1
|
Lin K, Coutellier L. Voltage-Gated Ca 2+ Channels in Prefrontal Parvalbumin Neurons Are Essential for Stress-Induced Depression. Acta Physiol (Oxf) 2025; 241:e70053. [PMID: 40347053 DOI: 10.1111/apha.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Affiliation(s)
- Katrina Lin
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
2
|
Conti R, Auger C. Associative plasticity of granule cell inputs to cerebellar Purkinje cells. eLife 2024; 13:RP96140. [PMID: 39660722 PMCID: PMC11634063 DOI: 10.7554/elife.96140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.
Collapse
Affiliation(s)
- Rossella Conti
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the NeurosciencesParisFrance
| | - Céline Auger
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the NeurosciencesParisFrance
| |
Collapse
|
3
|
van Midden VM, Pirtošek Z, Kojović M. The Effect of taVNS on the Cerebello-Thalamo-Cortical Pathway: a TMS Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1013-1019. [PMID: 37639175 PMCID: PMC11102382 DOI: 10.1007/s12311-023-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
fMRI studies show activation of cerebellum during transcutaneous auricular vagal nerve stimulation (taVNS); however, there is no evidence whether taVNS induced activation of the cerebellum translates to the cerebellar closed loops involved in motor functions. We assessed the propensity of taVNS at 25 Hz (taVNS25) and 100 Hz (taVNS100) to modulate cerebello-thalamo-cortical pathways using transcranial magnetic stimulation. In our double blind within-subjects study thirty-two participants completed one visit during which cerebellar brain inhibition (CBI) was assessed at baseline (no stimulation) and in a randomized order during taVNS100, taVNS25, and sham taVNS (xVNS). Generalized linear mixed models with gamma distribution were built to assess the effect of taVNS on CBI. The estimated marginal means of linear trends during each taVNS condition were computed and compared in a pairwise fashion with Benjamini-Hochberg correction for multiple comparisons. CBI significantly increased during taVNS100 compared to taVNS25 and xVNS (p = 0.0003 and p = 0.0465, respectively). The taVNS current intensity and CBI conditioning stimulus intensity had no significant effect on CBI. taVNS has a frequency dependent propensity to modulate the cerebello-thalamo-cortical pathway. The cerebellum participates in closed-loop circuits involved in motor, cognitive, and affective operations and may serve as an entry for modulating effects of taVNS.
Collapse
Affiliation(s)
- Vesna M van Midden
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Lee J, Kim SH, Jang DC, Jang M, Bak MS, Shim HG, Lee YS, Kim SJ. Intrinsic plasticity of Purkinje cell serves homeostatic regulation of fear memory. Mol Psychiatry 2024; 29:247-256. [PMID: 38017229 DOI: 10.1038/s41380-023-02320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Two forms of plasticity, synaptic and intrinsic, are neural substrates for learning and memory. Abnormalities in homeostatic plasticity cause severe neuropsychiatric diseases, such as schizophrenia and autism. This suggests that the balance between synaptic transmission and intrinsic excitability is important for physiological function in the brain. Despite the established role of synaptic plasticity between parallel fiber (PF) and Purkinje cell (PC) in fear memory, its relationship with intrinsic plasticity is not well understood. Here, patch clamp recording revealed depression of intrinsic excitability in PC following auditory fear conditioning (AFC). Depressed excitability balanced long-term potentiation of PF-PC synapse to serve homeostatic regulation of PF-evoked PC firing. We then optogenetically manipulated PC excitability during the early consolidation period resulting in bidirectional regulation of fear memory. Fear conditioning-induced synaptic plasticity was also regulated following optogenetic manipulation. These results propose intrinsic plasticity in PC as a novel mechanism of fear memory and elucidate that decreased intrinsic excitability in PC counterbalances PF-PC synaptic potentiation to maintain fear memory in a normal range.
Collapse
Affiliation(s)
- Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Dong Cheol Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Myeong Seong Bak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
5
|
Binda F, Spaeth L, Kumar A, Isope P. Excitation and Inhibition Delays within a Feedforward Inhibitory Pathway Modulate Cerebellar Purkinje Cell Output in Mice. J Neurosci 2023; 43:5905-5917. [PMID: 37495382 PMCID: PMC10436687 DOI: 10.1523/jneurosci.0091-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The cerebellar cortex computes sensorimotor information from many brain areas through a feedforward inhibitory (FFI) microcircuit between the input stage, the granule cell (GC) layer, and the output stage, the Purkinje cells (PCs). Although in other brain areas FFI underlies a precise excitation versus inhibition temporal correlation, recent findings in the cerebellum highlighted more complex behaviors at GC-molecular layer interneuron (MLI)-PC pathway. To dissect the temporal organization of this cerebellar FFI pathway, we combined ex vivo patch-clamp recordings of PCs in male mice with a viral-based strategy to express Channelrhodopsin2 in a subset of mossy fibers (MFs), the major excitatory inputs to GCs. We show that although light-mediated MF activation elicited pairs of excitatory and inhibitory postsynaptic currents in PCs, excitation (E) from GCs and inhibition (I) from MLIs reached PCs with a wide range of different temporal delays. However, when GCs were directly stimulated, a low variability in E/I delays was observed. Our results demonstrate that in many recordings MF stimulation recruited different groups of GCs that trigger E and/or I, and expanded PC temporal synaptic integration. Finally, using a computational model of the FFI pathway, we showed that this temporal expansion could strongly influence how PCs integrate GC inputs. Our findings show that specific E/I delays may help PCs encoding specific MF inputs.SIGNIFICANCE STATEMENT Sensorimotor information is conveyed to the cerebellar cortex by mossy fibers. Mossy fiber inputs activate granule cells that excite molecular interneurons and Purkinje cells, the sole output of the cerebellar cortex, leading to a sequence of synaptic excitation and inhibition in Purkinje cells, thus defining a feedforward inhibitory pathway. Using electrophysiological recordings, optogenetic stimulation, and mathematical modeling, we demonstrated that different groups of granule cells can elicit synaptic excitation and inhibition with various latencies onto Purkinje cells. This temporal variability controls how granule cells influence Purkinje cell discharge and may support temporal coding in the cerebellar cortex.
Collapse
Affiliation(s)
- Francesca Binda
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Arvind Kumar
- Division of Computational Science and Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
6
|
Hirono M, Nakata M. Ghrelin signaling in the cerebellar cortex enhances GABAergic transmission onto Purkinje cells. Sci Rep 2023; 13:2150. [PMID: 36750743 PMCID: PMC9905081 DOI: 10.1038/s41598-023-29226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Ghrelin, an orexigenic peptide ligand for growth hormone secretagogue receptor 1a (GHS-R1a), occurs not only in the stomach but also in the brain, and modulates neuronal activity and synaptic efficacy. Previous studies showed that GHS-R1a exists in the cerebellum, and ghrelin facilitates spontaneous firing of Purkinje cells (PCs). However, the effects of ghrelin on cerebellar GABAergic transmission have yet to be elucidated. We found that ghrelin enhanced GABAergic transmission between molecular layer interneurons (MLIs) and PCs using electrophysiological recordings in mouse cerebellar slices. This finding was consistent with the possibility that blocking synaptic transmission enhanced the ghrelin-induced facilitation of PC firing. Ghrelin profoundly increased the frequency of spontaneous inhibitory postsynaptic currents (IPSCs) in PCs without affecting miniature or stimulation-evoked IPSCs, whereas it significantly facilitated spontaneous firing of MLIs. This facilitation of MLI spiking disappeared during treatments with blockers of GHS-R1a, type 1 transient receptor potential canonical (TRPC1) channels and KCNQ channels. These results suggest that both activating TRPC1 channels and inhibiting KCNQ channels occur downstream the ghrelin-GHS-R1a signaling pathway probably in somatodendritic sites of MLIs. Thus, ghrelin can control PC firing directly and indirectly via its modulation of GABAergic transmission, thereby impacting activity in cerebellar circuitry.
Collapse
Affiliation(s)
- Moritoshi Hirono
- Department of Physiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan.
| | - Masanori Nakata
- Department of Physiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| |
Collapse
|
7
|
Tjaden J, Eickhoff A, Stahlke S, Gehmeyr J, Vorgerd M, Theis V, Matschke V, Theiss C. Expression Pattern of T-Type Ca 2+ Channels in Cerebellar Purkinje Cells after VEGF Treatment. Cells 2021; 10:2277. [PMID: 34571926 PMCID: PMC8470219 DOI: 10.3390/cells10092277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/04/2022] Open
Abstract
T-type Ca2+ channels, generating low threshold calcium influx in neurons, play a crucial role in the function of neuronal networks and their plasticity. To further investigate their role in the complex field of research in plasticity of neurons on a molecular level, this study aimed to analyse the impact of the vascular endothelial growth factor (VEGF) on these channels. VEGF, known as a player in vasculogenesis, also shows potent influence in the central nervous system, where it elicits neuronal growth. To investigate the influence of VEGF on the three T-type Ca2+ channel isoforms, Cav3.1 (encoded by Cacna1g), Cav3.2 (encoded by Cacna1h), and Cav3.3 (encoded by Cacna1i), lasermicrodissection of in vivo-grown Purkinje cells (PCs) was performed, gene expression was analysed via qPCR and compared to in vitro-grown PCs. We investigated the VEGF receptor composition of in vivo- and in vitro-grown PCs and underlined the importance of VEGF receptor 2 for PCs. Furthermore, we performed immunostaining of T-type Ca2+ channels with in vivo- and in vitro-grown PCs and showed the distribution of T-type Ca2+ channel expression during PC development. Overall, our findings provide the first evidence that the mRNA expression of Cav3.1, Cav3.2, and Cav3.3 increases due to VEGF stimulation, which indicates an impact of VEGF on neuronal plasticity.
Collapse
Affiliation(s)
- Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Annika Eickhoff
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Julian Gehmeyr
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany;
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (J.T.); (A.E.); (S.S.); (J.G.); (V.T.); (V.M.)
| |
Collapse
|
8
|
González-Calvo I, Iyer K, Carquin M, Khayachi A, Giuliani FA, Sigoillot SM, Vincent J, Séveno M, Veleanu M, Tahraoui S, Albert M, Vigy O, Bosso-Lefèvre C, Nadjar Y, Dumoulin A, Triller A, Bessereau JL, Rondi-Reig L, Isope P, Selimi F. Sushi domain-containing protein 4 controls synaptic plasticity and motor learning. eLife 2021; 10:65712. [PMID: 33661101 PMCID: PMC7972451 DOI: 10.7554/elife.65712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Inés González-Calvo
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Keerthana Iyer
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Carquin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Anouar Khayachi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Fernando A Giuliani
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Séverine M Sigoillot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Jean Vincent
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Maxime Veleanu
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Sylvana Tahraoui
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Albert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Oana Vigy
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Célia Bosso-Lefèvre
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Yann Nadjar
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Andréa Dumoulin
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut Neuromyogène, Lyon, France
| | - Laure Rondi-Reig
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
9
|
Israely S, Leisman G. Can neuromodulation techniques optimally exploit cerebello-thalamo-cortical circuit properties to enhance motor learning post-stroke? Rev Neurosci 2020; 30:821-837. [PMID: 31194694 DOI: 10.1515/revneuro-2019-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Individuals post-stroke sustain motor deficits years after the stroke. Despite recent advancements in the applications of non-invasive brain stimulation techniques and Deep Brain Stimulation in humans, there is a lack of evidence supporting their use for rehabilitation after brain lesions. Non-invasive brain stimulation is already in use for treating motor deficits in individuals with Parkinson's disease and post-stroke. Deep Brain Stimulation has become an established treatment for individuals with movement disorders, such as Parkinson's disease, essential tremor, epilepsy, cerebral palsy and dystonia. It has also been utilized for the treatment of Tourette's syndrome, Alzheimer's disease and neuropsychiatric conditions such as obsessive-compulsive disorder, major depression and anorexia nervosa. There exists growing scientific knowledge from animal studies supporting the use of Deep Brain Stimulation to enhance motor recovery after brain damage. Nevertheless, these results are currently not applicable to humans. This review details the current literature supporting the use of these techniques to enhance motor recovery, both from human and animal studies, aiming to encourage development in this domain.
Collapse
Affiliation(s)
- Sharon Israely
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Gerry Leisman
- Department of Physiotherapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Universidad de Ciencias Médicas Instituto de Neurología y Neurocirugía, Neurofisiología Clinica, Havana, Cuba
| |
Collapse
|
10
|
Binda F, Pernaci C, Saxena S. Cerebellar Development and Circuit Maturation: A Common Framework for Spinocerebellar Ataxias. Front Neurosci 2020; 14:293. [PMID: 32300292 PMCID: PMC7145357 DOI: 10.3389/fnins.2020.00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) affect the cerebellum and its afferent and efferent systems that degenerate during disease progression. In the cerebellum, Purkinje cells (PCs) are the most vulnerable and their prominent loss in the late phase of the pathology is the main characteristic of these neurodegenerative diseases. Despite the constant advancement in the discovery of affected molecules and cellular pathways, a comprehensive description of the events leading to the development of motor impairment and degeneration is still lacking. However, in the last years the possible causal role for altered cerebellar development and neuronal circuit wiring in SCAs has been emerging. Not only wiring and synaptic transmission deficits are a common trait of SCAs, but also preventing the expression of the mutant protein during cerebellar development seems to exert a protective role. By discussing this tight relationship between cerebellar development and SCAs, in this review, we aim to highlight the importance of cerebellar circuitry for the investigation of SCAs.
Collapse
Affiliation(s)
- Francesca Binda
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carla Pernaci
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F. Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing. eLife 2019; 8:41586. [PMID: 31081751 PMCID: PMC6533085 DOI: 10.7554/elife.41586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/11/2019] [Indexed: 12/14/2022] Open
Abstract
Information processing by cerebellar molecular layer interneurons (MLIs) plays a crucial role in motor behavior. MLI recruitment is tightly controlled by the profile of short-term plasticity (STP) at granule cell (GC)-MLI synapses. While GCs are the most numerous neurons in the brain, STP diversity at GC-MLI synapses is poorly documented. Here, we studied how single MLIs are recruited by their distinct GC inputs during burst firing. Using slice recordings at individual GC-MLI synapses of mice, we revealed four classes of connections segregated by their STP profile. Each class differentially drives MLI recruitment. We show that GC synaptic diversity is underlain by heterogeneous expression of synapsin II, a key actor of STP and that GC terminals devoid of synapsin II are associated with slow MLI recruitment. Our study reveals that molecular, structural and functional diversity across GC terminals provides a mechanism to expand the coding range of MLIs.
Collapse
Affiliation(s)
- Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie in vitro, CNRS UPS 3156, Strasbourg, France
| | - Yannick Bailly
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France.,Plateforme Imagerie in vitro, CNRS UPS 3156, Strasbourg, France
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): A systematic review. Neurosci Biobehav Rev 2017; 86:176-206. [PMID: 29208533 DOI: 10.1016/j.neubiorev.2017.11.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/25/2017] [Indexed: 12/24/2022]
Abstract
The inhibitory tone that the cerebellum exerts on the primary motor cortex (M1) is known as cerebellar brain inhibition (CBI). Studies show CBI to be relevant to several motor functions, including adaptive motor learning and muscle control. CBI can be assessed noninvasively via transcranial magnetic stimulation (TMS) using a double-coil protocol. Variability in parameter choice and controversy surrounding the protocol's ability to isolate the cerebellothalamocortical pathway casts doubt over its validity in neuroscience research. This justifies a systematic review of both the protocol, and its application. The following review examines studies using the double-coil protocol to assess CBI in healthy adults. Parameters and CBI in relation to task-based studies, other non-invasive protocols, over different muscles, and in clinical samples are reviewed. Of the 1398 studies identified, 24 met selection criteria. It was found that methodological design and selection of parameters in several studies may have reduced the validity of outcomes. Further systematic testing of CBI protocols is warranted, both from a parameter and task-based perspective.
Collapse
Affiliation(s)
- Lara Fernandez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia.
| | - Brendan P Major
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, 3220, Australia
| | - Linda K Byrne
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia; Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| |
Collapse
|