1
|
Cao L, She Z, Zhao Y, Cheng C, Li Y, Xu T, Mao H, Zhang Y, Hui X, Lin X, Wang T, Sun X, Huang K, Zhao L, Jin M. Inhibition of RAN attenuates influenza a virus replication and nucleoprotein nuclear export. Emerg Microbes Infect 2024; 13:2387910. [PMID: 39087696 PMCID: PMC11321118 DOI: 10.1080/22221751.2024.2387910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Nuclear export of the viral ribonucleoprotein (vRNP) is a critical step in the influenza A virus (IAV) life cycle and may be an effective target for the development of anti-IAV drugs. The host factor ras-related nuclear protein (RAN) is known to participate in the life cycle of several viruses, but its role in influenza virus replication remains unknown. In the present study, we aimed to determine the function of RAN in influenza virus replication using different cell lines and subtype strains. We found that RAN is essential for the nuclear export of vRNP, as it enhances the binding affinity of XPO1 toward the viral nuclear export protein NS2. Depletion of RAN constrained the vRNP complex in the nucleus and attenuated the replication of various subtypes of influenza virus. Using in silico compound screening, we identified that bepotastine could dissociate the RAN-XPO1-vRNP trimeric complex and exhibit potent antiviral activity against influenza virus both in vitro and in vivo. This study demonstrates the important role of RAN in IAV replication and suggests its potential use as an antiviral target.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Ziwei She
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Ya Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Chuxing Cheng
- Wuhan Keqian Biological Co. Ltd., Wuhan, People’s Republic of China
| | - Yaqin Li
- Wuhan Keqian Biological Co. Ltd., Wuhan, People’s Republic of China
| | - Ting Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Yumei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Xianfeng Hui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Ting Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
| | - Lianzhong Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People’s Republic of China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People’s Republic of China
- Hubei Jiangxia Laboratory, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Savin IA, Sen’kova AV, Goncharova EP, Zenkova MA, Markov AV. Novel Core Gene Signature Associated with Inflammation-to-Metaplasia Transition in Influenza A Virus-Infected Lungs. Int J Mol Sci 2024; 25:11958. [PMID: 39596028 PMCID: PMC11594146 DOI: 10.3390/ijms252211958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Respiratory infections caused by RNA viruses are a major contributor to respiratory disease due to their ability to cause annual epidemics with profound public health implications. Influenza A virus (IAV) infection can affect a variety of host signaling pathways that initiate tissue regeneration with hyperplastic and/or dysplastic changes in the lungs. Although these changes are involved in lung recovery after IAV infection, in some cases, they can lead to serious respiratory failure. Despite being ubiquitously observed, there are limited data on the regulation of long-term recovery from IAV infection leading to normal or dysplastic repair represented by inflammation-to-metaplasia transition in mice or humans. To address this knowledge gap, we used integrative bioinformatics analysis with further verification in vivo to elucidate the dynamic molecular changes in IAV-infected murine lung tissue and identified the core genes (Birc5, Cdca3, Plk1, Tpx2, Prc1. Rrm2, Nusap1, Spag5, Top2a, Mcm5) and transcription factors (E2F1, E2F4, NF-YA, NF-YB, NF-YC) involved in persistent lung injury and regeneration processes, which may serve as gene signatures reflecting the long-term effects of IAV proliferation on the lung. Further analysis of the identified core genes revealed their involvement not only in IAV infection but also in COVID-19 and lung neoplasm development, suggesting their potential role as biomarkers of severe lung disease and its complications represented by abnormal epithelial proliferation and oncotransformation.
Collapse
|
3
|
Phosphorylation of Influenza A Virus Matrix Protein 1 at Threonine 108 Controls Its Multimerization State and Functional Association with the STRIPAK Complex. mBio 2023; 14:e0323122. [PMID: 36602306 PMCID: PMC9973344 DOI: 10.1128/mbio.03231-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The influenza A virus (IAV)-encoded matrix protein 1 (M1) acts as a master regulator of virus replication and fulfills multiple structural and regulatory functions in different cell compartments. Therefore, the spatiotemporal regulation of M1 is achieved by different mechanisms, including its structural and pH-dependent flexibility, differential association with cellular factors, and posttranslational modifications. Here, we investigated the function of M1 phosphorylation at the evolutionarily conserved threonine 108 (T108) and found that its mutation to a nonphosphorylatable alanine prohibited virus replication. Absent T108, phosphorylation led to strongly increased self-association of M1 at the cell membrane and consequently prohibited its ability to enter the nucleus and to contribute to viral ribonucleoprotein nuclear export. M1 T108 phosphorylation also controls the binding affinity to the cellular STRIPAK (striatin-interacting phosphatases and kinases) complex, which contains different kinases and the phosphatase PP2A to shape phosphorylation-dependent signaling networks. IAV infection led to the redistribution of the STRIPAK scaffolding subunits STRN and STRN3 from the cell membrane to cytosolic and perinuclear clusters, where it colocalized with M1. Inactivation of the STRIPAK complex resulted in compromised M1 polymerization and IAV replication. IMPORTANCE Influenza viruses pose a major threat to human health and cause annual epidemics and occasional pandemics. Many virus-encoded proteins exert various functions in different subcellular compartments, as exemplified by the M1 protein, but the molecular mechanisms endowing the multiplicity of functions remain incompletely understood. Here, we report that phosphorylation of M1 at T108 is essential for virus replication and controls its propensity for self-association and nuclear localization. This phosphorylation also controls binding affinity of the M1 protein to the STRIPAK complex, which contributes to M1 polymerization and virus replication.
Collapse
|
4
|
Scholl A, De S. Epigenetic Regulation by Polycomb Complexes from Drosophila to Human and Its Relation to Communicable Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms232012285. [PMID: 36293135 PMCID: PMC9603650 DOI: 10.3390/ijms232012285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Although all cells in the human body are made of the same DNA, these cells undergo differentiation and behave differently during development, through integration of external and internal stimuli via 'specific mechanisms.' Epigenetics is one such mechanism that comprises DNA/RNA, histone modifications, and non-coding RNAs that regulate transcription without changing the genetic code. The discovery of the first Polycomb mutant phenotype in Drosophila started the study of epigenetics more than 80 years ago. Since then, a considerable number of Polycomb Group (PcG) genes in Drosophila have been discovered to be preserved in mammals, including humans. PcG proteins exert their influence through gene repression by acting in complexes, modifying histones, and compacting the chromatin within the nucleus. In this article, we discuss how our knowledge of the PcG repression mechanism in Drosophila translates to human communicable disease research.
Collapse
|
5
|
SUMOylation of matrix protein M1 and filamentous morphology collectively contribute to the replication and virulence of highly pathogenic H5N1 avian influenza viruses in mammals. J Virol 2021; 96:e0163021. [PMID: 34908445 PMCID: PMC8865470 DOI: 10.1128/jvi.01630-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The matrix protein (M1) of influenza A virus plays an important role in replication, assembly, and budding. A previous study found that aspartic acid (D) at position 30 and alanine (A) at position 215 of M1 contribute to the high pathogenicity of H5N1 viruses in mice, and double mutations of D to asparagine (N) at position 30 (D30N) and A to threonine (T) at position 215 (A215T) in M1 dramatically attenuate H5N1 viruses in mice. However, the underlying mechanisms by which these M1 mutations attenuate the virulence of H5N1 viruses are unknown. Here, we found that the amino acid mutation A215T eliminates the SUMOylation of M1 by reducing its interaction with the host SUMO1 protein, significantly reducing the stability of M1, slowing the export of the M1-vRNP complex from the nucleus to the cytoplasm, and reducing viral replication in MDCK cells. We further found that the D30N mutation in M1 alters the shape of progeny viruses from filamentous to spherical virions. Our findings reveal an essential role for M1 215A SUMOylation and M1 30D-related filamentous morphology in the pathogenesis of avian influenza viruses, which could be targeted in novel antiviral drug designs. IMPORTANCE Identification of the pathogenic mechanism of highly pathogenic avian influenza viruses in mammals is helpful to develop novel anti-influenza virus strategies. Two amino acid mutations (D30N and A215T) in M1 were found to collectively attenuate H5N1 influenza viruses in mice, but the underlying mechanism remained unknown. This study found that the A215T mutation significantly decreases the SUMOylation of M1, which in turn attenuates the replication of H5N1 virus in mammalian cells. The D30N mutation in M1 was found to change the virion shape from filamentous to spherical. These findings are important for understanding the molecular mechanism of virulence of highly pathogenic avian influenza viruses in mammals.
Collapse
|
6
|
A Noncanonical Function of Polycomb Repressive Complexes Promotes Human Cytomegalovirus Lytic DNA Replication and Serves as a Novel Cellular Target for Antiviral Intervention. J Virol 2019; 93:JVI.02143-18. [PMID: 30814291 DOI: 10.1128/jvi.02143-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
Chromatin-based modifications of herpesviral genomes play a crucial role in dictating the outcome of infection. Consistent with this, host cell multiprotein complexes, such as polycomb repressive complexes (PRCs), were proposed to act as epigenetic regulators of herpesviral latency. In particular, PRC2 has recently been shown to contribute to the silencing of human cytomegalovirus (HCMV) genomes. Here, we identify a novel proviral role of PRC1 and PRC2, the two main polycomb repressive complexes, during productive HCMV infection. Western blot analyses revealed strong HCMV-mediated upregulation of RING finger protein 1B (RING1B) and B lymphoma Moloney murine leukemia virus insertion region 1 homolog (BMI1) as well as of enhancer of zeste homolog 2 (EZH2), suppressor of zeste 12 (SUZ12), and embryonic ectoderm development (EED), which constitute the core components of PRC1 and PRC2, respectively. Furthermore, we observed a relocalization of PRC components to viral replication compartments, whereas histone modifications conferred by the respective PRCs were specifically excluded from these sites. Depletion of individual PRC1/PRC2 proteins by RNA interference resulted in a significant reduction of newly synthesized viral genomes and, in consequence, a decreased release of viral particles. Furthermore, accelerated native isolation of protein on nascent DNA (aniPOND) revealed a physical association of EZH2 and BMI1 with nascent HCMV DNA, suggesting a direct contribution of PRC proteins to viral DNA replication. Strikingly, substances solely inhibiting the enzymatic activity of PRC1/2 did not exert antiviral effects, while drugs affecting the abundance of PRC core components strongly compromised HCMV genome synthesis and particle release. Taken together, our data reveal an enzymatically independent, noncanonical function of both PRC1 and PRC2 during HCMV DNA replication, which may serve as a novel cellular target for antiviral therapy.IMPORTANCE Polycomb group (PcG) proteins are primarily known as transcriptional repressors that modify chromatin and contribute to the establishment and maintenance of cell fates. Furthermore, emerging evidence indicates that overexpression of PcG proteins in various types of cancers contributes to the dysregulation of cellular proliferation. Consequently, several inhibitors targeting PcG proteins are presently undergoing preclinical and clinical evaluation. Here, we show that infection with human cytomegalovirus also induces a strong upregulation of several PcG proteins. Our data suggest that viral DNA replication depends on a noncanonical function of polycomb repressor complexes which is independent of the so-far-described enzymatic activities of individual PcG factors. Importantly, we observe that a subclass of inhibitory drugs that affect the abundance of PcG proteins strongly interferes with viral replication. This principle may serve as a novel promising target for antiviral treatment.
Collapse
|
7
|
Sekiya T, Murano K, Kato K, Kawaguchi A, Nagata K. Mitotic phosphorylation of CCCTC-binding factor (CTCF) reduces its DNA binding activity. FEBS Open Bio 2017; 7:397-404. [PMID: 28286735 PMCID: PMC5337899 DOI: 10.1002/2211-5463.12189] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/30/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022] Open
Abstract
During mitosis, higher order chromatin structures are disrupted and chromosomes are condensed to achieve accurate chromosome segregation. CCCTC‐binding factor (CTCF) is a highly conserved and ubiquitously expressed C2H2‐type zinc finger protein which is considered to be involved in epigenetic memory through regulation of higher order chromatin architecture. However, the regulatory mechanism of CTCF in mitosis is still unclear. Here we found that the DNA‐binding activity of CTCF is regulated in a phosphorylation‐dependent manner during mitosis. The linker domains of the CTCF zinc finger domain were found to be phosphorylated during mitosis. The phosphorylation of linker domains impaired the DNA‐binding activity in vitro. Mutation analyses showed that amino acid residues (Thr289, Thr317, Thr346, Thr374, Ser402, Ser461, and Thr518) located in the linker domains were phosphorylated during mitosis. Based on these results, we propose that the mitotic phosphorylation of the linker domains of CTCF is important for the dissociation of CTCF from mitotic chromatin.
Collapse
Affiliation(s)
- Takeshi Sekiya
- Department of Infection Biology Faculty of Medicine and Graduate School of Comprehensive Human Science University of Tsukuba Japan
| | - Kensaku Murano
- Department of Molecular Biology Keio University School of Medicine Tokyo Japan
| | - Kohsuke Kato
- Department of Infection BiologyFaculty of Medicine and Graduate School of Comprehensive Human ScienceUniversity of TsukubaJapan; Faculty of MedicineUniversity of TsukubaJapan
| | - Atsushi Kawaguchi
- Department of Infection BiologyFaculty of Medicine and Graduate School of Comprehensive Human ScienceUniversity of TsukubaJapan; Faculty of MedicineUniversity of TsukubaJapan
| | | |
Collapse
|
8
|
Abstract
At every step of their replication cycle influenza viruses depend heavily on their host cells. The multifaceted interactions that occur between the virus and its host cell determine the outcome of the infection, including efficiency of progeny virus production, tropism, and pathogenicity. In order to understand viral disease and develop therapies for influenza it is therefore pertinent to study the intricate interplay between influenza viruses and their required host factors. Here, we review the current knowledge on host cell factors required by influenza virus at the different stages of the viral replication cycle. We also discuss the roles of host factors in zoonotic transmission of influenza viruses and their potential for developing novel antivirals.
Collapse
|