1
|
Chen X, Li W, Chu J, Chen Z, Zou L, Wang L, Qiu R, Lu J, Wu D. The effects of carbendazim on metabolic pathways of Saccharomyces cerevisiae Saflager S-189 and beer characteristics. Int J Food Microbiol 2025; 437:111219. [PMID: 40288109 DOI: 10.1016/j.ijfoodmicro.2025.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/02/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Carbendazim (CBZ) is a broad-spectrum fungicide commonly used in agriculture, but its residue can contaminate beer ingredients, potentially affecting Saccharomyces cerevisiae and beer quality. In this work, the effect of CBZ on Saccharomyces cerevisiae Saflager S-189 (S-189) and beer quality was investigated. The results demonstrated that S-189 was inhibited at concentrations equal to or exceeding 150 μg/kg of CBZ, reducing its growth rate, cell number, viability, and damaging cell structure. The CBZ disrupted multiple metabolic pathways in S-189, including amino acid biosynthesis, tRNA biosynthesis, and ABC transporters, and negatively affected energy metabolism, antioxidant activity, nutrient transport, and fermentation performance. Compared with the control group, the fermentation degree, alcohol content, and total acidity of beer fermented with 300 μg/kg CBZ-contaminated wort decreased, while the true concentration, pH, turbidity, and alcohol-ester ratio increased. Furthermore, CBZ changed the content of key flavor substances in beer, which affected the flavor quality of beer.
Collapse
Affiliation(s)
- Xingguang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, PR China
| | - Wenzhe Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jiyang Chu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, PR China
| | - Ziqiang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Lifang Zou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, PR China
| | - Lei Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, PR China
| | - Ran Qiu
- China Resources Beer (Holdings) Company Limited, Beijing 100000, PR China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Dianhui Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
2
|
Sun X, Yu L, Xiao M, Zhang C, Zhao J, Narbad A, Chen W, Zhai Q, Tian F. Exploring Core fermentation microorganisms, flavor compounds, and metabolic pathways in fermented Rice and wheat foods. Food Chem 2025; 463:141019. [PMID: 39243605 DOI: 10.1016/j.foodchem.2024.141019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The unique flavors of fermented foods significantly influence consumer purchasing choices, prompting widespread scientific interest in the flavor development process. Fermented rice and wheat foods are known for their unique flavors and they occupy an important place in the global diet. Many of these are produced on an industrial scale using starter cultures, whereas others rely on spontaneous fermentation, homemade production, or traditional activities. Microorganisms are key in shaping the sensory properties of fermented products through different metabolic pathways, thus earning the title "the essence of fermentation." Therefore, this study systematically summarizes the key microbial communities and their interactions that contribute positively to iconic fermented rice and wheat foods, such as steamed bread, bread, Mifen, and rice wine. This study revealed the mechanism by which these core microbial communities affect flavor and revealed the strategies of core microorganisms and related enzymes to enhance flavor during fermentation.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxing Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk NR4 7UA, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
He Y, Wang X, Li P, Lv Y, Nan H, Wen L, Wang Z. Research Progress of Wine Aroma Components: A Critical Review. Food Chem 2022; 402:134491. [DOI: 10.1016/j.foodchem.2022.134491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022]
|
4
|
Belugina R, Senchikhina A, Volkov S, Fedorov A, Legin A, Kirsanov D. Quantification of phosphatides in sunflower oils using a potentiometric e-tongue. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3064-3070. [PMID: 35938623 DOI: 10.1039/d2ay00736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Consisting of two fatty acyl groups, phospholipids are a vital part of vegetable oils and the source of essential fatty acids. Moreover, phospholipids influence oxidative and flavor stability and color evolution of vegetable oils, and their quantification has a significant role in the quality assessment of oils. In this study, we proposed a new highly efficient, affordable, environmentally friendly, and simple approach for the evaluation of phospholipid concentrations based on potentiometric multisensor systems coupled with chemometric data processing. Support vector machines, partial least squares, and multiple linear regressions were used to predict phosphatide concentrations based on potentiometric multisensor system responses. Application of multivariate regression tools yielded the following root mean square errors of prediction: 0.005 mg/100 g of oil in the range 0.0-59.4 mg/100 g for refined oils; 0.008 mg/100 g in the range 0.0-100 mg/100 g for low phosphatide oils and 0.24 mg/100 g in the range 100-2270 mg/100 g for high phosphatide oils. This approach can be considered as a rapid and straightforward method to quantify the phosphatides in sunflower oils.
Collapse
Affiliation(s)
| | | | - Sergey Volkov
- All-Russian Research Institute of Fats (ARRIF), St Petersburg, Russia
| | - Alexander Fedorov
- ITMO University, St Petersburg, Russia.
- All-Russian Research Institute of Fats (ARRIF), St Petersburg, Russia
| | - Andrey Legin
- ITMO University, St Petersburg, Russia.
- Institute of Chemistry, Saint Petersburg State University, St Petersburg, Russia
| | - Dmitry Kirsanov
- ITMO University, St Petersburg, Russia.
- Institute of Chemistry, Saint Petersburg State University, St Petersburg, Russia
| |
Collapse
|
5
|
Song B, Zhou Y, Zhan R, Zhu L, Chen H, Ma Z, Chen X, Lu Y. Effects of Different Pesticides on the Brewing of Wine Investigated by GC-MS-Based Metabolomics. Metabolites 2022; 12:metabo12060485. [PMID: 35736418 PMCID: PMC9228690 DOI: 10.3390/metabo12060485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The application of pesticides is critical during the growth of high-quality grape for wine making. However, pesticide residues have significant influence on the wine flavor. In this study, gas chromatography-mass spectrometry (GC-MS) was performed and the obtained datasets were analyzed with multivariate statistical methods to investigate changes in flavor substances in wine during fermentation. The principal component analysis (PCA) score plot showed significant differences in the metabolites of wine treated with various pesticides. In trials using five pesticides (hexaconazole, difenoconazole, flutriafol, tebuconazole, and propiconazole), more than 86 metabolites were changed. Most of these metabolites were natural flavor compounds, like carbohydrates, amino acids, and short-chain fatty acids and their derivatives, which essentially define the appearance, aroma, flavor, and taste of the wine. Moreover, the five pesticides added to grape pulp exhibited different effects on the metabolic pathways, involving mainly alanine, aspartate and glutamate metabolism, butanoate metabolism, arginine, and proline metabolism. The results of this study will provide new insight into the potential impact of pesticide residues on the metabolites and sensory profile of wine during fermentation.
Collapse
|
6
|
Li C, Yuan S, Xie Y, Guo Y, Cheng Y, Yu H, Qian H, Yao W. Transformation of fluopyram during enzymatic hydrolysis of apple and its effect on polygalacturonase and apple juice yield. Food Chem 2021; 357:129842. [PMID: 33930695 DOI: 10.1016/j.foodchem.2021.129842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 02/04/2023]
Abstract
China is one of the largest apple-growing areas in the world. Fluopyram (FLP) is a novel pesticide that has been widely used in agriculture. This work investigated the behavior of pesticides during enzymatic hydrolysis of apple juice and its effect on polygalacturonase (PG), apple juice yield, and flavor. The study findings revealed that 27.5% to 34.2% FLP was degraded during the enzymatic hydrolysis of apple. The three degradation products (P1, P2, and P3) were identified by a hybrid ion trap-orbitrap mass spectrometer. Based on toxicity assessment, it was found that carcinogenicity was higher for P2 and P3 than for FLP. Furthermore, FLP affected the yield and flavor of apple juice. FLP reduced yield by 4.8%, because FLP inhibited the activity of PG. Through molecular docking, it was found that there was an interaction between the active center of PG and FLP, resulting in a reduction in catalytic ability.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
7
|
Influence of Triazole Pesticides on Wine Flavor and Quality Based on Multidimensional Analysis Technology. Molecules 2020; 25:molecules25235596. [PMID: 33260751 PMCID: PMC7730357 DOI: 10.3390/molecules25235596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Triazole pesticides are widely used to control grapevine diseases. In this study, we investigated the impact of three triazole pesticides-triadimefon, tebuconazole, and paclobutrazol-on the concentrations of wine aroma compounds. All three triazole pesticides significantly affected the ester and acid aroma components. Among them, paclobutrazol exhibited the greatest negative influence on the wine aroma quality through its effect on the ester and acid aroma substances, followed by tebuconazole and triadimefon. Qualitative and quantitative analysis by solid-phase micro-extraction gas chromatography coupled with mass spectrometry revealed that the triazole pesticides also changed the flower and fruit flavor component contents of the wines. This was attributed to changes in the yeast fermentation activity caused by the pesticide residues. The study reveals that triazole pesticides negatively impact on the volatile composition of wines with a potential undesirable effect on wine quality, underlining the desirability of stricter control by the food industry over pesticide residues in winemaking.
Collapse
|
8
|
Briz-Cid N, Pose-Juan E, Nicoletti M, Simal-Gándara J, Fasoli E, Rial-Otero R. Influence of tetraconazole on the proteome profile of Saccharomyces cerevisiae Lalvin T73™ strain. J Proteomics 2020; 227:103915. [PMID: 32711165 DOI: 10.1016/j.jprot.2020.103915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022]
Abstract
This work aimed to evaluate the modifications on the proteome profile of Saccharomyces cerevisiae T73™ strain as a consequence of its adaptive response to the presence of tetraconazole molecules in the fermentation medium. Pasteurised grape juices were separately supplemented with tetraconazole or a commercial formulation containing 12.5% w/v of tetraconazole at two concentration levels. In addition, experiments without fungicides were developed for comparative purposes. Proteome profiles of yeasts cultured in the presence or absence of fungicide molecules were different. Independently of the fungicide treatment applied, the highest variations concerning the control sample were observed for those proteins involved in metabolic processes, especially in the metabolism of nitrogen compounds. Tetraconazole molecules altered the abundance of several enzymes involved in the biosynthesis of amino acids, purines, and ergosterol. Moreover, differences in the abundance of several enzymes of the TCA cycle were found. Changes observed were different between the active substance and the commercial formulation. SIGNIFICANCE: The presence of fungicide residues in grape juice has direct implications on the development of the aromatic profile of the wine. These alterations could be related to changes in the secondary metabolism of yeasts. However, the molecular mechanisms involved in the response of yeasts to fungicide residues remains quite unexplored. Through this exhaustive proteomic study, alterations in the amino acids biosynthesis pathways due to the presence of the tetraconazole molecules were observed. Amino acids are precursors of some important higher alcohols and ethyl acetates (such as methionol, 2-phenylethanol, isoamyl alcohol or 2-phenylacetate). Besides, the effect of tetraconazole on the ergosterol biosynthesis pathway could be related to a higher production of medium-chain fatty acids and their corresponding ethyl acetates.
Collapse
Affiliation(s)
- Noelia Briz-Cid
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004-Ourense, Spain
| | - Eva Pose-Juan
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004-Ourense, Spain
| | - Maria Nicoletti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan 20131, Italy
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004-Ourense, Spain
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan 20131, Italy.
| | - Raquel Rial-Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004-Ourense, Spain.
| |
Collapse
|
9
|
Effect of pesticide residues on simulated beer brewing and its inhibition elimination by pesticide-degrading enzyme. J Biosci Bioeng 2020; 130:496-502. [PMID: 32758402 DOI: 10.1016/j.jbiosc.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022]
Abstract
Four different pesticide residues used in barley planting were selected to investigate their effects on simulated beer brewing. The influences were found to be different by varied agricultural chemicals. Among the four types of pesticides, at 25 μg/mL, triadimefon or carbendazim barely affected the brewing progress. However, ethametsulfuron-methyl and carbaryl (15 μg/mL and 2.5 μg/mL, respectively) exhibited slightly inhibition on saccharification and significantly negative impacts on yeast growth and alcohol fermentation. After pretreated by 50 μL carbaryl-degrading enzyme with the Kcat value of 2.12 s-1 at 30°C for 90 min, the negative influence on simulated beer brewing brought by carbaryl can be eliminated in the fermentation system containing 2.5 μg/mL carbaryl. The efficiency of ethanol fermentation was improved, and the removal rate of carbaryl in the brewing system was greatly accelerated. Taken together, this study suggested a potential method for solving the fermentation inhibition by pesticide residues.
Collapse
|
10
|
Cai Z, Ruan Y, He J, Dang Y, Cao J, Sun Y, Pan D, Tian H. Effects of microbial fermentation on the flavor of cured duck legs. Poult Sci 2020; 99:4642-4652. [PMID: 32868009 PMCID: PMC7598141 DOI: 10.1016/j.psj.2020.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/14/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, fermentation with Lactobacillus plantarum and Saccharomyces cerevisiae was applied to improve the flavor of cured duck leg meat. Odor and taste evaluations, lipid oxidation, volatile flavor substances, and protein degradation were determined to investigate the effects of microbial fermentation on flavor improvement. The results showed that the utilization of L. plantarum represented the most significant effect on lipid peroxidation inhibition (the lowest value of thiobarbituric acid reactive substances and the highest content of polyunsaturated fatty acids) and also enhanced the generation of volatile flavor substances than nonfermented duck meat. Microbial fermentation accelerated protein degradation in duck meat. S. cerevisiae could produce glutamate to promote the umami taste flavor of cured duck leg meat, and L. plantarum significantly improved the sweet taste by releasing alanine. Meanwhile, mixed fermentation with the two microbial species resulted in the combination of both of their advantages. These findings not only indicate the potential application of microbial fermentation in characteristic duck meat but also indicate that fermentation improves sensory properties of duck products significantly.
Collapse
Affiliation(s)
- Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yifan Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Hongwei Tian
- Hubei Zhouheiya Enterprise Development Co. Ltd., Wuhan 430040, PR China
| |
Collapse
|
11
|
Jain A, Piplani P. Exploring the Chemistry and Therapeutic Potential of Triazoles: A Comprehensive Literature Review. Mini Rev Med Chem 2019; 19:1298-1368. [DOI: 10.2174/1389557519666190312162601] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
:
Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological
properties, which could play a major role in the common mechanisms associated with various disorders
like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural
modification of this scaffold could be helpful in the generation of new therapeutically useful
agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole,
there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic
prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole
derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological
activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives
has also been incorporated. The objective of the review is to provide insights to designing and
synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
12
|
A green one-pot synthesis of 3(5)-substituted 1,2,4-triazol-5(3)-amines as potential antimicrobial agents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01714-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Pesticide Residues and Stuck Fermentation in Wine: New Evidences Indicate the Urgent Need of Tailored Regulations. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5010023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
For three consecutive years, an Italian winery in Apulia has dealt with sudden alcoholic stuck fermentation in the early stages of vinification process, i.e., typical defects addressable to bacterial spoilage. After a prescreening trial, we assessed, for the first time, the influence of the commercial fungicide preparation Ridomil Gold® (Combi Pepite), containing Metalaxyl-M (4.85%) and Folpet (40%) as active principles, on the growth of several yeasts (Saccharomyces cerevisiae and non-Saccharomyces spp.) and lactic acid bacteria of oenological interest. We also tested, separately and in combination, the effects of Metalaxyl-M and Folpet molecules on microbial growth both in culture media and in grape must. We recalled the attention on Folpet negative effect on yeasts, extending its inhibitory spectrum on non-Saccharomyces (e.g., Candida spp.). Moreover, we highlighted a synergic effect of Metalaxyl-M and Folpet used together and a possible inhibitory role of the fungicide excipients. Interestingly, we identified the autochthonous S. cerevisiae strain E4 as moderately resistant to the Folpet toxicity. Our findings clearly indicate the urgent need for integrating the screening procedures for admission of pesticides for use on wine grape with trials testing their effects on the physiology of protechnological microbes.
Collapse
|
14
|
Mörtl M, Klátyik S, Molnár H, Tömösközi-Farkas R, Adányi N, Székács A. The effect of intensive chemical plant protection on the quality of spice paprika. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
|
16
|
Jiang X, Yang T, Li C, Zhang R, Zhang L, Zhao X, Zhu H. Rapid Liquid Recognition and Quality Inspection with Graphene Test Papers. GLOBAL CHALLENGES (HOBOKEN, NJ) 2017; 1:1700037. [PMID: 31565284 PMCID: PMC6607296 DOI: 10.1002/gch2.201700037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/05/2017] [Indexed: 05/24/2023]
Abstract
Electronic tongue is widely applied in liquid sensing for applications in various fields, such as environmental monitoring, healthcare, and food quality test. A rapid and simple liquid-sensing method can greatly facilitate the routine quality tests of liquids. Nanomaterials can help miniaturize sensing devices. In this work, a broad-spectrum liquid-sensing system is developed for rapid liquid recognition based on disposable graphene-polymer nanocomposite test paper prepared through ion-assisted filtration. Using this liquid-sensing system, a number of complex liquids are successfully recognized, including metal salt solutions and polymer solutions. The electronic tongue system is especially suitable for checking the quality of the foodstuff, including soft drinks, alcoholic liquor, and milk. The toxicants in these liquids can be readily detected. Furthermore, the novel material-structure design and liquid-detection method can be expanded to other chemical sensors, which can greatly enrich the chemical information collected from the electrical response of single chemiresistor platform.
Collapse
Affiliation(s)
- Xin Jiang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
- Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
| | - Tingting Yang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
- Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
| | - Changli Li
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Rujing Zhang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Li Zhang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Xuanliang Zhao
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
- Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
| | - Hongwei Zhu
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
- Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
| |
Collapse
|
17
|
Nunes CDSO, de Carvalho GBM, da Silva MLC, da Silva GP, Machado BAS, Uetanabaro APT. Cocoa pulp in beer production: Applicability and fermentative process performance. PLoS One 2017; 12:e0175677. [PMID: 28419110 PMCID: PMC5395165 DOI: 10.1371/journal.pone.0175677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/29/2017] [Indexed: 11/18/2022] Open
Abstract
This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis.
Collapse
Affiliation(s)
- Cassiane da Silva Oliveira Nunes
- Department of Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus, Bahia, Brazil
- Bahia Federal Institute Catu Campus, Catu, Bahia, Brazil
- * E-mail:
| | | | | | | | - Bruna Aparecida Souza Machado
- Department of Biotechnology and Food, Faculty of Technology, SENAI/CIMATEC, National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
- Institute of Technology in Health, Faculty of Technology, SENAI/CIMATEC, National Service of Industrial Learning–SENAI, Salvador, Bahia, Brazil
| | | |
Collapse
|