1
|
Chilamakuri R, Agarwal S. Repurposing of c-MET Inhibitor Tivantinib Inhibits Pediatric Neuroblastoma Cellular Growth. Pharmaceuticals (Basel) 2024; 17:1350. [PMID: 39458991 PMCID: PMC11510580 DOI: 10.3390/ph17101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Dysregulation of receptor tyrosine kinase c-MET is known to promote tumor development by stimulating oncogenic signaling pathways in different cancers, including pediatric neuroblastoma (NB). NB is an extracranial solid pediatric cancer that accounts for almost 15% of all pediatric cancer-related deaths, with less than a 50% long-term survival rate. Results: In this study, we analyzed a large cohort of primary NB patient data and revealed that high MET expression strongly correlates with poor overall survival, disease progression, relapse, and high MYCN levels in NB patients. To determine the effects of c-MET in NB, we repurposed a small molecule inhibitor, tivantinib, and found that c-MET inhibition significantly inhibits NB cellular growth. Tivantinib significantly blocks NB cell proliferation and 3D spheroid tumor formation and growth in different MYCN-amplified and MYCN-non-amplified NB cell lines. Furthermore, tivantinib blocks the cell cycle at the G2/M phase transition and induces apoptosis in different NB cell lines. As expected, c-MET inhibition by tivantinib inhibits the expression of multiple genes in PI3K, STAT, and Ras cell signaling pathways. Conclusions: Overall, our data indicate that c-MET directly regulates NB growth and 3D spheroid growth, and c-MET inhibition by tivantinib may be an effective therapeutic approach for high-risk NB. Further developing c-MET targeted therapeutic approaches and combining them with current therapies may pave the way for effectively translating novel therapies for NB and other c-MET-driven cancers.
Collapse
Affiliation(s)
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY 11439, USA
| |
Collapse
|
2
|
Alnassar N, Derry JMJ, Banna GL, Gorecki DC. Differential expression of DMD transcripts as a novel prognostic biomarker in histologically diverse mesotheliomas. Transl Lung Cancer Res 2024; 13:733-748. [PMID: 38736495 PMCID: PMC11082705 DOI: 10.21037/tlcr-24-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
Background The identification of prognostic biomarkers is crucial for guiding treatment strategies in mesothelioma patients. The Duchenne muscular dystrophy (DMD) gene and its specific transcripts have been associated with patient survival in various tumours. In this study, we aimed to investigate the prognostic potential of DMD gene expression and its transcripts in mesothelioma patients. Methods We analysed The Cancer Genome Atlas (TCGA) mesothelioma RNAseq, mutation, and clinical data to assess the association between DMD gene expression and its transcripts (Dp427, Dp71 splice variants) and mesothelioma survival. We also evaluated the specific Dp71 transcript as a unique prognostic biomarker across mesothelioma subtypes. Additionally, we performed differential gene expression analysis between high and low DMD gene/transcript expression groups. Results The analysis included 57 epithelioid, 23 biphasic, two sarcomatoid, and five not otherwise specified (NOS) histological subtypes of mesothelioma samples. Univariate analysis revealed that high expression of the DMD gene and its Dp71 transcript was significantly associated with shorter survival in mesothelioma patients (P=0.003 and P<0.001, respectively). In a multivariate analysis, the association between Dp71 expression and survival remained significant [hazard ratio (HR) 2.29, 95% confidence interval (CI): 1.24-4.23, P=0.008] across all mesothelioma patients, and also among patients with mesotheliomas without deep CDKN2A deletions (HR 3.58, 95% CI: 1.31-9.80, P=0.01). Pathway analysis revealed enrichment of cell cycle (P=3.01×10-4) and homologous recombination (P=0.01) pathways in differentially expressed genes (DEGs) between high and low Dp71 groups. Furthermore, there were correlations between Dp71 transcript expression and tumour microenvironment (TME) cells, including a weak positive correlation with macrophages (R=0.32, P=0.002) specifically M2 macrophages (R=0.34, P=0.001). Conclusions Our findings indicate that the differential expression of specific DMD transcripts is associated with poor survival in mesothelioma patients. The specific Dp71 transcript can serve as a potential biomarker for predicting patient survival in diverse histological subtypes of mesothelioma. Further studies are needed to understand the role of specific dystrophin transcripts in cancer and TME cells, and their implications in the pathogenesis and progression of mesothelioma. Identifying patients at risk of poor survival based on DMD transcript expression can guide treatment strategies in mesothelioma, informing decisions regarding treatment intensity, follow-up schedules, eligibility for clinical trials, and ultimately, end-of-life care planning.
Collapse
Affiliation(s)
- Nancy Alnassar
- Molecular Medicine Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Giuseppe Luigi Banna
- Molecular Medicine Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Cosham, Portsmouth, UK
| | - Dariusz C. Gorecki
- Molecular Medicine Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
3
|
Yun KM, Bazhenova L. Emerging New Targets in Systemic Therapy for Malignant Pleural Mesothelioma. Cancers (Basel) 2024; 16:1252. [PMID: 38610930 PMCID: PMC11011044 DOI: 10.3390/cancers16071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) is a heterogeneous cancer composed of distinct molecular and pathologic subtypes. Unfortunately, MPM is aggressive, and current therapies for advanced, unresectable disease remain limited to cytotoxic chemotherapy and immunotherapy. Our understanding of the genomic landscape of MPM is steadily growing, while the discovery of effective targeted therapies in MPM has advanced more slowly than in other solid tumors. Given the prevalence of alterations in tumor suppressor genes in MPM, it has been challenging to identify actionable targets. However, efforts to characterize the genetic signatures in MPM over the last decade have led to a range of novel targeted therapeutics entering early-phase clinical trials. In this review, we discuss the advancements made thus far in targeted systemic therapies in MPM and the future direction of targeted strategies in patients with advanced MPM.
Collapse
Affiliation(s)
- Karen M. Yun
- Division of Hematology-Oncology, Moores Cancer Center at UC San Diego Health, La Jolla, CA 92093, USA;
| | | |
Collapse
|
4
|
Abd-Elmawla MA, Abdel Mageed SS, Al-Noshokaty TM, Elballal MS, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Midan HM, Rizk NI, Elrebehy MA, Sayed GA, Tabaa MME, Salman A, Mohammed OA, Ashraf A, Khidr EG, Khaled R, El-Dakroury WA, Helal GK, Moustafa YM, Doghish AS. Melodic maestros: Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of malignant pleural mesothelioma. Pathol Res Pract 2023; 250:154817. [PMID: 37713736 DOI: 10.1016/j.prp.2023.154817] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
5
|
Defining and targeting tumor-associated macrophages in malignant mesothelioma. Proc Natl Acad Sci U S A 2023; 120:e2210836120. [PMID: 36821580 PMCID: PMC9992826 DOI: 10.1073/pnas.2210836120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Defining the ontogeny of tumor-associated macrophages (TAM) is important to develop therapeutic targets for mesothelioma. We identified two distinct macrophage populations in mouse peritoneal and pleural cavities, the monocyte-derived, small peritoneal/pleural macrophages (SPM), and the tissue-resident large peritoneal/pleural macrophages (LPM). SPM rapidly increased in tumor microenvironment after tumor challenge and contributed to the vast majority of M2-like TAM. The selective depletion of M2-like TAM by conditional deletion of the Dicer1 gene in myeloid cells (D-/-) promoted tumor rejection. Sorted SPM M2-like TAM initiated tumorigenesis in vivo and in vitro, confirming their capacity to support tumor development. The transcriptomic and single-cell RNA sequencing analysis demonstrated that both SPM and LPM contributed to the tumor microenvironment by promoting the IL-2-STAT5 signaling pathway, inflammation, and epithelial-mesenchymal transition. However, while SPM preferentially activated the KRAS and TNF-α/NFkB signaling pathways, LPM activated the IFN-γ response. The importance of LPM in the immune response was confirmed by depleting LPM with intrapleural clodronate liposomes, which abrogated the antitumoral memory immunity. SPM gene signature could be identified in pleural effusion and tumor from patients with untreated mesothelioma. Five genes, TREM2, STAB1, LAIR1, GPNMB, and MARCO, could potentially be specific therapeutic targets. Accordingly, Trem2 gene deletion led to reduced SPM M2-like TAM with compensatory increase in LPM and slower tumor growth. Overall, these experiments demonstrate that SPM M2-like TAM play a key role in mesothelioma development, while LPM more specifically contribute to the immune response. Therefore, selective targeting of monocyte-derived TAM may enhance antitumor immunity through compensatory expansion of tissue-resident TAM.
Collapse
|
6
|
Ma XB, Wang Y, Jia YJ, Liu YJ, Tian YQ, Liu Y, Hou GQ, Xu YC, Liu HM. Upregulation of PIK3IP1 monitors the anti-cancer activity of PI3Kα inhibitors in gastric cancer cells. Biochem Pharmacol 2023; 207:115380. [PMID: 36521557 DOI: 10.1016/j.bcp.2022.115380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Gastric cancer remains one of the most malignant cancers in the world. The target-based drugs approved by FDA for gastric cancer treatment include only three targets and benefit a small portion of gastric cancer patients. PIK3CA, a confirmed oncogene, mutates in 7-25% gastric cancer patients. PI3Kα inhibitor BYL719 has been approved for treating specific breast cancer. However, there is no comprehensive study about PI3Kα inhibitor in gastric cancer. In this study, we found pharmacological inhibition or knockdown of PI3Kα effectively inhibited the proliferation of partial gastric cancer cells. Then, we systematically explored the potential biomarkers for predicting or monitoring treatment response according to previous reports and found that basal expression of several receptor tyrosine kinases were related with the sensitivity of gastric cancer cells to BYL719. Next, RNA-seq technique was utilized and showed that BYL719 inhibited Myc targets V2 gene set in sensitive gastric cancer cells, and western blotting further verified that c-Myc was only inhibited in sensitive gastric cancer cells. More importantly, we firstly found BYL719 significantly elevated the expression of PIK3IP1 in sensitive gastric cancer cells, which was also observed in NCI-N87 cell derived xenograft mice models. Meanwhile, knockdown of PIK3IP1 partially rescued the cell growth inhibited by BYL719 in sensitive gastric cancer cells, suggesting the important role of PIK3IP1 in the antitumor activity of BYL719. In conclusion, our study provides biological evidence that PI3Kα is a promising target in specific gastric cancer and the elevation of PIK3IP1 could supply as a biomarker that monitoring treatment response.
Collapse
Affiliation(s)
- Xu-Bin Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Yang Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ying-Jie Jia
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ya-Jie Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ying-Qi Tian
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Gui-Qin Hou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Yi-Chao Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China..
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China..
| |
Collapse
|
7
|
Malakoti F, Targhazeh N, Abadifard E, Zarezadeh R, Samemaleki S, Asemi Z, Younesi S, Mohammadnejad R, Hadi Hossini S, Karimian A, Alemi F, Yousefi B. DNA repair and damage pathways in mesothelioma development and therapy. Cancer Cell Int 2022; 22:176. [PMID: 35501851 PMCID: PMC9063177 DOI: 10.1186/s12935-022-02597-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Malignant mesothelioma (MMe) is an aggressive neoplasm that occurs through the transformation of mesothelial cells. Asbestos exposure is the main risk factor for MMe carcinogenesis. Other important etiologies for MMe development include DNA damage, over-activation of survival signaling pathways, and failure of DNA damage response (DDR). In this review article, first, we will describe the most important signaling pathways that contribute to MMe development and their interaction with DDR. Then, the contribution of DDR failure in MMe progression will be discussed. Finally, we will review the latest MMe therapeutic strategies that target the DDR pathway.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Abadifard
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Samemaleki
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melbourne, Vic, Australia
| | - Reza Mohammadnejad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hadi Hossini
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Expression of phosphorylated ribosomal protein S6 in mesothelioma patients - correlation with clinico-pathological characteristics and outcome: results from the European Thoracic Oncology Platform (ETOP) Mesoscape project. Mod Pathol 2022; 35:1888-1899. [PMID: 36115922 PMCID: PMC9708564 DOI: 10.1038/s41379-022-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Pleural mesothelioma (PM) is an aggressive malignancy with poor prognosis. Although histology and pathologic stage are important prognostic factors, better prognostic biomarkers are needed. The ribosomal protein S6 is a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway involved in protein synthesis and cell proliferation. In previous studies, low phosphorylated S6 (pS6) immunoreactivity was significantly correlated with longer progression-free survival (PFS) and overall survival (OS) in PM patients. We aimed to correlate pS6 expression to clinical data in a large multi-centre PM cohort as part of the European Thoracic Oncology Platform (ETOP) Mesoscape project. Tissue Micro Arrays (TMAs) of PM were constructed and expression of pS6 was evaluated by a semi-quantitatively aggregate H-score. Expression results were correlated to patient characteristics as well as OS/PFS. pS6 IHC results of 364 patients from 9 centres, diagnosed between 1999 and 2017 were available. The primary histology of included tumours was epithelioid (70.3%), followed by biphasic (24.2%) and sarcomatoid (5.5%). TMAs included both treatment-naïve and tumour tissue taken after induction chemotherapy. High pS6 expression (181 patients with H-score>1.41) was significantly associated with less complete resection. In the overall cohort, OS/PFS were not significantly different between pS6-low and pS6-high patients. In a subgroup analysis non-epithelioid (biphasic and sarcomatoid) patients with high pS6 expression showed a significantly shorter OS (p < 0.001, 10.7 versus 16.9 months) and PFS (p < 0.001, 6.2 versus 10.8 months). In subgroup analysis, in non-epithelioid PM patients high pS6 expression was associated with significantly shorter OS and PFS. These exploratory findings suggest a clinically relevant PI3K pathway activation in non-epithelioid PM which might lay the foundation for future targeted treatment strategies.
Collapse
|
9
|
Mirzapoiazova T, Xiao G, Mambetsariev B, Nasser MW, Miaou E, Singhal SS, Srivastava S, Mambetsariev I, Nelson MS, Nam A, Behal A, Arvanitis L, Atri P, Muschen M, Tissot FLH, Miser J, Kovach JS, Sattler M, Batra SK, Kulkarni P, Salgia R. Protein Phosphatase 2A as a Therapeutic Target in Small Cell Lung Cancer. Mol Cancer Ther 2021; 20:1820-1835. [PMID: 34253596 PMCID: PMC8722383 DOI: 10.1158/1535-7163.mct-21-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023]
Abstract
Protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of apoptosis, proliferation, and DNA-damage response, is overexpressed in many cancers, including small cell lung cancer (SCLC). Here we report that LB100, a small molecule inhibitor of PP2A, when combined with platinum-based chemotherapy, synergistically elicited an antitumor response both in vitro and in vivo with no apparent toxicity. Using inductively coupled plasma mass spectrometry, we determined quantitatively that sensitization via LB100 was mediated by increased uptake of carboplatin in SCLC cells. Treatment with LB100 alone or in combination resulted in inhibition of cell viability in two-dimensional culture and three-dimensional spheroid models of SCLC, reduced glucose uptake, and attenuated mitochondrial and glycolytic ATP production. Combining LB100 with atezolizumab increased the capacity of T cells to infiltrate and kill tumor spheroids, and combining LB100 with carboplatin caused hyperphosphorylation of the DNA repair marker γH2AX and enhanced apoptosis while attenuating MET signaling and invasion through an endothelial cell monolayer. Taken together, these data highlight the translational potential of inhibiting PP2A with LB100 in combination with platinum-based chemotherapy and immunotherapy in SCLC.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Gang Xiao
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
- Institute of Immunology, Institute of Hematology, Zhejiang University School of Medicine, Zhejiang, China
| | - Bolot Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Emily Miaou
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Sharad S Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Saumya Srivastava
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Michael S Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, California
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Amita Behal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Cancer Center, Duarte, California
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Markus Muschen
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - François L H Tissot
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - James Miser
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California
| | - John S Kovach
- Lixte Biotechnology Holdings, Inc., East Setauket, New York
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
10
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Antiproliferative effect, alteration of cancer cell cycle progression and potential MET kinase inhibition induced by 3,4-dihydropyrimidin-2(1H)-one C5 amide derivatives. Eur J Pharmacol 2021; 894:173850. [PMID: 33428899 DOI: 10.1016/j.ejphar.2021.173850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
Cancer continues to be the second leading cause of death worldwide. Discovery of novel therapeutic agents has crucial importance for improvement of our medical management capabilities. Dysregulation of the MET receptor tyrosine kinase pathway plays an important role in cancer progression, making this receptor an attractive molecular target for anticancer drug discovery. In this study, twenty-seven 3,4-dihydropyrimidin-2(1H)-one C5 amide derivatives were synthesized and their cancer cell growth inhibitory activity was examined against MCF-7, HT-29 and MOLT-4 cells and also NIH/3T3 non-cancer cells by MTT assay. The antiproliferative effect of the most potent derivatives were tested against MET-dependent EBC-1 and MKN-45, lung and gastric cancer cell lines, respectively. MET kinase inhibition was measured by a Homogenous Time Resolved Fluorescence (HTRF) Assay. The influence of the test compounds on cell cycle was examined by RNase/PI flow cytometric assay. A number of compounds exhibited considerable antiproliferative effects against breast and colon cancer and leukemia cell lines, relatively sparing non-cancer cells. Some derivatives bearing benzothiazolyl carboxamide moiety at C5 position (15, 21, 23, 31, and 37) showed the highest activities with IC50 values as low as 10.9 μM. These compounds showed antiproliferative effects also against MET-amplified cells and dose-dependently inhibited MET kinase activity. They also induced G0/G1 cell cycle arrest at lower doses and apoptosis at higher doses. Molecular docking and dynamics simulation studies confirmed the interaction of compound 23 with the active site of the MET receptor. These findings demonstrate that 3,4-dihydropyrimidin-2(1H)-one analogues may represent promising targeted anticancer agents.
Collapse
|
12
|
Glorieux M, Dok R, Nuyts S. The influence of PI3K inhibition on the radiotherapy response of head and neck cancer cells. Sci Rep 2020; 10:16208. [PMID: 33004905 PMCID: PMC7529775 DOI: 10.1038/s41598-020-73249-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy has a central role in the treatment of head and neck squamous cell carcinoma (HNSCC). Activation of the PI3K/AKT/mTOR pathway can decrease the efficiency of radiotherapy via the promotion of cell survival and DNA repair. Here, the influence of PI3K pathway inhibition on radiotherapy response was investigated. Two PI3K inhibitors were investigated and both BKM120 and GDC0980 effectively inhibited cellular and clonogenic growth in 6 HNSCC cells, both HPV-positive as well as HPV-negative. Despite targeted inhibition of the pathway and slight increase in DNA damage, PI3K inhibition did not show significant radiosensitization. Currently only one clinical trial is assessing the effectiveness of combining BKM120 with RT in HNSCC (NCT02113878) of which the results are eagerly awaited.
Collapse
Affiliation(s)
- Mary Glorieux
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000, Leuven, Belgium.
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
13
|
Abbott DM, Bortolotto C, Benvenuti S, Lancia A, Filippi AR, Stella GM. Malignant Pleural Mesothelioma: Genetic and Microenviromental Heterogeneity as an Unexpected Reading Frame and Therapeutic Challenge. Cancers (Basel) 2020; 12:cancers12051186. [PMID: 32392897 PMCID: PMC7281319 DOI: 10.3390/cancers12051186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Mesothelioma is a malignancy of serosal membranes including the peritoneum, pleura, pericardium and the tunica vaginalis of the testes. Malignant mesothelioma (MM) is a rare disease with a global incidence in countries like Italy of about 1.15 per 100,000 inhabitants. Malignant Pleural Mesothelioma (MPM) is the most common form of mesothelioma, accounting for approximately 80% of disease. Although rare in the global population, mesothelioma is linked to industrial pollutants and mineral fiber exposure, with approximately 80% of cases linked to asbestos. Due to the persistent asbestos exposure in many countries, a worldwide progressive increase in MPM incidence is expected for the current and coming years. The tumor grows in a loco-regional pattern, spreading from the parietal to the visceral pleura and invading the surrounding structures that induce the clinical picture of pleural effusion, pain and dyspnea. Distant spreading and metastasis are rarely observed, and most patients die from the burden of the primary tumor. Currently, there are no effective treatments for MPM, and the prognosis is invariably poor. Some studies average the prognosis to be roughly one-year after diagnosis. The uniquely poor mutational landscape which characterizes MPM appears to derive from a selective pressure operated by the environment; thus, inflammation and immune response emerge as key players in driving MPM progression and represent promising therapeutic targets. Here we recapitulate current knowledge on MPM with focus on the emerging network between genetic asset and inflammatory microenvironment which characterize the disease as amenable target for novel therapeutic approaches.
Collapse
Affiliation(s)
- David Michael Abbott
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Chandra Bortolotto
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Silvia Benvenuti
- Candiolo Cancer Institute, FPO—IRCCS—Str. Prov.le 142, km. 3,95—10060 Candiolo (TO), Italy;
| | - Andrea Lancia
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Andrea Riccardo Filippi
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|
14
|
Chu GJ, van Zandwijk N, Rasko JEJ. The Immune Microenvironment in Mesothelioma: Mechanisms of Resistance to Immunotherapy. Front Oncol 2019; 9:1366. [PMID: 31867277 PMCID: PMC6908501 DOI: 10.3389/fonc.2019.01366] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Although mesothelioma is the consequence of a protracted immune response to asbestos fibers and characterized by a clear immune infiltrate, novel immunotherapy approaches show less convincing results as compared to those seen in melanoma and non-small cell lung cancer. The immune suppressive microenvironment in mesothelioma is likely contributing to this therapy resistance. Therefore, it is important to explore the characteristics of the tumor microenvironment for explanations for this recalcitrant behavior. This review describes the stromal, cytokine, metabolic, and cellular milieu of mesothelioma, and attempts to make connection with the outcome of immunotherapy trials.
Collapse
Affiliation(s)
- Gerard J. Chu
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Department of Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Nico van Zandwijk
- Sydney Medical School, Sydney Local Health District (Concord Repatriation General Hospital), University of Sydney, Sydney, NSW, Australia
| | - John E. J. Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Cinausero M, Rihawi K, Cortiula F, Follador A, Fasola G, Ardizzoni A. Emerging therapies in malignant pleural mesothelioma. Crit Rev Oncol Hematol 2019; 144:102815. [PMID: 31670225 DOI: 10.1016/j.critrevonc.2019.102815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 06/22/2019] [Accepted: 09/24/2019] [Indexed: 01/29/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer of the pleural surfaces frequently related to asbestos exposure. It is characterized by a poor prognosis even for patients treated with trimodality therapy, including surgery, chemotherapy and radiotherapy. Moreover, the majority of patients are not candidates for surgery due to disease advanced stage or medical comorbidities. For these patients, the survival rate is even lower and few therapeutic options are currently available. Nevertheless, many interesting novel approaches are under investigation, among which immunotherapy represents one of the most promising emerging strategies. In this review, we will discuss the role of new therapeutic options, particularly immunotherapy, and present the results of the most important and promising clinical trials.
Collapse
Affiliation(s)
- Marika Cinausero
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy.
| | - Karim Rihawi
- Department of Oncology, University Hospital of Udine, Italy; Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy
| | - Francesco Cortiula
- Department of Oncology, University Hospital of Udine, Italy; School of Medical Oncology, Department of Medicine, University of Udine, Italy
| | | | | | - Andrea Ardizzoni
- Department of Oncology, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Van Der Steen N, Leonetti A, Keller K, Dekker H, Funel N, Lardon F, Ruijtenbeek R, Tiseo M, Rolfo C, Pauwels P, Peters GJ, Giovannetti E. Decrease in phospho-PRAS40 plays a role in the synergy between erlotinib and crizotinib in an EGFR and cMET wild-type squamous non-small cell lung cancer cell line. Biochem Pharmacol 2019; 166:128-138. [PMID: 31078602 DOI: 10.1016/j.bcp.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Lung squamous cell carcinomas (SCC) typically harbor a strong activation of epidermal growth factor receptor (EGFR) pathway. Since one of the most common resistance mechanisms against EGFR inhibition relies on the activation of cMET parallel signaling, we investigated the efficacy of a dual blockade with erlotinib and crizotinib in EGFR and cMET wild-type lung SCC cell lines. METHODS Drug sensitivity assays were performed on LUDLU, SKMES-1, H1703, Calu1 and H520 cells. Further studies included analysis of cell cycle, apoptosis, spheroids, migration and Pathscan intracellular signaling array. Expression of emerging proteins was validated by Western blot and evaluated by immunohistochemistry in tissue-microarrays from lung cancer patients. RESULTS Erlotinib and crizotinib showed additive interaction in Calu1, H520 and SKMES-1, and strong synergism in the LUDLU cells (Combination Index: 0.387), associated to G2/M phase arrest, increased apoptosis, spheroid size reduction and inhibition of migration. Remarkably, this combination decreased the phosphorylation of downstream targets of MAPK and PI3K/Akt/mTOR pathways, with the largest decrease observed for PRAS40 Thr246. Moreover, it reduced the expression of both p-Her3 and p-PRAS40 in the synergistic LUDLU cells. Tissue specimens showed a higher expression of both proteins in SCC compared to adenocarcinoma histology. CONCLUSIONS Combining erlotinib and crizotinib led to an additive/synergistic interaction in 4 out of 5 SCC cells. By combining both inhibitors, MAPK and PI3K/Akt/mTOR pathways were strongly inhibited, leading to increased cell death. p-Her3 and p-PRAS40 might be used as markers for determining the synergistic effect and for selecting potential candidates for the combination treatment.
Collapse
Affiliation(s)
- Nele Van Der Steen
- Amsterdam UMC, VU University Medical Center, Laboratory Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands; Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Alessandro Leonetti
- Amsterdam UMC, VU University Medical Center, Laboratory Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Kaylee Keller
- Amsterdam UMC, VU University Medical Center, Laboratory Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Henk Dekker
- Amsterdam UMC, VU University Medical Center, Laboratory Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Rob Ruijtenbeek
- PamGene International B. V., PO Box 1345, 5200 BJ 's-Hertogenbosch, Netherlands
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Christian Rolfo
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, 21220 MD, USA
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Godefridus J Peters
- Amsterdam UMC, VU University Medical Center, Laboratory Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Amsterdam UMC, VU University Medical Center, Laboratory Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
17
|
Frank MO, Koyama T, Rhrissorrakrai K, Robine N, Utro F, Emde AK, Chen BJ, Arora K, Shah M, Geiger H, Felice V, Dikoglu E, Rahman S, Fang A, Vacic V, Bergmann EA, Vogel JLM, Reeves C, Khaira D, Calabro A, Kim D, Lamendola-Essel MF, Esteves C, Agius P, Stolte C, Boockvar J, Demopoulos A, Placantonakis DG, Golfinos JG, Brennan C, Bruce J, Lassman AB, Canoll P, Grommes C, Daras M, Diamond E, Omuro A, Pentsova E, Orange DE, Harvey SJ, Posner JB, Michelini VV, Jobanputra V, Zody MC, Kelly J, Parida L, Wrzeszczynski KO, Royyuru AK, Darnell RB. Sequencing and curation strategies for identifying candidate glioblastoma treatments. BMC Med Genomics 2019; 12:56. [PMID: 31023376 PMCID: PMC6485090 DOI: 10.1186/s12920-019-0500-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Prompted by the revolution in high-throughput sequencing and its potential impact for treating cancer patients, we initiated a clinical research study to compare the ability of different sequencing assays and analysis methods to analyze glioblastoma tumors and generate real-time potential treatment options for physicians. METHODS A consortium of seven institutions in New York City enrolled 30 patients with glioblastoma and performed tumor whole genome sequencing (WGS) and RNA sequencing (RNA-seq; collectively WGS/RNA-seq); 20 of these patients were also analyzed with independent targeted panel sequencing. We also compared results of expert manual annotations with those from an automated annotation system, Watson Genomic Analysis (WGA), to assess the reliability and time required to identify potentially relevant pharmacologic interventions. RESULTS WGS/RNAseq identified more potentially actionable clinical results than targeted panels in 90% of cases, with an average of 16-fold more unique potentially actionable variants identified per individual; 84 clinically actionable calls were made using WGS/RNA-seq that were not identified by panels. Expert annotation and WGA had good agreement on identifying variants [mean sensitivity = 0.71, SD = 0.18 and positive predictive value (PPV) = 0.80, SD = 0.20] and drug targets when the same variants were called (mean sensitivity = 0.74, SD = 0.34 and PPV = 0.79, SD = 0.23) across patients. Clinicians used the information to modify their treatment plan 10% of the time. CONCLUSION These results present the first comprehensive comparison of technical and machine augmented analysis of targeted panel and WGS/RNA-seq to identify potential cancer treatments.
Collapse
Affiliation(s)
- Mayu O Frank
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Takahiko Koyama
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | | | - Nicolas Robine
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Filippo Utro
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Anne-Katrin Emde
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Bo-Juen Chen
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Present address: Google, 76 9th Avenue, New York, NY, 10011, USA
| | - Kanika Arora
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Minita Shah
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Heather Geiger
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Vanessa Felice
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Esra Dikoglu
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Present address: Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sadia Rahman
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Alice Fang
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Vladimir Vacic
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Present address: 23&Me, 899 W Evelyn Ave, Mountain View, CA, 94041, USA
| | - Ewa A Bergmann
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Present address: Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51 D-79108, Freiburg, Germany
| | - Julia L Moore Vogel
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Present address: The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Catherine Reeves
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Depinder Khaira
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Anthony Calabro
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Present address: The Tisch Cancer Institute, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Duyang Kim
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Michelle F Lamendola-Essel
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Present address: Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Cecilia Esteves
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Present address: Harvard Medical School, 10 Shattuck Street, Boston, MA, 02115, USA
| | - Phaedra Agius
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - Christian Stolte
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - John Boockvar
- Northwell Health, Lenox Hill Hospital, 100 E. 77th Street, New York, NY, 10075, USA
| | - Alexis Demopoulos
- Northwell Health, The Brain Tumor Center, 450 Lakeville Road, Lake Success, Lakeville, NY, 11042, USA
| | | | - John G Golfinos
- New York University, School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Cameron Brennan
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jeffrey Bruce
- Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Andrew B Lassman
- Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Peter Canoll
- Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Christian Grommes
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mariza Daras
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Eli Diamond
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Antonio Omuro
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Present address: Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Elena Pentsova
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Dana E Orange
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY, 10021, USA
| | - Stephen J Harvey
- IBM Watson Health, NW Broken Sound Bkwy, Boca Raton, FL, 33487, USA
| | - Jerome B Posner
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Vaidehi Jobanputra
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
- Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Michael C Zody
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA
| | - John Kelly
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Laxmi Parida
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | | | - Ajay K Royyuru
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598, USA
| | - Robert B Darnell
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA.
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Li J, Li T, Li S, Xie L, Yang YL, Lin Q, Kadoch O, Li H, Hou S, Xu Z. Experimental study of the inhibition effect of CXCL12/CXCR4 in malignant pleural mesothelioma. J Investig Med 2018; 67:338-345. [DOI: 10.1136/jim-2018-000839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2018] [Indexed: 11/03/2022]
Abstract
Previous studies have demonstrated that CXCL12/CXCR4 axis is closely related to tumors such as malignant pleural mesothelioma (MPM). This research was conducted in order to detect whether CXCL12/CXCR4 inhibitors could restrain MPM and have a synergistic effect with chemotherapy, also to investigate the relationship of CXCL12/CXCR4 with other gene expressions in MPM. Forty mice were injected MPM cells and randomly divided into four groups: the PBS (control group), AMD3100 (CXCR4-CXCL12 antagonist), pemetrexed and AMD3100 plus pemetrexed. The mice were treated respectively for duration of 3 weeks. The size, bioluminescence and weight of tumors were measured. The differences between gene expressions in each group were analyzed. The tumor weights of each treatment group were lower than that of the control group (p<0.05). The bioluminescence of the tumor of the AMD3100 treatment group and the AMD3100 plus pemetrexed treatment group were lower than that of the control group (p<0.05), and AMD3100 was shown to have synergistic effects with pemetrexed (p<0.05). Among the 2.5 billion genes, several hundreds of genes expressed differently between groups. Results show that AMD3100 and pemetrexed can inhibit the growth of MPM in vivo, also that there is a better result if both are used together. Our findings suggest that CXCL12/CXCR4 axis affects a certain amount of gene expression in MPM.
Collapse
|
19
|
Mönch D, Bode-Erdmann S, Kalla J, Sträter J, Schwänen C, Falkenstern-Ge R, Klumpp S, Friedel G, Ott G, Kalla C. A subgroup of pleural mesothelioma expresses ALK protein and may be targetable by combined rapamycin and crizotinib therapy. Oncotarget 2018; 9:20781-20794. [PMID: 29755689 PMCID: PMC5945506 DOI: 10.18632/oncotarget.25111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a neoplasm with inferior prognosis and notorious chemotherapeutic resistance. Targeting aberrantly overexpressed kinases to cure MPM is a promising therapeutic strategy. Here, we examined ALK, MET and mTOR as potential therapeutic targets and determined the combinatorial efficacy of ALK and mTOR targeting on tumor cell growth in vivo. First, ALK overexpression, rearrangement and mutation were studied in primary MPM by qRT-PCR, FISH, immunohistochemistry and sequence analysis; mTOR and MET expression by qRT-PCR and immunohistochemistry. Overexpression of full-length ALK transcripts was observed in 25 (19.5%) of 128 primary MPM, of which ten expressed ALK protein. ALK overexpression was not associated with gene rearrangement, amplification or kinase-domain mutation. mTOR protein was detected in 28.7% MPM, co-expressed with ALK or MET in 5% and 15% MPM, respectively. The ALK/MET inhibitor crizotinib enhanced the anti-tumor effect of the mTOR-inhibitor rapamycin in a patient-derived MPM xenograft with co-activated ALK/mTOR: combined therapy achieved tumor shrinkage in 4/5 tumors and growth stagnation in one tumor. Treatment effects on proliferation, apoptosis, autophagy and pathway signaling were assessed using Ki-67 immunohistochemistry, TUNEL assay, LC3B immunofluorescence, and immunoblotting. Co-treatment significantly suppressed cell proliferation and induced autophagy and caspase-independent, necrotic cell death. Rapamycin/crizotinib simultaneously inhibited mTORC1 (evidenced by S6 kinase and RPS6 dephosphorylation) and ALK signaling (ALK, AKT, STAT3 dephosphorylation), and crizotinib suppressed the adverse AKT activation induced by rapamycin. In conclusion, co-treatment with rapamycin and crizotinib is effective in suppressing MPM tumor growth and should be further explored as a therapeutic alternative in mesothelioma.
Collapse
Affiliation(s)
- Dina Mönch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany.,University of Tübingen, 72074 Tübingen, Germany
| | - Sabine Bode-Erdmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Jörg Kalla
- Institute of Pathology, Schwarzwald-Baar-Klinikum, 78052 Villingen-Schwenningen, Germany
| | - Jörn Sträter
- Institute of Pathology, 73730 Esslingen, Germany
| | - Carsten Schwänen
- Clinic of Internal Medicine, Oncology/Hematology, Gastroenterology and Infectiology, Klinikum Esslingen, 73730 Esslingen, Germany
| | - Roger Falkenstern-Ge
- Center for Pulmonology and Thoracic Surgery, Klinik Schillerhöhe, 70839 Stuttgart-Gerlingen, Germany
| | - Siegfried Klumpp
- Hospital Pharmacy, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Godehard Friedel
- Center for Pulmonology and Thoracic Surgery, Klinik Schillerhöhe, 70839 Stuttgart-Gerlingen, Germany
| | - German Ott
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany
| | - Claudia Kalla
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany.,University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
20
|
Kanteti R, Mirzapoiazova T, Riehm JJ, Dhanasingh I, Mambetsariev B, Wang J, Kulkarni P, Kaushik G, Seshacharyulu P, Ponnusamy MP, Kindler HL, Nasser MW, Batra SK, Salgia R. Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biol Ther 2018; 19:316-327. [PMID: 29303405 PMCID: PMC5902231 DOI: 10.1080/15384047.2017.1416937] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The non-receptor cytoplasmic tyrosine kinase, Focal Adhesion Kinase (FAK) is known to play a key role in a variety of normal and cancer cellular functions such as survival, proliferation, migration and invasion. It is highly active and overexpressed in various cancers including Pancreatic Ductal Adenocarcinoma (PDAC) and Malignant Pleural Mesothelioma (MPM). Here, initially, we demonstrate that FAK is overexpressed in both PDAC and MPM cell lines. Then we analyze effects of two small molecule inhibitors PF-573228, and PF-431396, which are dual specificity inhibitors of FAK and proline rich tyrosine kinase 2 (PYK2), as well as VS-6063, another small molecule inhibitor that specifically inhibits FAK but not PYK2 for cell growth, motility and invasion of PDAC and MPM cell lines. Treatment with PF-573228, PF-431396 and VS-6063 cells resulted in a dose-dependent inhibition of growth and anchorage-independent colony formation in both cancer cell lines. Furthermore, these compounds suppressed the phosphorylation of FAK at its active site, Y397, and functionally induced significant apoptosis and cell cycle arrest in both cell lines. Using the ECIS (Electric cell-substrate impedance sensing) system, we found that treatment of both PF compounds suppressed adherence and migration of PDAC cells on fibronectin. Interestingly, 3D-tumor organoids derived from autochthonous KC (Kras;PdxCre) mice treated with PF-573228 revealed a significant decrease in tumor organoid size and increase in organoid cell death. Taken together, our results show that FAK is an important target for mesothelioma and pancreatic cancer therapy that merit further translational studies.
Collapse
Affiliation(s)
- Rajani Kanteti
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Tamara Mirzapoiazova
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| | - Jacob J Riehm
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Immanuel Dhanasingh
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Bolot Mambetsariev
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| | - Jiale Wang
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA.,d Oncology Center, Zhujiang Hospital, Southern Medical University , Guangzhou, Guangdong Province , China
| | - Prakash Kulkarni
- b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| | - Garima Kaushik
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Parthasarathy Seshacharyulu
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Moorthy P Ponnusamy
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Hedy L Kindler
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA
| | - Mohd W Nasser
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Surinder K Batra
- c Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Ravi Salgia
- a Department of Hematology/Oncology , University of Chicago Medical Center , Chicago , IL , USA.,b Department of Medical Oncology and Therapeutics Research , City of Hope, Duarte , CA , USA
| |
Collapse
|
21
|
Mancuso MR, Neal JW. Novel systemic therapy against malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:295-314. [PMID: 28713675 PMCID: PMC5504105 DOI: 10.21037/tlcr.2017.06.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma is an aggressive tumor of the pleura with an overall poor prognosis. Even with surgical resection, for which only a subset of patients are eligible, long term disease free survival is rare. Standard first-line systemic treatment consists of a platinum analog, an anti-metabolite, and sometimes anti-angiogenic therapy, but there is currently no well-established standard therapy for refractory or relapsed disease. This review focuses on efforts to develop improved systemic therapy for the treatment of malignant pleural mesothelioma (MPM) including cytotoxic systemic therapy, a variety of tyrosine kinase inhibitors and their downstream effector pathways, pharmacologic targeting of the epigenome, novel approaches to target proteins expressed on mesothelioma cells (such as mesothelin), arginine depletion therapy, and the emerging role of immunotherapy. Overall, these studies demonstrate the challenges of improving systemic therapy for MPM and highlight the need to develop therapeutic strategies to control this disease.
Collapse
Affiliation(s)
- Michael R Mancuso
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Mossman BT. Cell Signaling and Epigenetic Mechanisms in Mesothelioma. ASBESTOS AND MESOTHELIOMA 2017. [DOI: 10.1007/978-3-319-53560-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Abu Lila AS, Fukushima M, Huang CL, Wada H, Ishida T. Systemically Administered RNAi Molecule Sensitizes Malignant Pleural Mesotheliomal Cells to Pemetrexed Therapy. Mol Pharm 2016; 13:3955-3963. [PMID: 27740765 DOI: 10.1021/acs.molpharmaceut.6b00728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pemetrexed (PMX) is a key drug for the management of malignant pleural mesothelioma (MPM). However, its therapeutic efficacy is cruelly restricted in many clinical settings by the overexpression of thymidylate synthase (TS) gene. Recently, we emphasized the efficacy of locally administered shRNA designed against TS gene in enhancing the cytotoxic effect of PMX against orthotopically implanted MPM cells in tumor xenograft tumor model. Herein, we explored the efficiency of systemic, rather than local, delivery of TS RNAi molecule in sensitizing MPM cells to the cytotoxic effect of PMX. We here designed a PEG-coated TS shRNA-lipoplex (PEG-coated TS shRNA-lipoplex) for systemic injection. PEG modification efficiently delivered TS shRNA in the lipoplex to tumor tissue following intravenous administration as indicated by a significant suppression of TS expression level in tumor tissue. In addition, the combined treatment of PMX with systemic injection of PEG-coated TS shRNA-lipoplex exerted a potent antitumor activity in a s.c. xenograft tumor model, compared to a single treatment with either PMX or PEG-coated TS shRNA-lipoplex. Metastasis, or the spread, of mesothelioma substantially dedicates the effectiveness of treatment options. The systemic, in addition to local, delivery of tumor targeted anti-TS RNAi system we propose in this study might be an effective option to extend the clinical utility of PMX in treating malignant mesothelioma.
Collapse
Affiliation(s)
- Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , Tokushima, Japan.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University , Zagazig 44519, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Hail University , Hail 2440, Saudi Arabia
| | - Masakazu Fukushima
- Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences, Tokushima University , Tokushima 770-8505, Japan
| | - Cheng-Long Huang
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University , Kyoto 606-8501, Japan
| | - Hiromi Wada
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University , Kyoto 606-8501, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , Tokushima, Japan.,Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences, Tokushima University , Tokushima 770-8505, Japan
| |
Collapse
|
24
|
Bonelli MA, Fumarola C, La Monica S, Alfieri R. New therapeutic strategies for malignant pleural mesothelioma. Biochem Pharmacol 2016; 123:8-18. [PMID: 27431778 DOI: 10.1016/j.bcp.2016.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignant disease affecting the mesothelium, commonly associated to asbestos exposure. Therapeutic actions are limited due to the late stage at which most patients are diagnosed and the intrinsic chemo-resistance of the tumor. The recommended systemic therapy for MPM is cisplatin/pemetrexed regimen with a mean overall survival of about 12months and a median progression free survival of less than 6months. Considering that the incidence of this tumor is expected to increase in the next decade and that its prognosis is poor, novel therapeutic approaches are urgently needed. For some tumors, such as lung cancer and breast cancer, druggable oncogenic alterations have been identified and targeted therapy is an important option for these patients. For MPM, clinical guidelines do not recommend biological targeted therapy, mainly because of poor target definition or inappropriate trial design. Further studies are required for a full comprehension of the molecular pathogenesis of MPM and for the development of new target agents. This review updates pre-clinical and clinical data on the efficacy of targeted therapy and immune checkpoint inhibition in the treatment of mesothelioma. Finally, future perspectives in this deadly disease are also discussed.
Collapse
Affiliation(s)
- Mara A Bonelli
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Claudia Fumarola
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Silvia La Monica
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Roberta Alfieri
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| |
Collapse
|