (disease duration = 1.5 ± 1.0 years) and 55 healthy volunteers (HV) scanned using a 3 Tesla MRI including whole brain T1-weighted anatomical imaging and NM-MRI. The regions of interest (ROI) were delineated in all participants automatically using NigraNet, a modified U-net, and compared to manual segmentations performed by two experienced raters. The SNc volumes (Vol), volumes corrected by total intracranial volume (Cvol), normalized signal intensity (NSI) and contrast-to-noise ratio (CNR) were computed. One-way GLM-ANCOVA was performed while adjusting for age and sex as covariates. Diagnostic performance measurement was assessed using the receiver operating characteristic (ROC) analysis. Inter and intra-observer variability were estimated using Dice similarity coefficient (DSC). The agreements between methods were tested using intraclass correlation coefficient (ICC) based on a mean-rating, two-way, mixed-effects model estimates for absolute agreement. Cronbach's alpha and Bland-Altman plots were estimated to assess inter-method consistency. RESULTS Using both methods, Vol, Cvol, NSI and CNR measurements differed between PD and HV with an effect of sex for Cvol and CNR. ICC values between the methods demonstrated optimal agreement for Cvol and CNR (ICC > 0.9) and high reproducibility (DSC: 0.80) was also obtained. The SNc measurements also showed good to excellent consistency values (Cronbach's alpha > 0.87). Bland-Altman plots of agreement demonstrated no association of SNc ROI measurement differences between the methods and ROI average measurements while confirming that 95 % of the data points were ranging between the limits of mean difference (d ± 1.96xSD). Percentage changes between PD and HV were -27.4 % and -17.7 % for Vol, -30.0 % and -22.2 % for Cvol, -15.8 % and -14.4 % for NSI, -17.1 % and -16.0 % for CNR for automatic and manual measurements respectively. Using automatic method, in the entire dataset, we obtained the areas under the ROC curve (AUC) of 0.83 for Vol, 0.85 for Cvol, 0.79 for NSI and 0.77 for CNR whereas in the training dataset of 0.96 for Vol, 0.95 for Cvol, 0.85 for NSI and 0.85 for CNR. Disease duration correlated negatively with NSI of the patients for both the automatic and manual measurements. CONCLUSIONS We presented an AI-based NigraNet framework that utilizes a small MRI training dataset to fully automatize the SNc segmentation procedure with an increased precision and more reproducible results. Considering the consistency, accuracy and speed of our approach, this study could be a crucial step towards the implementation of a time-saving non-rater dependent fully automatic method for studying neuromelanin changes in clinical settings and large-scale neuroimaging studies.
Collapse
Affiliation(s)
- Rahul Gaurav
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France.
| | - Romain Valabrègue
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France
| | - Lydia Yahia-Chérif
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France
| | - Graziella Mangone
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; INSERM, Clinical Investigation Center for Neurosciences (CIC), Pitié-Salpêtrière Hospital, Paris, France
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Isabelle Arnulf
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Sleep Disorders Unit, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Marie Vidailhet
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Jean-Christophe Corvol
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; INSERM, Clinical Investigation Center for Neurosciences (CIC), Pitié-Salpêtrière Hospital, Paris, France; Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Stéphane Lehéricy
- Paris Brain Institute - ICM, Sorbonne University, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France; Movement Investigations and Therapeutics Team (MOV'IT), ICM, Paris, France; Center for NeuroImaging Research - CENIR, ICM, Paris, France; Department of Neuroradiology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
3
|
Fujiwara Y, Ishida S, Matta Y, Kanamoto M, Kimura H. Atlas-based relaxometry and subsegment analysis of the substantia nigra pars compacta using quantitative MRI: a healthy volunteer study. Br J Radiol 2022; 95:20210572. [PMID: 35357890 PMCID: PMC10996308 DOI: 10.1259/bjr.20210572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Parkinson's disease is a neurodegenerative disorder caused by neuronal cell loss in the substantia nigra pars compacta (SNpc). We aimed to perform atlas-based relaxometry using an anatomical SNpc atlas and obtain baseline values of SNpc regions in healthy volunteers. METHODS Neuromelanin (NM)-sensitive imaging of the midbrain and whole-brain 3D T1 weighted images of 27 healthy volunteers (20 males; aged 36.3 ± 11.5 years) were obtained. An anatomical SNpc atlas was created using NM-sensitive images in standard space, and divided into medial (MG), dorsal (DG), and ventrolateral (VG) groups. Proton density (PD), T1, and T2 values in these regions were obtained using quantitative MRI. The relationships between PD, T1, and T2 values in each SNpc region and age were evaluated. RESULTS The VG PD value was significantly higher than the MG and DG values. MG, DG, and VG T1 values were significantly different, whereas the T2 value of the MG was significantly lower than the DG and VG values. Moreover, a significant negative correlation between PD and T1 values of the MG and age was observed. CONCLUSION The PD, T1, and T2 values of the SNpc regions measured in standard space using an anatomical atlas can be used as baseline values. PD and T1 values of the SNpc regions may be associated with NM concentrations. ADVANCES IN KNOWLEDGE An anatomical SNpc atlas was created using NM-sensitive MRI and can be used for the quantitative evaluation of subsegments of the SNpc in standard space.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Department of Medical Image Sciences, Faculty of Life Sciences,
Kumamoto University, Kumamoto,
Japan
| | - Shota Ishida
- Radiological Center, University of Fukui
Hospital, Fukui,
Japan
| | - Yuki Matta
- Radiological Center, University of Fukui
Hospital, Fukui,
Japan
| | | | | |
Collapse
|
4
|
Kwon DH, Paek SH, Kim YB, Lee H, Cho ZH. In vivo 3D Reconstruction of the Human Pallidothalamic and Nigrothalamic Pathways With Super-Resolution 7T MR Track Density Imaging and Fiber Tractography. Front Neuroanat 2021; 15:739576. [PMID: 34776880 PMCID: PMC8579044 DOI: 10.3389/fnana.2021.739576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
The output network of the basal ganglia plays an important role in motor, associative, and limbic processing and is generally characterized by the pallidothalamic and nigrothalamic pathways. However, these connections in the human brain remain difficult to elucidate because of the resolution limit of current neuroimaging techniques. The present study aimed to investigate the mesoscopic nature of these connections between the thalamus, substantia nigra pars reticulata, and globus pallidus internal segment using 7 Tesla (7T) magnetic resonance imaging (MRI). In this study, track-density imaging (TDI) of the whole human brain was employed to overcome the limitations of observing the pallidothalamic and nigrothalamic tracts. Owing to the super-resolution of the TD images, the substructures of the SN, as well as the associated tracts, were identified. This study demonstrates that 7T MRI and MR tractography can be used to visualize anatomical details, as well as 3D reconstruction, of the output projections of the basal ganglia.
Collapse
Affiliation(s)
- Dae-Hyuk Kwon
- Neuroscience Convergence Center, Green Manufacturing Research Center (GMRC), Korea University, Seoul, South Korea
| | - Sun Ha Paek
- Neurosurgery, Movement Disorder Center, Seoul National University College of Medicine, Advanced Institute of Convergence Technology (AICT), Seoul National University, Seoul, South Korea
| | - Young-Bo Kim
- Department of Neurosurgery, College of Medicine, Gachon University, Incheon, South Korea
| | - Haigun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, South Korea
| | - Zang-Hee Cho
- Neuroscience Convergence Center, Green Manufacturing Research Center (GMRC), Korea University, Seoul, South Korea
| |
Collapse
|
5
|
Gaurav R, Yahia‐Cherif L, Pyatigorskaya N, Mangone G, Biondetti E, Valabrègue R, Ewenczyk C, Hutchison RM, Cedarbaum JM, Corvol J, Vidailhet M, Lehéricy S. Longitudinal Changes in Neuromelanin MRI Signal in Parkinson's Disease: A Progression Marker. Mov Disord 2021; 36:1592-1602. [PMID: 33751655 PMCID: PMC8359265 DOI: 10.1002/mds.28531] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Development of reliable and accurate imaging biomarkers of dopaminergic cell neurodegeneration is necessary to facilitate therapeutic drug trials in Parkinson's disease (PD). Neuromelanin-sensitive MRI techniques have been effective in detecting neurodegeneration in the substantia nigra pars compacta (SNpc). The objective of the current study was to investigate longitudinal neuromelanin signal changes in the SNpc in PD patients. METHODS In this prospective, longitudinal, observational case-control study, we included 140 PD patients and 64 healthy volunteers divided into 2 cohorts. Cohort I included 99 early PD patients (disease duration, 1.5 ± 1.0 years) and 41 healthy volunteers analyzed at baseline (V1), where 79 PD patients and 32 healthy volunteers were rescanned after 2.0 ± 0.2 years of follow-up (V2). Cohort II included 41 progressing PD patients (disease duration, 9.3 ± 3.7 years) and 23 healthy volunteers at V1, where 30 PD patients were rescanned after 2.4 ± 0.5 years of follow-up. Subjects were scanned at 3 T MRI using 3-dimensional T1-weighted and neuromelanin-sensitive imaging. Regions of interest were delineated manually to calculate SN volumes, volumes corrected by total intracranial volume, signal-to-noise ratio, and contrast-to-noise ratio. RESULTS Results showed (1) significant reduction in volume and volume corrected by total intracranial volume between visits, greater in progressing PD than nonsignificant changes in healthy volunteers; (2) no significant effects of visit for signal intensity (signal-to-noise ratio); (3) significant interaction in volume between group and visit; (4) greater volume corrected by total intracranial volume at baseline in female patients and greater decrease in volume and increase in the contrast-to-noise ratio in progressing female PD patients compared with male patients; and (5) correlations between neuromelanin SN changes and disease severity and duration. CONCLUSIONS We observed a progressive and measurable decrease in neuromelanin-based SN signal and volume in PD, which might allow a direct noninvasive assessment of progression of SN loss and could represent a target biomarker for disease-modifying treatments. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rahul Gaurav
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
| | - Lydia Yahia‐Cherif
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
| | - Nadya Pyatigorskaya
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
- Department of NeuroradiologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| | - Graziella Mangone
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- INSERM, Clinical Investigation Center for Neurosciences, Pitié‐Salpêtrière HospitalParisFrance
| | - Emma Biondetti
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
| | - Romain Valabrègue
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
| | - Claire Ewenczyk
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
- Department of NeurologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| | | | | | - Jean‐Christophe Corvol
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- INSERM, Clinical Investigation Center for Neurosciences, Pitié‐Salpêtrière HospitalParisFrance
- Department of NeurologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| | - Marie Vidailhet
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
- Department of NeurologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| | - Stéphane Lehéricy
- Paris Brain Institute– ICMCenter for NeuroImaging Research – CENIRParisFrance
- ICM, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMRParisFrance
- ICM Team “Movement Investigations and Therapeutics” (MOV'IT)ParisFrance
- Department of NeuroradiologyPitié‐Salpêtrière Hospital, AP‐HPParisFrance
| |
Collapse
|
6
|
Brammerloh M, Morawski M, Friedrich I, Reinert T, Lange C, Pelicon P, Vavpetič P, Jankuhn S, Jäger C, Alkemade A, Balesar R, Pine K, Gavriilidis F, Trampel R, Reimer E, Arendt T, Weiskopf N, Kirilina E. Measuring the iron content of dopaminergic neurons in substantia nigra with MRI relaxometry. Neuroimage 2021; 239:118255. [PMID: 34119638 PMCID: PMC8363938 DOI: 10.1016/j.neuroimage.2021.118255] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Dopaminergic neurons dominate effective transverse relaxation in nigrosome 1. Ion beam microscopy reveals highest iron concentrations in dopaminergic neurons. Developed biophysical model links MRI parameters to cellular iron content. Ferritin- and neuromelanin-bound iron impact MRI parameters differently. Quantitative MRI provides a potential biomarker of iron in dopaminergic neurons.
In Parkinson’s disease, the depletion of iron-rich dopaminergic neurons in nigrosome 1 of the substantia nigra precedes motor symptoms by two decades. Methods capable of monitoring this neuronal depletion, at an early disease stage, are needed for early diagnosis and treatment monitoring. Magnetic resonance imaging (MRI) is particularly suitable for this task due to its sensitivity to tissue microstructure and in particular, to iron. However, the exact mechanisms of MRI contrast in the substantia nigra are not well understood, hindering the development of powerful biomarkers. In the present report, we illuminate the contrast mechanisms in gradient and spin echo MR images in human nigrosome 1 by combining quantitative 3D iron histology and biophysical modeling with quantitative MRI on post mortem human brain tissue. We show that the dominant contribution to the effective transverse relaxation rate (R2*) in nigrosome 1 originates from iron accumulated in the neuromelanin of dopaminergic neurons. This contribution is appropriately described by a static dephasing approximation of the MRI signal. We demonstrate that the R2* contribution from dopaminergic neurons reflects the product of cell density and cellular iron concentration. These results demonstrate that the in vivo monitoring of neuronal density and iron in nigrosome 1 may be feasible with MRI and provide directions for the development of biomarkers for an early detection of dopaminergic neuron depletion in Parkinson’s disease.
Collapse
Affiliation(s)
- Malte Brammerloh
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, Leipzig 04103, Germany.
| | - Markus Morawski
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Paul Flechsig Institute of Brain Research, University of Leipzig, Liebigstr. 19, Leipzig, 04103, Germany
| | - Isabel Friedrich
- Paul Flechsig Institute of Brain Research, University of Leipzig, Liebigstr. 19, Leipzig, 04103, Germany
| | - Tilo Reinert
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, Leipzig 04103, Germany
| | - Charlotte Lange
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, Leipzig 04103, Germany
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Steffen Jankuhn
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, Leipzig 04103, Germany
| | - Carsten Jäger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Paul Flechsig Institute of Brain Research, University of Leipzig, Liebigstr. 19, Leipzig, 04103, Germany
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Nieuwe Achtergracht 129B, 1001 NK Amsterdam, The Netherlands
| | - Rawien Balesar
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Nieuwe Achtergracht 129B, 1001 NK Amsterdam, The Netherlands; The Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Kerrin Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - Filippos Gavriilidis
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - Enrico Reimer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany
| | - Thomas Arendt
- Paul Flechsig Institute of Brain Research, University of Leipzig, Liebigstr. 19, Leipzig, 04103, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, Leipzig 04103, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig 04103, Germany; Center for Cognitive Neuroscience Berlin, Free University Berlin, Habelschwerdter Allee 45, Berlin, 14195, Germany
| |
Collapse
|
7
|
Priovoulos N, van Boxel SCJ, Jacobs HIL, Poser BA, Uludag K, Verhey FRJ, Ivanov D. Unraveling the contributions to the neuromelanin-MRI contrast. Brain Struct Funct 2020; 225:2757-2774. [PMID: 33090274 PMCID: PMC7674382 DOI: 10.1007/s00429-020-02153-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
The Locus Coeruleus (LC) and the Substantia Nigra (SN) are small brainstem nuclei that change with aging and may be involved in the development of various neurodegenerative and psychiatric diseases. Magnetization Transfer (MT) MRI has been shown to facilitate LC and the SN visualization, and the observed contrast is assumed to be related to neuromelanin accumulation. Imaging these nuclei may have predictive value for the progression of various diseases, but interpretation of previous studies is hindered by the fact that the precise biological source of the contrast remains unclear, though several hypotheses have been put forward. To inform clinical studies on the possible biological interpretation of the LC- and SN contrast, we examined an agar-based phantom containing samples of natural Sepia melanin and synthetic Cys-Dopa-Melanin and compared this to the in vivo human LC and SN. T1 and T2* maps, MT spectra and relaxation times of the phantom, the LC and the SN were measured, and a two-pool MT model was fitted. Additionally, Bloch simulations and a transient MT experiment were conducted to confirm the findings. Overall, our results indicate that Neuromelanin-MRI contrast in the LC likely results from a lower macromolecular fraction, thus facilitating interpretation of results in clinical populations. We further demonstrate that in older individuals T1 lengthening occurs in the LC.
Collapse
Affiliation(s)
- Nikos Priovoulos
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, Netherlands.
| | - Stan C J van Boxel
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, Netherlands
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, Netherlands.,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludag
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Republic of Korea.,Techna Institute and Koerner Scientist in MR Imaging, University Health Network, 121-100 College Street, Toronto, M5G 1L5, Canada
| | - Frans R J Verhey
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
8
|
Xu T, Xu X, Yang L, Chen X, Ju S. Noninvasive Visualization of Obesity-Boosted Inflammation in Orthotopic Pancreatic Ductal Adenocarcinoma Using an Octapod Iron Oxide Nanoparticle. ACS APPLIED BIO MATERIALS 2020; 3:6408-6418. [PMID: 35021772 DOI: 10.1021/acsabm.0c00841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment and promote the progression of tumors, including pancreatic ductal adenocarcinoma (PDAC). Obesity is a metabolic disease and a significant factor that affects tumor immunity and immunotherapy, contributing to a poorer tumor prognosis. However, TAMs as the link between obesity and poorer tumor prognosis has been less addressed and remains unclear. The current study aimed to noninvasively determine the effect of obesity on TAMs in orthotopic PDAC animal models, leptin-deficient transgenic obese (ob/ob) mice. Iron oxide nanoparticles, Octapod-30, with ultra high r2 values, were utilized for in vivo consecutive T2-weighted MR imaging. After Octapod-30 injection, the T2-weighted signal intensity of the tumor area of both lean wild-type (WT) and ob/ob mice decreased rapidly, and the signal intensity significantly decreased as early as 0.5 h after injection compared with preinjection. The signal intensity continually decreased until 2 h and sustained for 4 h. In addition, the quantified signal intensity in obese ob/ob mice bearing PDAC significantly decreased compared with that in lean WT mice. Further histopathological analysis demonstrated that CD68-marked TAMs were highly colocalized with Prussian blue-stained Octapod-30, which were significantly more infiltrated in the tumor tissue of ob/ob mice than in the WT group, in parallel with larger size of tumor, higher levels of Ki67-marked proliferation and CD31-marked angiogenesis. Our results suggested that obesity increased TAMs infiltration and Octopad-30 can rapidly noninvasively detect TAMs in vivo in orthotopic PDAC with high spatial resolution and temporal resolution. Furthermore, the application of ultra high r2 octagonal iron oxide nanoparticles with powerful clinical conversion potential could allow noninvasive and efficient quantitative analysis of TAMs in PDAC with or without obesity, providing a promising inspection approach for early detection, treatment management, and efficacy evaluation of tumors for clinical application.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Lijiao Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
9
|
Cheng Z, He N, Huang P, Li Y, Tang R, Sethi SK, Ghassaban K, Yerramsetty KK, Palutla VK, Chen S, Yan F, Haacke EM. Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: An application to Parkinson's disease. Neuroimage Clin 2019; 25:102103. [PMID: 31869769 PMCID: PMC6933220 DOI: 10.1016/j.nicl.2019.102103] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/14/2019] [Accepted: 11/18/2019] [Indexed: 10/31/2022]
Abstract
Parkinson's disease (PD) is a clinically heterogeneous chronic progressive neuro-degenerative disease with loss of dopaminergic neurons in the nigrosome 1 (N1) territory of the substantia nigra pars compacta (SNpc). To date, there has been a major effort to identify changes in the N1 territory by monitoring increases of iron in the SNpc. However, there is no standard protocol being used to visualize or characterize the N1 territory. Therefore, the purpose of this study was to create a robust high quality, rapid imaging protocol, determine a slice by slice characterization of the appearance of N1 (the "N1 sign") and evaluate the loss of the N1 sign in order to differentiate healthy controls (HCs) from patients with PD. Firstly, one group of 10 HCs was used to determine the choice of imaging parameters. Secondly, another group of 80 HCs was used to characterize the appearance of the N1 sign and train the raters. In this step, the magnitude, susceptibility weighted images (SWI), quantitative susceptibility maps (QSM) and true SWI (tSWI) images were all reviewed using data from a 3D gradient recalled echo sequence. A resolution of 0.67 mm × 0.67 mm × 1.34 mm was chosen based on the ability to cover all the basal ganglia, midbrain and dentate nucleus with good signal-to-noise with echo times of 11 ms and 20 ms. Thirdly, 80 Parkinsonism and related disorders patients [idiopathic Parkinson's disease (IPD): 57; atypical parkinsonian syndromes (APs): 14; essential tremor (ET): 9] and one additional group of 80 age-matched HCs were blindly analyzed for the presence or absence of the N1 sign for a differential diagnosis. From the first group of 80 HCs, all of the 76 (100%) cases (4 were excluded due to motion artifacts) showed the N1 sign in one form or another after reviewing the first 5 caudal slices of the SN. For the second group of 80 HCs, 78 (97.5%) showed the N1 sign in at least 2 slices. Of the 80 Parkinsonism and related disorders patients, 32 (56.1%, 32/57) IPD and 6 (42.9%, 6/14) APs showed a bilateral loss of the N1 sign, 12 (21.1%, 12/57) IPD and 6 (42.9%, 6/14) APs showed the N1 sign unilaterally and 13 (22.8%, 13/57) IPD and 2 (14.2%, 2/14) APs showed the N1 sign bilaterally. Also, all 9 (100%, 9/9) ET patients showed the N1 sign bilaterally. The mean total structure and mean high susceptibility region for the SN for both IPD and APs patients with bilateral loss of N1 were higher than those of the HCs (p < 0.002). In conclusion, the N1 sign can be consistently visualized using tSWI with a resolution of at least 0.67 mm × 0.67 mm × 1.34 mm and can be seen in 95% of HCs.
Collapse
Affiliation(s)
- Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Pei Huang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Rongbiao Tang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sean K. Sethi
- Magnetic Resonance Innovations, Inc, 30200 Telegraph Road, Bingham Farms, MI, 48025, USA
- Department of Radiology, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
| | - Kiarash Ghassaban
- Department of Radiology, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
- Department of Biomedical Engineering, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
| | - Kiran Kumar Yerramsetty
- MR Medical Imaging Innovations India Pvt. Ltd, Flat No.401, Plot No.397, SAI HOUSE, Ayyappa Society, Madhapur, Hyderabad, Telangana, 500081, India
| | - Vinay Kumar Palutla
- MR Medical Imaging Innovations India Pvt. Ltd, Flat No.401, Plot No.397, SAI HOUSE, Ayyappa Society, Madhapur, Hyderabad, Telangana, 500081, India
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - E. Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Magnetic Resonance Innovations, Inc, 30200 Telegraph Road, Bingham Farms, MI, 48025, USA
- Department of Radiology, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
- Department of Biomedical Engineering, Wayne State University, 42 W. Warren Ave. Detroit, MI, 48202, USA
| |
Collapse
|
10
|
Balasubramanian M, Polimeni JR, Mulkern RV. In vivo measurements of irreversible and reversible transverse relaxation rates in human basal ganglia at 7 T: making inferences about the microscopic and mesoscopic structure of iron and calcification deposits. NMR IN BIOMEDICINE 2019; 32:e4140. [PMID: 31322331 PMCID: PMC6817385 DOI: 10.1002/nbm.4140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 05/24/2023]
Abstract
The goal of this study was to measure irreversible and reversible transverse relaxation rates in the globus pallidus and putamen at 7 T, and to use these rates to make inferences about the sub-voxel structure of iron and calcification deposits. Gradient Echo Sampling of a Spin Echo (GESSE) data were acquired at 7 T on eighteen volunteers spanning a large range of ages (23-85 years), with calcifications in the globus pallidus incidentally observed in one volunteer. Maps of transverse relaxation rates were derived from the GESSE data, and the mean value of these rates in globus pallidus and putamen was estimated for each volunteer. Both irreversible and reversible transverse relaxation rates increased with the expected age-dependent iron content in these structures, except for the individual with calcifications for whom extremely large reversible relaxation rates but normal irreversible relaxation rates were found in the globus pallidus. Given the sensitivity of irreversible and reversible transverse relaxation rates to microscopic and mesoscopic field variations, respectively, our findings suggest that joint consideration of these rates may yield information not only about the amount of iron and calcification deposited in the brain, but also about the sub-voxel structure of these deposits, perhaps revealing certain aspects of their geometry and cellular distribution.
Collapse
Affiliation(s)
- Mukund Balasubramanian
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Jonathan R. Polimeni
- Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert V. Mulkern
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
11
|
De Barros A, Arribarat G, Combis J, Chaynes P, Péran P. Matching ex vivo MRI With Iron Histology: Pearls and Pitfalls. Front Neuroanat 2019; 13:68. [PMID: 31333421 PMCID: PMC6616088 DOI: 10.3389/fnana.2019.00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Iron levels in the brain can be estimated using newly developed specific magnetic resonance imaging (MRI) sequences. This technique has several applications, especially in neurodegenerative disorders like Alzheimer's disease or Parkinson's disease. Coupling ex vivo MRI with histology allows neuroscientists to better understand what they see in the images. Iron is one of the most extensively studied elements, both by MRI and using histological or physical techniques. Researchers were initially only able to make visual comparisons between MRI images and different types of iron staining, but the emergence of specific MRI sequences like R2* or quantitative susceptibility mapping meant that quantification became possible, requiring correlations with physical techniques. Today, with advances in MRI and image post-processing, it is possible to look for MRI/histology correlations by matching the two sorts of images. For the result to be acceptable, the choice of methodology is crucial, as there are hidden pitfalls every step of the way. In order to review the advantages and limitations of ex vivo MRI correlation with iron-based histology, we reviewed all the relevant articles dealing with the topic in humans. We provide separate assessments of qualitative and quantitative studies, and after summarizing the significant results, we emphasize all the pitfalls that may be encountered.
Collapse
Affiliation(s)
- Amaury De Barros
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
- Department of Anatomy, Toulouse Faculty of Medicine, Toulouse, France
| | - Germain Arribarat
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Jeanne Combis
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Patrick Chaynes
- Department of Anatomy, Toulouse Faculty of Medicine, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| |
Collapse
|
12
|
Quantifying the contrast of the human locus coeruleus in vivo at 7 Tesla MRI. PLoS One 2019; 14:e0209842. [PMID: 30726221 PMCID: PMC6364884 DOI: 10.1371/journal.pone.0209842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022] Open
Abstract
The locus coeruleus is a small brainstem nucleus which contains neuromelanin cells and is involved in a number of cognitive functions such as attention, arousal and stress, as well as several neurological and psychiatric disorders. Locus coeruleus imaging in vivo is generally performed using a T1-weighted turbo spin echo MRI sequence at 3 Tesla (T). However, imaging at high magnetic field strength can increase the signal-to-noise ratio and offers the possibility of imaging at higher spatial resolution. Therefore, in the present study we explored the possibility of visualizing the locus coeruleus at 7T. To this end, twelve healthy volunteers participated in three scanning sessions: two with 3T MRI and one with 7T MRI. The volumes of the first 3T session were used to segment the locus coeruleus, whereas the volumes of the second 3T and the 7T session were used to quantify the contrast of the locus coeruleus with several reference regions across eight different structural sequences. The results indicate that several of the 7T sequences provide detectable contrast between the locus coeruleus and surrounding tissue. Of the tested sequences, a T1-weighted sequence with spectral presaturation inversion recovery (SPIR) seems the most promising method for visualizing the locus coeruleus at ultra-high field MRI. While there is insufficient evidence to prefer the 7T SPIR sequence over the 3T TSE sequence, the isotropic voxels at 7T are an important advantage when visualizing small structures such as the locus coeruleus.
Collapse
|
13
|
Péran P, Barbagallo G, Nemmi F, Sierra M, Galitzky M, Traon APL, Payoux P, Meissner WG, Rascol O. MRI supervised and unsupervised classification of Parkinson's disease and multiple system atrophy. Mov Disord 2018; 33:600-608. [PMID: 29473662 DOI: 10.1002/mds.27307] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multimodal MRI approach is based on a combination of MRI parameters sensitive to different tissue characteristics (eg, volume atrophy, iron deposition, and microstructural damage). The main objective of the present study was to use a multimodal MRI approach to identify brain differences that could discriminate between matched groups of patients with multiple system atrophy, Parkinson's disease, and healthy controls. We assessed the 2 different MSA variants, namely, MSA-P, with predominant parkinsonism, and MSA-C, with more prominent cerebellar symptoms. METHODS Twenty-six PD patients, 29 MSA patients (16 MSA-P, 13 MSA-C), and 26 controls underwent 3-T MRI comprising T2*-weighted, T1-weighted, and diffusion tensor imaging scans. Using whole-brain voxel-based MRI, we combined gray-matter density, T2* relaxation rates, and diffusion tensor imaging scalars to compare and discriminate PD, MSA-P, MSA-C, and healthy controls. RESULTS Our main results showed that this approach reveals multiparametric modifications within the cerebellum and putamen in both MSA-C and MSA-P patients, compared with PD patients. Furthermore, our findings revealed that specific single multimodal MRI markers were sufficient to discriminate MSA-P and MSA-C patients from PD patients. Moreover, the unsupervised analysis based on multimodal MRI data could regroup individuals according to their clinical diagnosis, in most cases. CONCLUSIONS This study demonstrates that multimodal MRI is able to discriminate patients with PD from those with MSA with high accuracy. The combination of different MR biomarkers could be a great tool in early stage of disease to help diagnosis. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | | | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria Sierra
- Neurology Service, University Hospital Marqués de Valdecilla and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Monique Galitzky
- Centre d'Investigation Clinique (CIC), CHU de Toulouse, Toulouse, France
| | - Anne Pavy-Le Traon
- UMR Institut National de la Santé et de la Recherche Médicale 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.,Department of Neurology and Institute for Neurosciences, University Hospital of Toulouse, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, Bordeaux, France.,Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Olivier Rascol
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Université de Toulouse 3, CHU de Toulouse, INSERM, Centre de Reference AMS, Service de Neurologie et de Pharmacologie Clinique, Centre d'Investigation Clinique CIC1436, Réseau NS-Park/FCRIN et Centre of excellence for neurodegenerative disorders (COEN) de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Schmidt MA, Engelhorn T, Marxreiter F, Winkler J, Lang S, Kloska S, Goelitz P, Doerfler A. Ultra high-field SWI of the substantia nigra at 7T: reliability and consistency of the swallow-tail sign. BMC Neurol 2017; 17:194. [PMID: 29073886 PMCID: PMC5658950 DOI: 10.1186/s12883-017-0975-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/20/2017] [Indexed: 12/02/2022] Open
Abstract
Background The loss of the swallow-tail sign of the substantia nigra has been proposed for diagnosis of Parkinson’s disease. Aim was to evaluate, if the sign occurs consistently in healthy subjects and if it can be reliably detected with high-resolution 7T susceptibility weighted imaging (SWI). Methods Thirteen healthy adults received SWI at 7T. 3 neuroradiologists, who were blinded to patients’ diagnosis, independently classified subjects regarding the swallow-tail sign to be present or absent. Accuracy, positive and negative predictive values (PPV and NPV) as well as inter- and intra-rater reliability and internal consistency were analyzed. Results The sign could be detected in 81% of the cases in consensus reading. Accuracy to detect the sign compared to the consensus was 100, 77 and 96% for the three readers with PPV reader 1/2/3 = 1/0.45/0.83 and NPV = 1/1/1. Inter-rater reliability was excellent (inter-class correlation coefficient = 0.844, alpha = 0.871). Intra-rater reliability was good to excellent (reader 1 R/L = 0.625/0.786; reader 2 = 0.7/0.64; reader 3 = 0.9/1). Conclusion The swallow-tail sign can be reliably detected. However, our data suggest its occurrence is not consistent in healthy subjects. It may be possible that one reason is an individually variable molecular organization of nigrosome 1 so that it does not return a uniform signal in SWI.
Collapse
Affiliation(s)
- Manuel A Schmidt
- Department of Neuroradiology, University Hospital Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Tobias Engelhorn
- Department of Neuroradiology, University Hospital Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Juergen Winkler
- Department of Molecular Neurology, University Hospital Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stefan Lang
- Department of Neuroradiology, University Hospital Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stephan Kloska
- Department of Neuroradiology, University Hospital Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Philipp Goelitz
- Department of Neuroradiology, University Hospital Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
15
|
Priovoulos N, Jacobs HIL, Ivanov D, Uludağ K, Verhey FRJ, Poser BA. High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage 2017; 168:427-436. [PMID: 28743460 DOI: 10.1016/j.neuroimage.2017.07.045] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Locus Coeruleus (LC) is a neuromelanin-rich brainstem structure that is the source of noradrenaline in the cortex and is thought to modulate attention and memory. LC imaging in vivo is commonly performed with a 2D T1-weighted Turbo Spin Echo (TSE) MRI sequence, an approach that suffers from several drawbacks at 3T, including long acquisition times and highly anisotropic spatial resolution. In this study, we developed a high-resolution Magnetization Transfer (MT) sequence for LC imaging at both 7T and 3T and compared its performance to a TSE sequence. Results indicate that LC imaging can be achieved with an MT sequence at both 7 and 3T at higher spatial resolution than the 3T TSE. Furthermore, we investigated whether the currently disputed source of contrast in the LC region with a TSE sequence relates to MT effects or shortened T1 and T2* due to increased iron concentration. Our results suggest that the contrast in the LC area relates to MT effects. To conclude, in this study we managed to image the LC, for the first time, at 7T and at an increased resolution compared to the current state-of-the-art. Imaging the LC is highly relevant for clinical diagnostics as structural tissue properties of the LC may hold promise as a biomarker in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nikos Priovoulos
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Heidi I L Jacobs
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Frans R J Verhey
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Huddleston DE, Langley J, Sedlacik J, Boelmans K, Factor SA, Hu XP. In vivo detection of lateral-ventral tier nigral degeneration in Parkinson's disease. Hum Brain Mapp 2017; 38:2627-2634. [PMID: 28240402 DOI: 10.1002/hbm.23547] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to measure neuromelanin-sensitive MRI contrast changes in the lateral-ventral tier of substantia nigra pars compacta in Parkinson's disease (PD). Histopathological studies of PD have demonstrated both massive loss of melanized dopamine neurons and iron accumulation in the substantia nigra pars compacta. Neurodegeneration is most profound in the lateral-ventral tier of this structure. We have previously shown in both healthy controls and individuals with PD that neuromelanin-sensitive MRI and iron-sensitive MRI contrast regions in substantia nigra overlap. This overlap region is located in the lateral-ventral tier. Exploiting this area of contrast overlap for region of interest selection, we developed a semi-automated image processing approach to characterize the lateral-ventral tier in MRI data. Here we apply this approach to measure magnetization transfer contrast, which corresponds to local neuromelanin density, in both the lateral-ventral tier and the entire pars compacta in 22 PD patients and 19 controls. Significant contrast reductions were seen in PD in both the entire pars compacta (P = 0.009) and in its lateral-ventral tier (P = 0.0002); in PD contrast was significantly lower in the lateral-ventral tier than in the entire pars compacta (P = 0.0008). These findings are the first in vivo evidence of the selective vulnerability of this nigral subregion in PD, and this approach may be developed for high impact biomarker applications. Hum Brain Mapp 38:2627-2634, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel E Huddleston
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, California
| | - Jan Sedlacik
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Boelmans
- Department of Neurology, Julius-Maximilians University, Würzburg, Germany
| | - Stewart A Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Xiaoping P Hu
- Department of Bioengineering, University of California Riverside, Riverside, California
| |
Collapse
|