1
|
Yang L, Bi L, Jin L, Wang Y, Li Y, Li Z, He W, Cui H, Miao J, Wang L. Geniposide Ameliorates Liver Fibrosis Through Reducing Oxidative Stress and Inflammatory Respose, Inhibiting Apoptosis and Modulating Overall Metabolism. Front Pharmacol 2021; 12:772635. [PMID: 34899328 PMCID: PMC8651620 DOI: 10.3389/fphar.2021.772635] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a progressive liver damage condition caused by various factors and may progress toward liver cirrhosis, and even hepatocellular carcinoma. Many studies have found that the disfunction in metabolism could contribute to the development of liver fibrosis. Geniposide, derived from Gardenia jasminoides J. Ellis, has been demonstrated with therapeutic effects on liver fibrosis. However, the exact molecular mechanisms of such liver-protection remain largely unknown. The aim of this study was to explored the effect of geniposide on metabolic regulations in liver fibrosis. We used carbon tetrachloride (CCl4) to construct a mouse model of liver fibrosis and subsequently administered geniposide treatment. Therapeutic effects of geniposide on liver fibrosis were accessed through measuring the levels of hepatic enzymes in serum and the pathological changes in liver. We also investigated the effects of geniposide on inflammatory response, oxidative stress and apoptosis in liver. Furthermore, serum untargeted metabolomics were used to explore the metabolic regulatory mechanisms behind geniposide on liver fibrosis. Our results demonstrated that geniposide could reduce the levels of hepatic enzymes in serum and ameliorate the pathological changes in liver fibrosis mice. Geniposide enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased methane dicarboxylic aldehyde (MDA) levels in liver. Geniposide treatment also decreased the levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-a) in liver tissue homogenate. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining demonstrated that geniposide could reduce the apoptosis of hepatocytes. Geniposide increased the protein expression of B-cell lymphoma-2 (Bcl-2) and downregulated the protein expression of Bcl-2 Associated X (Bax), cleaved-Caspase 3, and cleaved-Caspase 9. Serum untargeted metabolomics analysis demonstrated that geniposide treatment improved the metabolic disorders including glycerophospholipid metabolism, arginine and proline metabolism, and arachidonic acid (AA) metabolism. In conclusion, our study demonstrated the protective effects of geniposide on liver fibrosis. We found that geniposide could treat liver fibrosis by inhibiting oxidative stress, reducing inflammatory response and apoptosis in the liver, and modulating glycerophospholipid, and arginine, proline, and AA metabolism processes.
Collapse
Affiliation(s)
- Lu Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Second People’s Hospital, Tianjin, China
| | - Liping Bi
- Tianjin Second People’s Hospital, Tianjin, China
| | - Lulu Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zixuan Li
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Wenju He
- Tianjin First Central Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jing Miao
- Tianjin Second People’s Hospital, Tianjin, China
| | - Li Wang
- Tianjin Second People’s Hospital, Tianjin, China
| |
Collapse
|
2
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
3
|
Suay-Corredera C, Pricolo MR, Herrero-Galán E, Velázquez-Carreras D, Sánchez-Ortiz D, García-Giustiniani D, Delgado J, Galano-Frutos JJ, García-Cebollada H, Vilches S, Domínguez F, Molina MS, Barriales-Villa R, Frisso G, Sancho J, Serrano L, García-Pavía P, Monserrat L, Alegre-Cebollada J. Protein haploinsufficiency drivers identify MYBPC3 variants that cause hypertrophic cardiomyopathy. J Biol Chem 2021; 297:100854. [PMID: 34097875 PMCID: PMC8260873 DOI: 10.1016/j.jbc.2021.100854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Variants in MYBPC3, the gene encoding cardiac myosin-binding protein C (cMyBP-C), are the leading cause of HCM. However, the pathogenicity status of hundreds of MYBPC3 variants found in patients remains unknown, as a consequence of our incomplete understanding of the pathomechanisms triggered by HCM-causing variants. Here, we examined 44 nontruncating MYBPC3 variants that we classified as HCM-linked or nonpathogenic according to cosegregation and population genetics criteria. We found that around half of the HCM-linked variants showed alterations in RNA splicing or protein stability, both of which can lead to cMyBP-C haploinsufficiency. These protein haploinsufficiency drivers associated with HCM pathogenicity with 100% and 94% specificity, respectively. Furthermore, we uncovered that 11% of nontruncating MYBPC3 variants currently classified as of uncertain significance in ClinVar induced one of these molecular phenotypes. Our strategy, which can be applied to other conditions induced by protein loss of function, supports the idea that cMyBP-C haploinsufficiency is a fundamental pathomechanism in HCM.
Collapse
Affiliation(s)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | - Javier Delgado
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan José Galano-Frutos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Helena García-Cebollada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Vilches
- Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain
| | - Fernando Domínguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Sabater Molina
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Hospital C. Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Roberto Barriales-Villa
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Unidad de Cardiopatías Familiares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; CEINGE Biotecnologie Avanzate, scarl, Naples, Italy
| | - Javier Sancho
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biocomputation and Complex Systems Physics Institute (BIFI). Joint Units BIFI-IQFR (CSIC) and GBs-CSIC, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit. Department of Cardiology. Hospital Universitario Puerta de Hierro, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART), Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain
| | | | | |
Collapse
|
4
|
Intrinsically Connected: Therapeutically Targeting the Cathepsin Proteases and the Bcl-2 Family of Protein Substrates as Co-regulators of Apoptosis. Int J Mol Sci 2021; 22:ijms22094669. [PMID: 33925117 PMCID: PMC8124540 DOI: 10.3390/ijms22094669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Taken with the growing importance of cathepsin-mediated substrate proteolysis in tumor biology and progression, the focus and emphasis placed on therapeutic design and development is coming into fruition. Underpinning this approach is the invariable progression from the direction of fully characterizing cathepsin protease members and their substrate targets, towards targeting such an interaction with tangible therapeutics. The two groups of such substrates that have gained much attention over the years are the pro- and anti- apoptotic protein intermediates from the extrinsic and intrinsic signaling arms of the apoptosis pathway. As proteins that are central to determining cellular fate, some of them present themselves as very favorable candidates for therapeutic targeting. However, considering that both anti- and pro- apoptotic signaling intermediates have been reported to be downstream substrates for certain activated cathepsin proteases, therapeutic targeting approaches based on greater selectivity do need to be given greater consideration. Herein, we review the relationships shared by the cathepsin proteases and the Bcl-2 homology domain proteins, in the context of how the topical approach of adopting 'BH3-mimetics' can be explored further in modulating the relationship between the anti- and pro- apoptotic signaling intermediates from the intrinsic apoptosis pathway and their upstream cathepsin protease regulators. Based on this, we highlight important future considerations for improved therapeutic design.
Collapse
|
5
|
Cong Y, Huang K, Li Y, Zhong S, Zhang JZH, Duan L. Entropic effect and residue specific entropic contribution to the cooperativity in streptavidin-biotin binding. NANOSCALE 2020; 12:7134-7145. [PMID: 32191786 DOI: 10.1039/c9nr08380d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular dynamics (MD) simulations were performed employing the polarized protein-specific charge (PPC) to explore the origin of the cooperativity in streptavidin-biotin systems (wild type, two single mutations and one double-mutation). The results of the experiment found that the existence of cooperativity is mainly the result of the entropic effect. In this study, the entropic contribution to the binding free energy was calculated using the recently developed interaction entropy (IE) method, and computational results are in excellent agreement with the experimental observations and are further verified by the calculation of the thermodynamic integration. Comparison of different force fields in terms of predicted binding strength ordering, cooperativity of energy and the stability of hydrogen bonding suggests that the PPC force field combined IE method is a suitable choice. In addition, the IE method enables us to obtain the residue-specific entropic contributions to the streptavidin-biotin binding affinity and identify ten hot-spot residues providing the dominant contribution to the cooperative binding. Importantly, the overall cooperativity obtained from the ten residues also comes mainly from the entropic effect in our study. The calculation of the potential of mean force shows that the unbinding of streptavidin-biotin is a multi-step process, and each step corresponds to the formation and rupture of the hydrogen bond network. And S45A mutation may increase the rigidity of the linker region, making the flap region relatively difficult to open. The present study provides significant molecular insight into the binding cooperativity of the streptavidin-biotin complex.
Collapse
Affiliation(s)
- Yalong Cong
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
6
|
Dudko HV, Urban VA, Davidovskii AI, Veresov VG. Structure-based modeling of turnover of Bcl-2 family proteins bound to voltage-dependent anion channel 2 (VDAC2): Implications for the mechanisms of proapoptotic activation of Bak and Bax in vivo. Comput Biol Chem 2020; 85:107203. [DOI: 10.1016/j.compbiolchem.2020.107203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
|
7
|
Taube M, Pietralik Z, Szymanska A, Szutkowski K, Clemens D, Grubb A, Kozak M. The domain swapping of human cystatin C induced by synchrotron radiation. Sci Rep 2019; 9:8548. [PMID: 31189973 PMCID: PMC6561922 DOI: 10.1038/s41598-019-44811-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 02/04/2023] Open
Abstract
Domain swapping is observed for many proteins with flexible conformations. This phenomenon is often associated with the development of conformational diseases. Importantly, domain swapping has been observed for human cystatin C (HCC), a protein capable of forming amyloid deposits in brain arteries. In this study, the ability of short exposure to high-intensity X-ray radiation to induce domain swapping in solutions of several HCC variants (wild-type HCC and V57G, V57D, V57N, V57P, and L68V mutants) was determined. The study was conducted using time-resolved small-angle X-ray scattering (TR-SAXS) synchrotron radiation. The protein samples were also analysed using small-angle neutron scattering and NMR diffusometry. Exposing HCC to synchrotron radiation (over 50 ms) led to a gradual increase in the dimeric fraction, and for exposures longer than 150 ms, the oligomer fraction was dominant. In contrast, the non-irradiated protein solutions, apart from the V57P variant, were predominantly monomeric (e.g., V57G) or in monomer/dimer equilibrium. This work might represent the first observation of domain swapping induced by high-intensity X-rays.
Collapse
Affiliation(s)
- Michal Taube
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Aneta Szymanska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Kosma Szutkowski
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
- NanoBioMedical Centre at Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614, Poznań, Poland
| | - Daniel Clemens
- Helmholtz-Zentrum Berlin für Materialien und Energie Lise-Meitner-Campus Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Anders Grubb
- Department of Clinical Chemistry, Lund University Hospital, S-22185, Lund, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| |
Collapse
|
8
|
Abstract
BCL-2 family proteins interact in a network that regulates apoptosis. The BH3 amino acid sequence motif serves to bind together this conglomerate protein family, both literally and figuratively. BH3 motifs are present in antiapoptotic and proapoptotic BCL-2 homologs, and in a separate group of unrelated BH3-only proteins often appended to the BCL-2 family. BH3-containing helices mediate many of their physical interactions to determine cell death versus survival, leading to the development of BH3 mimetics as therapeutics. Here we provide an overview of BCL-2 family interactions, their relevance in health and disease, and the progress toward regulating their interactions therapeutically.
Collapse
Affiliation(s)
- Jason D Huska
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
9
|
The contribution of modern EPR to structural biology. Emerg Top Life Sci 2018; 2:9-18. [PMID: 33525779 PMCID: PMC7288997 DOI: 10.1042/etls20170143] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 02/08/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy combined with site-directed spin labelling is applicable to biomolecules and their complexes irrespective of system size and in a broad range of environments. Neither short-range nor long-range order is required to obtain structural restraints on accessibility of sites to water or oxygen, on secondary structure, and on distances between sites. Many of the experiments characterize a static ensemble obtained by shock-freezing. Compared with characterizing the dynamic ensemble at ambient temperature, analysis is simplified and information loss due to overlapping timescales of measurement and system dynamics is avoided. The necessity for labelling leads to sparse restraint sets that require integration with data from other methodologies for building models. The double electron–electron resonance experiment provides distance distributions in the nanometre range that carry information not only on the mean conformation but also on the width of the native ensemble. The distribution widths are often inconsistent with Anfinsen's concept that a sequence encodes a single native conformation defined at atomic resolution under physiological conditions.
Collapse
|
10
|
Zhang M, Zheng J, Nussinov R, Ma B. Release of Cytochrome C from Bax Pores at the Mitochondrial Membrane. Sci Rep 2017; 7:2635. [PMID: 28572603 PMCID: PMC5453941 DOI: 10.1038/s41598-017-02825-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
How cytochrome C is released from the mitochondria to the cytosol via Bax oligomeric pores, a process which is required for apoptosis, is still a mystery. Based on experimentally measured residue-residue distances, we recently solved the first atomic model for Bax oligomeric pores at the membranes using computational approaches. Here, we investigate the mechanism at the microsecond time- and nanometer space- scale using MD simulations. Our free energy landscape depicts a low barrier for the permeation of cytochrome C into the Bax C-terminal mouth, with the pathway proceeding to the inner cavity and exiting via the N-terminal mouth. Release is guided by organized charged/hydrophilic surfaces. The hydrophilicity and negative charge of the pore surface gradually increase along the release pathway from the pore entry to the exit opening. Rather than inert passing of the cytochrome C through a rigid pore, the flexible pore may selectively aid the cytochrome C passage. Once the Bax pore is formed in the membrane, with a low energy barrier, the release of cytochrome C may be readily achieved through energy fluctuations. Collectively, our work provides mechanistic insight in atomic detail into the release of cytochrome C through Bax oligomeric pores.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio, 44325, USA
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio, 44325, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|