1
|
Wang P, Ren C, Wang L, Qian H, Li F, Su X, Shen Z, Hsu B, Huo L. Comparative evaluation of a novel [ 18F] F-Labeled PET tracer XTR004 against [ 13N] ammonia in myocardial perfusion imaging for coronary artery disease. Eur J Nucl Med Mol Imaging 2025; 52:1864-1877. [PMID: 39681776 DOI: 10.1007/s00259-024-07004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
AIMS This study aimed to evaluate image quality, myocardial perfusion, and diagnostic performance of a novel [18F]F-labeled PET tracer, XTR004 PET, myocardial perfusion imaging (MPI) compared with [13N]Ammonia (NH3) PET MPI. METHODS AND RESULTS Forty-seven patients with suspected or known coronary artery disease (CAD) were prospectively enrolled to undergo one-day rest/ATP-stress XTR004 and NH3 electrocardiograph-gated PET imaging within 2 weeks. Among them, twenty-six patients underwent invasive coronary angiography (ICA), and nineteen were identified with flow-limited CAD (stenosis ≥ 70%). Image quality (excellent/good/average) and certainty of interpretation were evaluated by two independent, blinded readers. Despite a higher liver uptake, XTR004 achieved good to excellent image quality in 83% of cases, comparable to 95.7% of NH3(P = 0.091). Additionally, the diagnostic certainty, measured as the percentage of cases with definitely abnormal or normal interpretations, was similar between XTR004 and NH3, with results of 87.2% and 89.2%, respectively. The sensitivity and specificity levels of XTR004 and NH3 MPI were similar (79% vs. 79%, 86% vs. 71%, P = 1.00). Linear regression of rest/stress myocardial perfusion in 17 segments revealed the linear slope close to unity with excellent R2 value (rest: slope = 0.954-1.074, R2 = 0.990-0.997; stress: slope = 0.951-1.082, R2 = 0.971-0.996). XTR004 was tolerated well by all patients. No adverse events were reported. CONCLUSION XTR004 PET MPI demonstrated promising image quality, diagnostic certainty and myocardial perfusion characteristics comparable to NH3 PET MPI. Future research should concentrate on the quantitative analysis of myocardial blood flow to explore the clinical implications of XTR004 PET MPI.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital. Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Ren
- Department of Nuclear Medicine, Peking Union Medical College Hospital. Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Liang Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital. Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujun Shen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Bailing Hsu
- Nuclear Science and Engineering Institute, E2433 Lafferre Hall, University of Missouri-Columbia, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital. Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Ren C, Pan Q, Fu C, Wang P, Zheng Z, Hsu B, Huo L. Phase I, first-in-human study of XTR004, a novel 18F-labeled tracer for myocardial perfusion PET: Biodistribution, radiation dosimetry, pharmacokinetics, and safety after a single injection at rest. J Nucl Cardiol 2024; 34:101823. [PMID: 38360262 DOI: 10.1016/j.nuclcard.2024.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES This study assessed the imaging characteristics, pharmacokinetics and safety of XTR004, a novel 18F-labeled Positron Emission Tomography (PET) myocardial perfusion imaging tracer, after a single injection at rest in humans. METHODS Eleven healthy subjects (eight men and three women) received intravenous XTR004 (239-290 megabecquerel [MBq]). Safety profiles were monitored on the dosing day and three follow-up visits. Multiple whole-body PET scans were conducted over 4.7 h to evaluate biodistribution and radiation dosimetry. Blood and urine samples collected for 7.25 h were metabolically corrected to characterize pharmacokinetics. RESULTS In the first 0-12 min PET images of ten subjects, liver (26.81 ± 4.01), kidney (11.43 ± 2.49), lung (6.75 ± 1.76), myocardium (4.72 ± 0.67) and spleen (3.1 ± 0.84) exhibited the highest percentage of the injected dose (%ID). Myocardial uptake of XTR004 in the myocardium initially reached 4.72 %ID and 7.06 g/mL, and negligibly changed within an hour (Δ: 7.20%, 5.95%). The metabolically corrected plasma peaked at 2.5 min (0.0013896 %ID/g) and halved at 45.2 min. Whole-body effective dose was 0.0165 millisievert (mSv)/MBq. Cumulative urine excretion was 8.18%. Treatment-related adverse events occurred in seven out of eleven subjects (63.6%), but no severe adverse event was reported. CONCLUSIONS XTR004 demonstrated a favorable safety profile, rapid, high, and stable myocardial uptake and excellent potential for PET myocardial perfusion imaging (MPI). Further exploration of XTR004 PET MPI for detecting myocardial ischemia is warranted.
Collapse
Affiliation(s)
- Chao Ren
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qingqing Pan
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chao Fu
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Peipei Wang
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhiquan Zheng
- Medical Department, Sinotau Pharmaceutical Group, Beijing, China
| | - Bailing Hsu
- Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO, USA.
| | - Li Huo
- Nuclear Medicine Department, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Packard RRS. Expanding the repertoire of 18F-labeled PET MPI radiotracers. J Nucl Cardiol 2024; 34:101834. [PMID: 38403044 PMCID: PMC11717124 DOI: 10.1016/j.nuclcard.2024.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Affiliation(s)
- René R Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, USA; Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA; Molecular Biology Institute, University of California, Los Angeles, USA; California NanoSystems Institute, University of California, Los Angeles, USA.
| |
Collapse
|
4
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Current status and future perspective of radiopharmaceuticals in China. Eur J Nucl Med Mol Imaging 2021; 49:2514-2530. [PMID: 34767047 PMCID: PMC8586637 DOI: 10.1007/s00259-021-05615-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
Radiopharmaceuticals are essential components of nuclear medicine and serve as one of the cornerstones of molecular imaging and precision medicine. They provide new means and approaches for early diagnosis and treatment of diseases. After decades of development and hard efforts, a relatively matured radiopharmaceutical production and management system has been established in China with high-quality facilities. This review provides an overview of the current status of radiopharmaceuticals on production and distribution, clinical application, and regulatory supervision and also describes some important advances in research and development and clinical translation of radiopharmaceuticals in the past 10 years. Moreover, some prospects of research and development of radiopharmaceuticals in the near future are discussed.
Collapse
|
6
|
Ma J, Huang Y, Jiang P, Liu Z, Luo Q, Zhong K, Yuan W, Meng Y, Lu H. Pyridaben induced cardiotoxicity during the looping stages of zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105870. [PMID: 34107429 DOI: 10.1016/j.aquatox.2021.105870] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Pyridaben is a widely used acaricide in agriculture and reaches a high concentration (97 μg/L) in paddy water for a short time when pyridaben was applied to rice. However, its toxicity to aquatic organisms is still poorly understood. Therefore, we assessed the pyridaben cardiotoxicity to aquatic organisms using the zebrafish (Danio rerio) model. We found that pyridaben is highly toxic to aquatic organisms, and LC50 of pyridaben for zebrafish at 72 hpf was 100.6 μg/L. Pyridaben caused severe cardiac malformations and functional abnormalities. Morphologic abnormity included severe pericardial edema, cardiomegaly, decreased cardiomyocytes, thinning of the myocardial layer, linear heart, and increased the distance between sinus venous and bulbus arteriosus (SV-BA). Functional failure included arrhythmia, heart failure, and reduced pumping efficiency. The genes involved in heart development, WNT signaling, BMP signaling, ATPase, and cardiac troponin C were abnormally expressed in the pyridaben treatment group. Exposure to pyridaben increased oxidative stress and induced cell apoptosis. The above causes may lead to cardiac toxicity. The results suggest that pyridaben exposure induced elevated oxidative stress through the WNT signaling pathway, which in turn led to apoptosis in the heart and cardiotoxicity. Besides, pyridaben exposure at the critical stage of cardiac looping (24-36 hpf) resulted in the greatest cardiotoxicity. The chorion reduced the entry of pyridaben and protected zebrafish embryos, resulting in cardiotoxicity second only to the stage of cardiac looping. The study should provide valuable information that pyridaben exposure causes cardiotoxicity in zebrafish embryos and have potential health risks for other aquatic organisms and humans.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhou Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
7
|
Klein R, Celiker-Guler E, Rotstein BH, deKemp RA. PET and SPECT Tracers for Myocardial Perfusion Imaging. Semin Nucl Med 2020; 50:208-218. [PMID: 32284107 DOI: 10.1053/j.semnuclmed.2020.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Coronary artery disease has been the leading cause of death since the 1960s, which has motivated the research and development of myocardial perfusion imaging (MPI) agents for early diagnosis and to guide treatment. MPI with SPECT has been the clinical workhorse for MPI, but over the past two decades PET MPI is experiencing growth due to enhanced image quality that results in superior diagnostic accuracy over SPECT. Furthermore, dynamic PET imaging of the tracer distribution process from time of tracer administration to tracer accumulation in the myocardium has enabled routine quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) in absolute units. MBF and MFR incrementally improve diagnostic and prognostic accuracy over MPI alone. In some cases (eg, rubidium PET imaging with pharmacologic stress) MPI, MBF, and MFR can be acquired simultaneously without incremental cost, radiation exposure, or significant processing time. Nuclear cardiology clinics have been looking to incorporate MBF quantification into clinical routine, but traditional SPECT and MPI tracers are inadequate for this challenge. Cardiac dedicated SPECT scanners can also perform dynamic imaging and have stimulated research into MBF quantification using SPECT tracers. New perfusion tracers must be tailored for emerging clinical needs (including MBF quantification), technical capabilities of imaging instrumentation, market constraints, and supply chain feasibility. Because these conditions have been evolving, tracers previously considered inferior may be reconsidered for future applications and some recently developed tracers may be suboptimal. This article reviews current, clinically-available tracers and those under development showing greatest potential. It discusses for each tracer the rationale for development, physiological mechanism of uptake by the myocardium, published evaluation results and development state. Finally, it gauges the suitability of each tracer for clinical application. The article demonstrates an acceleration in the pace of perfusion radiotracer development due to better understanding of the relevant physiology, better chemistry tools and small animal imaging. Consequently, bad tracers may fail faster and with less wasted investment, and good tracers may translate more efficiently from bench to bedside.
Collapse
Affiliation(s)
- Ran Klein
- University of Ottawa Heart Institute, Division of Cardiology, Ottawa, ON, Canada; The Ottawa Hospital, Division of Nuclear Medicine, Ottawa, ON, Canada
| | - Emel Celiker-Guler
- University of Ottawa Heart Institute, Division of Cardiology, Ottawa, ON, Canada
| | - Benjamin H Rotstein
- University of Ottawa Heart Institute, Division of Cardiology, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Robert A deKemp
- University of Ottawa Heart Institute, Division of Cardiology, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Research Progress on 18F-Labeled Agents for Imaging of Myocardial Perfusion with Positron Emission Tomography. Molecules 2017; 22:molecules22040562. [PMID: 28358340 PMCID: PMC6154634 DOI: 10.3390/molecules22040562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death in the world. Myocardial perfusion imaging (MPI) plays a significant role in non-invasive diagnosis and prognosis of CAD. However, neither single-photon emission computed tomography nor positron emission tomography clinical MPI agents can absolutely satisfy the demands of clinical practice. In the past decades, tremendous developments happened in the field of 18F-labeled MPI tracers. This review summarizes the current state of 18F-labeled MPI tracers, basic research data of those tracers, and the future direction of MPI tracer research.
Collapse
|