1
|
Hossein Garakani M, Kakavand K, Sabbaghian M, Ghaheri A, Masoudi NS, Shahhoseini M, Hassanzadeh V, Zamanian M, Meybodi AM, Moradi SZ. Comprehensive analysis of chromosomal breakpoints and candidate genes associated with male infertility: insights from cytogenetic studies and expression analyses. Mamm Genome 2024; 35:764-783. [PMID: 39358566 DOI: 10.1007/s00335-024-10074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The study aimed to investigate prevalent chromosomal breakpoints identified in balanced structural chromosomal anomalies and to pinpoint potential candidate genes linked with male infertility. This was acchieved through a comprehensive approach combining RNA-seq and microarray data analysis, enabling precise identification of candidate genes. The Cytogenetics data from 2,500 infertile males referred to Royan Research Institute between 2009 and 2022 were analyzed, with 391 cases meeting the inclusion criteria of balanced chromosomal rearrangement. Of these, 193 cases exhibited normal variations and were excluded from the analysis. By examining the breakpoints, potential candidate genes were suggested. Among the remaining 198 cases, reciprocal translocations were the most frequent anomaly (129 cases), followed by Robertsonian translocations (43 cases), inversions (34 cases), and insertions (3 cases).Some patients had more than one chromosomal abnormality. Chromosomal anomalies were most frequently observed in chromosomes 13 (21.1%), 14 (20.1%), and 1 (16.3%) with 13q12, 14q12, and 1p36.3 being the most prevalent breakpoints, respectively. Chromosome 1 contributed the most to reciprocal translocations (20.2%) and inversions (17.6%), while chromosome 14 was the most involved in the Robertsonian translocations (82.2%). The findings suggested that breakpoints at 1p36.3 and 14q12 might be associated with pregestational infertility, whereas breakpoints at 13q12 could be linked to both gestational and pregestational infertility. Several candidate genes located on common breakpoints were proposed as potentially involved in male infertility. Bioinformatics analyses utilizing three databases were conducted to examine the expression patterns of 78 candidate genes implicated in various causes of infertility. In azoospermic individuals, significant differential expression was observed in 19 genes: 15 were downregulated (TSSK2, SPINK2, TSSK4, CDY1, CFAP70, BPY2, BTG4, FKBP6, PPP2R1B, SPECC1L, CENPJ, SKA3, FGF9, NODAL, CLOCK), while four genes were upregulated (HSPB1, MIF, PRF1, ENTPD6). In the case of Asthenozoospermia, seven genes showed significant upregulation (PRF1, DDX21, KIT, SRD5A3, MTCH1, DDX50, NODAL). Though RNA-seq data for Teratozoospermia were unavailable, microarray data revealed differential expression insix genes: three downregulated (BUB1, KLK4, PIWIL2) and three upregulated (AURKC, NPM2, RANBP2). These findings enhance our understanding of the molecular basis of male infertility and could provide valuable insights for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Melika Hossein Garakani
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azadeh Ghaheri
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Najmeh Sadat Masoudi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Biochemistry, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Vahideh Hassanzadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadreza Zamanian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Shabnam Zarei Moradi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Islam A, Manjarrez-González JC, Song X, Gore T, Draviam VM. Search for chromosomal instability aiding variants reveal naturally occurring kinetochore gene variants that perturb chromosome segregation. iScience 2024; 27:109007. [PMID: 38361632 PMCID: PMC10867425 DOI: 10.1016/j.isci.2024.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancers, and CIN-promoting mutations are not fully understood. Here, we report 141 chromosomal instability aiding variant (CIVa) candidates by assessing the prevalence of loss-of-function (LoF) variants in 135 chromosome segregation genes from over 150,000 humans. Unexpectedly, we observe both heterozygous and homozygous CIVa in Astrin and SKA3, two evolutionarily conserved kinetochore and microtubule-associated proteins essential for chromosome segregation. To stratify harmful versus harmless variants, we combine live-cell microscopy and controlled protein expression. We find the naturally occurring Astrin p.Q1012∗ variant is harmful as it fails to localize normally and induces chromosome misalignment and missegregation, in a dominant negative manner. In contrast, the Astrin p.L7Qfs∗21 variant generates a shorter isoform that localizes and functions normally, and the SKA3 p.Q70Kfs∗7 variant allows wild-type SKA complex localisation and function, revealing distinct resilience mechanisms that render these variants harmless. Thus, we present a scalable framework to predict and stratify naturally occurring CIVa, and provide insight into resilience mechanisms that compensate for naturally occurring CIVa.
Collapse
Affiliation(s)
- Asifa Islam
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | | | - Xinhong Song
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | - Trupti Gore
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
- London Interdisciplinary Doctoral Program, University College London, London, UK
| | - Viji M. Draviam
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| |
Collapse
|
3
|
Parker E, Judge MA, Pastor L, Fuente-Soro L, Jairoce C, Carter KW, Anderson D, Mandomando I, Clifford HD, Naniche D, Le Souëf PN. Gene dysregulation in acute HIV-1 infection – early transcriptomic analysis reveals the crucial biological functions affected. Front Cell Infect Microbiol 2023; 13:1074847. [PMID: 37077524 PMCID: PMC10106835 DOI: 10.3389/fcimb.2023.1074847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionTranscriptomic analyses from early human immunodeficiency virus (HIV) infection have the potential to reveal how HIV causes widespread and lasting damage to biological functions, especially in the immune system. Previous studies have been limited by difficulties in obtaining early specimens.MethodsA hospital symptom-based screening approach was applied in a rural Mozambican setting to enrol patients with suspected acute HIV infection (Fiebig stage I-IV). Blood samples were collected from all those recruited, so that acute cases and contemporaneously recruited, uninfected controls were included. PBMC were isolated and sequenced using RNA-seq. Sample cellular composition was estimated from gene expression data. Differential gene expression analysis was completed, and correlations were determined between viral load and differential gene expression. Biological implications were examined using Cytoscape, gene set enrichment analysis, and enrichment mapping.ResultsTwenty-nine HIV infected subjects one month from presentation and 46 uninfected controls were included in this study. Subjects with acute HIV infection demonstrated profound gene dysregulation, with 6131 (almost 13% of the genome mapped in this study) significantly differentially expressed. Viral load was correlated with 1.6% of dysregulated genes, in particular, highly upregulated genes involved in key cell cycle functions, were correlated with viremia. The most profoundly upregulated biological functions related to cell cycle regulation, in particular, CDCA7 may drive aberrant cell division, promoted by overexpressed E2F family proteins. Also upregulated were DNA repair and replication, microtubule and spindle organization, and immune activation and response. The interferome of acute HIV was characterized by broad activation of interferon-stimulated genes with antiviral functions, most notably IFI27 and OTOF. BCL2 downregulation alongside upregulation of several apoptotic trigger genes and downstream effectors may contribute to cycle arrest and apoptosis. Transmembrane protein 155 (TMEM155) was consistently highly overexpressed during acute infection, with roles hitherto unknown.DiscussionOur study contributes to a better understanding of the mechanisms of early HIV-induced immune damage. These findings have the potential to lead to new earlier interventions that improve outcomes.
Collapse
Affiliation(s)
- Erica Parker
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Melinda A. Judge
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Melinda A. Judge,
| | - Lucia Pastor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Laura Fuente-Soro
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | | | - Inácio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Peter Neils Le Souëf
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
4
|
Radhakrishnan RM, Kizhakkeduth ST, Nair VM, Ayyappan S, Lakshmi RB, Babu N, Prasannajith A, Umeda K, Vijayan V, Kodera N, Manna TK. Kinetochore-microtubule attachment in human cells is regulated by the interaction of a conserved motif of Ska1 with EB1. J Biol Chem 2023; 299:102853. [PMID: 36592928 PMCID: PMC9926122 DOI: 10.1016/j.jbc.2022.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/02/2023] Open
Abstract
The kinetochore establishes the linkage between chromosomes and the spindle microtubule plus ends during mitosis. In vertebrates, the spindle-kinetochore-associated (Ska1,2,3) complex stabilizes kinetochore attachment with the microtubule plus ends, but how Ska is recruited to and stabilized at the kinetochore-microtubule interface is not understood. Here, our results show that interaction of Ska1 with the general microtubule plus end-associated protein EB1 through a conserved motif regulates Ska recruitment to kinetochores in human cells. Ska1 forms a stable complex with EB1 via interaction with the motif in its N-terminal disordered loop region. Disruption of this interaction either by deleting or mutating the motif disrupts Ska complex recruitment to kinetochores and induces chromosome alignment defects, but it does not affect Ska complex assembly. Atomic-force microscopy imaging revealed that Ska1 is anchored to the C-terminal region of the EB1 dimer through its loop and thereby promotes formation of extended structures. Furthermore, our NMR data showed that the Ska1 motif binds to the residues in EB1 that are the binding sites of other plus end targeting proteins that are recruited to microtubules by EB1 through a similar conserved motif. Collectively, our results demonstrate that EB1-mediated Ska1 recruitment onto the microtubule serves as a general mechanism for the formation of vertebrate kinetochore-microtubule attachments and metaphase chromosome alignment.
Collapse
Affiliation(s)
- Renjith M Radhakrishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Vishnu M Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Shine Ayyappan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - R Bhagya Lakshmi
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Neethu Babu
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Anjaly Prasannajith
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
5
|
Pu Y, Han J, Zhang M, Liu M, Abdusamat G, Liu H. SKA1 promotes tumor metastasis via SAFB-mediated transcription repression of DUSP6 in clear cell renal cell carcinoma. Aging (Albany NY) 2022; 14:9679-9698. [PMID: 36462498 PMCID: PMC9792197 DOI: 10.18632/aging.204418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022]
Abstract
The most hostile form of urologic cancer, clear cell renal cell carcinoma (ccRCC), has a high fatality rate and poor prognosis due to tumor metastasis at initial presentation. The complex process driving ccRCC metastasis is still unknown, though. In this study, we demonstrate that Spindle and kinetochore-associated protein 1 (SKA1) expression is significantly upregulated in ccRCC tissues and associated with aggressive clinicopathologic characteristics. Functionally, SKA1 knockdown on ccRCC cells reduced cancer cell motility both in vivo and in vitro research. These bioactivities of SKA1 may be brought on by its specific interaction with scaffold attachment factor B, according to the proposed mechanism (SAFB), which could further depress the transcription of dual specificity phosphatase 6 (DUSP6). Our findings may provide a new way of researching SKA1-regulated tumor metastasis, and indicate that SKA1 is a prospective therapeutic target for renal carcinoma.
Collapse
Affiliation(s)
- Yan Pu
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Jing Han
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Mengmeng Zhang
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Mengxue Liu
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China
| | - Gulnazar Abdusamat
- Department of Pharmacy, Xinjiang Medical University, Urumqi 830011, PR China
| | - Huibin Liu
- Institute of Cancer Research, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi 830011, PR China,The Clinical Research Center of Breast Tumor and Thyroid Tumor in Xinjiang Autonomous Region, Urumqi 830011, PR China
| |
Collapse
|
6
|
Kiyama T, Chen CK, Zhang A, Mao CA. Differential Susceptibility of Retinal Neurons to the Loss of Mitochondrial Biogenesis Factor Nrf1. Cells 2022; 11:cells11142203. [PMID: 35883647 PMCID: PMC9321222 DOI: 10.3390/cells11142203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
The retina, the accessible part of the central nervous system, has served as a model system to study the relationship between energy utilization and metabolite supply. When the metabolite supply cannot match the energy demand, retinal neurons are at risk of death. As the powerhouse of eukaryotic cells, mitochondria play a pivotal role in generating ATP, produce precursors for macromolecules, maintain the redox homeostasis, and function as waste management centers for various types of metabolic intermediates. Mitochondrial dysfunction has been implicated in the pathologies of a number of degenerative retinal diseases. It is well known that photoreceptors are particularly vulnerable to mutations affecting mitochondrial function due to their high energy demand and susceptibility to oxidative stress. However, it is unclear how defective mitochondria affect other retinal neurons. Nuclear respiratory factor 1 (Nrf1) is the major transcriptional regulator of mitochondrial biogenesis, and loss of Nrf1 leads to defective mitochondria biogenesis and eventually cell death. Here, we investigated how different retinal neurons respond to the loss of Nrf1. We provide in vivo evidence that the disruption of Nrf1-mediated mitochondrial biogenesis results in a slow, progressive degeneration of all retinal cell types examined, although they present different sensitivity to the deletion of Nrf1, which implicates differential energy demand and utilization, as well as tolerance to mitochondria defects in different neuronal cells. Furthermore, transcriptome analysis on rod-specific Nrf1 deletion uncovered a previously unknown role of Nrf1 in maintaining genome stability.
Collapse
Affiliation(s)
- Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX 77030, USA; (T.K.); (A.Z.)
| | - Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Annie Zhang
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX 77030, USA; (T.K.); (A.Z.)
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., MSB 7.024, Houston, TX 77030, USA; (T.K.); (A.Z.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
7
|
Sridhar S, Fukagawa T. Kinetochore Architecture Employs Diverse Linker Strategies Across Evolution. Front Cell Dev Biol 2022; 10:862637. [PMID: 35800888 PMCID: PMC9252888 DOI: 10.3389/fcell.2022.862637] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The assembly of a functional kinetochore on centromeric chromatin is necessary to connect chromosomes to the mitotic spindle, ensuring accurate chromosome segregation. This connecting function of the kinetochore presents multiple internal and external structural challenges. A microtubule interacting outer kinetochore and centromeric chromatin interacting inner kinetochore effectively confront forces from the external spindle and centromere, respectively. While internally, special inner kinetochore proteins, defined as "linkers," simultaneously interact with centromeric chromatin and the outer kinetochore to enable association with the mitotic spindle. With the ability to simultaneously interact with outer kinetochore components and centromeric chromatin, linker proteins such as centromere protein (CENP)-C or CENP-T in vertebrates and, additionally CENP-QOkp1-UAme1 in yeasts, also perform the function of force propagation within the kinetochore. Recent efforts have revealed an array of linker pathways strategies to effectively recruit the largely conserved outer kinetochore. In this review, we examine these linkages used to propagate force and recruit the outer kinetochore across evolution. Further, we look at their known regulatory pathways and implications on kinetochore structural diversity and plasticity.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
8
|
Xu H, Chen G, Niu Q, Song K, Feng Z, Han Z. SKA3 promotes cell growth via the PI3K/AKT/GSK3β and PI3K/AKT/FOXO1 pathways and is a potential prognostic biomarker for oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134:599-614. [DOI: 10.1016/j.oooo.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/04/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
|
9
|
Lin Y, An J, Zhuo X, Qiu Y, Xie W, Yao W, Yin D, Wu L, Lei D, Li C, Xie Y, Hu A, Li S. Integrative Multi-Omics Analysis of Identified SKA3 as a Candidate Oncogene Correlates with Poor Prognosis and Immune Infiltration in Lung Adenocarcinoma. Int J Gen Med 2022; 15:4635-4647. [PMID: 35535142 PMCID: PMC9078431 DOI: 10.2147/ijgm.s359987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuansheng Lin
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Jianzhong An
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Xingli Zhuo
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Yingzhuo Qiu
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Wenjing Xie
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Wei Yao
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Dan Yin
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Linpeng Wu
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Dian Lei
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Chenghui Li
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Yuanguang Xie
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Ahu Hu
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
- Correspondence: Ahu Hu; Shengjun Li, Department of emergency and critical care medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, No. 1 Lijiang Road, Suzhou, 215000, People’s Republic of China, Email ;
| | - Shengjun Li
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| |
Collapse
|
10
|
Bai S, Chen W, Zheng M, Wang X, Peng W, Zhao Y, Wang Y, Xiong S, Cheng B. Spindle and kinetochore-associated complex subunit 3 (SKA3) promotes stem cell-like properties of hepatocellular carcinoma cells through activating Notch signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1361. [PMID: 34733913 PMCID: PMC8506556 DOI: 10.21037/atm-21-1572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022]
Abstract
Background Cancer stemness contributes to hepatocellular carcinoma (HCC) initiation, metastasis, drug resistance, and recurrence. The spindle and kinetochore-associated (SKA) complex has been shown to be involved in tumor progression; however, its effects on cancer stem cell-like properties have not yet been examined. This research sought to study each subunit of the SKA complex in HCC systematically. Methods Bioinformatic analyses were carried out to examine the expression and clinical data of the SKA complex’s each subunit in HCC. The expression of the target genes was detected by quantitative reverse transcription-polymerase chain reaction and Western blot assays. Clone formation and Transwell assays were performed to assess the proliferation and migration abilities of the SKA complex’s each subunit. Sphere formation assays and subcutaneous xenograft experiments were performed to investigate the effects of SKA complex subunit 3 (SKA3) on the self-renewal and tumorigenic abilities of HCC. Results Each subunit of the SKA complex was highly expressed in HCC, but only SKA complex subunit 1 (SKA1) and SKA3 were associated with the poor overall survival of HCC patients. Additionally, the HCC cells overexpressing SKA3 exhibited increased migration, invasion, proliferation, self-renewal, Sorafenib resistance and tumorigenic abilities. Notch signaling played a vital role in the process by which SKA3 promoted HCC stemness. Conclusions SKA3 promotes HCC stem cell-like properties via the Notch signaling pathway. As SKA3 appears to act as a regulator of stemness in HCC, it might be a potential molecular target for HCC.
Collapse
Affiliation(s)
- Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Digestive Endoscopy, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Pang H, Zhou Y, Wang J, Wu H, Cui C, Xiao Z. SKA3 overexpression predicts poor outcomes in skin cutaneous melanoma patients. Transl Oncol 2021; 15:101253. [PMID: 34737118 PMCID: PMC8571110 DOI: 10.1016/j.tranon.2021.101253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Spindle and Kinetochore Associated Complex Subunit 3 (SKA3) is a part of the SKA complex, which plays a key role in cell mitosis. Studies have shown that SKA3 was associated with cancer progression. However, its role in skin cutaneous melanoma (SKCM) remains unclear. Here, we investigated the expression level and prognostic value of SKA3 in SKCM. METHODS Based on public databases, univariate and multivariate Cox regression analyses were used to investigate the different expression of SKA3 between SKCM and normal tissues. Then, the relationship between SKA3 expression level and prognosis was assessed. PPI network and functional enrichment analysis were performed. ESTIMATE and CIBERSORT were expected to evaluate the SKA3 expression and immune status. CCK8, wound healing, transwell assays and tumor xenograft trial were performed to detect the SKA3 function in cell viability, migration and invasion of the cell lines. RESULTS The SKA3 was highly expressed in SKCM tissues. SKA3 overexpression was associated with poor survival and immune status. SKA3 knockdown inhibited cell viability, migration and invasion of SKCM cells. CONCLUSION SKA3 is involved in the progression of SKCM and may serve as a new prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Hao Pang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Avenue, Harbin, Heilongjiang 150086, China
| | - Yongting Zhou
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Avenue, Harbin, Heilongjiang 150086, China
| | - Jie Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Avenue, Harbin, Heilongjiang 150086, China
| | - Hao Wu
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Avenue, Harbin, Heilongjiang 150086, China
| | - Chenyang Cui
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Avenue, Harbin, Heilongjiang 150086, China
| | - Zhibo Xiao
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Avenue, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
12
|
Liu X, Shen X, Zhang J. TRIP13 exerts a cancer-promoting role in cervical cancer by enhancing Wnt/β-catenin signaling via ACTN4. ENVIRONMENTAL TOXICOLOGY 2021; 36:1829-1840. [PMID: 34061428 DOI: 10.1002/tox.23303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Increasing evidence has indicated that thyroid hormone receptor interacting protein 13 (TRIP13) exerts a cancer-promoting role in a broad spectrum of cancers. However, the detailed relevance and function of TRIP13 in cervical cancer remain undefined. The goal of this work was to evaluate the functional significance and mechanism of TRIP13 in cervical cancer. Our data demonstrated that TRIP13 expression was markedly increased in cervical cancer tissue, and high expression of TRIP13 predicted a low survival rate in cervical cancer patients. Knockdown of TRIP13 caused a significant reduction in the proliferation and invasion of cervical cancer cells. By contrast, over-expression of TRIP13 accelerated the proliferation and invasion of cervical cancer cells. Further data revealed that TRIP13 enhanced the activation of Wnt/β-catenin signaling associated with modulation of α-Actinin-4 (ACTN4). Knockdown of ACTN4 markedly reversed TRIP13-mediated activation of Wnt/β-catenin signaling. In addition, inhibition of Wnt/β-catenin signaling reversed TRIP13-induced cancer-promoting effects in cervical cancer cells. Knockdown of TRIP13 markedly retarded the tumor formation and growth of cervical cells in vivo in nude mice. Taken together, the data of this work indicate that TRIP13 accelerates the proliferation and invasion of cervical cancer by enhancing Wnt/β-catenin signaling via regulation of ACTN4. These findings underscore a relevance of the TRIP13/ACTN4/Wnt/β-catenin signaling axis in the progression of cervical cancer and suggest TRIP13 as a potential target for treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Xin Shen
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Jing Zhang
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
13
|
Li C, Yang J, Lei S, Wang W. SKA3 promotes glioblastoma proliferation and invasion by enhancing the activation of Wnt/β-catenin signaling via modulation of the Akt/GSK-3β axis. Brain Res 2021; 1765:147500. [PMID: 33895155 DOI: 10.1016/j.brainres.2021.147500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 12/31/2022]
Abstract
Spindle and kinetochore-related complex subunit 3 (SKA3) is a key modulator of the progression of multiple tumor types. However, the involvement of SKA3 in glioblastoma (GBM) has not been well studied. The current study aimed to explore the role of SKA3 expression and the potential function of the protein in GBM. Our data showed that SKA3 expression was significantly up-regulated in GBM. Functional assays demonstrated that the knockdown of SKA3 impeded the proliferation, colony formation and invasion of GBM cells, while SKA3 overexpression produced the opposite effects. Further investigation revealed that SKA3 overexpression enhanced the activation of Wnt/β-catenin signaling, which was associated with the enhanced phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β). Notably, the inhibition of Akt markedly abrogated the SKA3 overexpression-induced promotion of Wnt/β-catenin signaling in GBM cells. Further, the inhibition of Wnt/β-catenin signaling markedly abrogated the SKA3 overexpression-induced promotion of tumor growth. In addition, the knockdown of SKA3 significantly retarded tumor formation and GBM progression in vivo. In summary, these data demonstrate that SKA3 exerts promotes tumor growth in GBM by enhancing the activation of Wnt/β-catenin signaling via modulation of the Akt/GSK-3β axis. This work highlights the pivotal role of SKA3/Akt/GSK-3β/Wnt/β-catenin signaling in the progression of GBM and suggests that SKA3 is an attractive therapeutic target with potential to be used to treat GBM.
Collapse
Affiliation(s)
- Chuankun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jingya Yang
- Department of Operation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sen Lei
- Department of Anus and Intestine Surgery, ZiBo Central Hospital, Zibo 255036, China
| | - Wei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
14
|
Microtubules pull the strings: disordered sequences as efficient couplers of microtubule-generated force. Essays Biochem 2020; 64:371-382. [PMID: 32502246 DOI: 10.1042/ebc20190078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022]
Abstract
Microtubules are dynamic polymers that grow and shrink through addition or loss of tubulin subunits at their ends. Microtubule ends generate mechanical force that moves chromosomes and cellular organelles, and provides mechanical tension. Recent literature describes a number of proteins and protein complexes that couple dynamics of microtubule ends to movements of their cellular cargoes. These 'couplers' are quite diverse in their microtubule-binding domains (MTBDs), while sharing similarity in function, but a systematic understanding of the principles underlying their activity is missing. Here, I review various types of microtubule couplers, focusing on their essential activities: ability to follow microtubule ends and capture microtubule-generated force. Most of the couplers require presence of unstructured positively charged sequences and multivalency in their microtubule-binding sites to efficiently convert the microtubule-generated force into useful connection to a cargo. An overview of the microtubule features supporting end-tracking and force-coupling, and the experimental methods to assess force-coupling properties is also provided.
Collapse
|
15
|
Kinetochore-microtubule coupling mechanisms mediated by the Ska1 complex and Cdt1. Essays Biochem 2020; 64:337-347. [PMID: 32844209 DOI: 10.1042/ebc20190075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
The faithful segregation of duplicated sister chromatids rely on the remarkable ability of kinetochores to sustain stable load bearing attachments with the dynamic plus ends of kinetochore-microtubules (kMTs). The outer layer of the kinetochore recruits several motor and non-motor microtubule-associated proteins (MAPs) that help the kinetochores establish and maintain a load bearing dynamic attachment with kMTs. The primary kMT-binding protein, the Ndc80 complex (Ndc80c), which is highly conserved among diverse organisms from yeast to humans, performs this essential function with assistance from other MAPs. These MAPs are not an integral part of the kinetochore, but they localize to the kinetochore periodically throughout mitosis and regulate the strength of the kinetochore microtubule attachments. Here, we attempt to summarize the recent advances that have been made toward furthering our understanding of this co-operation between the Ndc80c and these MAPs, focusing on the spindle and kinetochore-associated 1 (Ska1) complex (Ska1c) and Cdc10-dependent transcript 1 (Cdt1) in humans.
Collapse
|
16
|
Zhang Q, Hu L, Chen Y, Tian W, Liu H. Multisite phosphorylation determines the formation of Ska-Ndc80 macro-complexes that are essential for chromosome segregation during mitosis. Mol Biol Cell 2020; 31:1892-1903. [PMID: 32491969 PMCID: PMC7525821 DOI: 10.1091/mbc.e19-10-0569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human Ska complex (Ska) localizing to both spindle microtubules and kinetochores is essential for proper chromosome segregation during mitosis. Although several mechanisms have been proposed to explain how Ska is recruited to kinetochores, it is still not fully understood. By analyzing Ska3 phosphorylation, we identified six critical Cdk1 sites, including the previously identified Thr358 and Thr360. Mutations of these sites to phospho-deficient alanine (6A) in cells completely abolished Ska3 localization to kinetochores and Ska functions in chromosome segregation. In vitro, Cdk1 phosphorylation on Ska enhanced WT, not phospho-deficient 6A, binding to Ndc80C. Strikingly, the phosphomimetic Ska 6D complex formed a stable macro-complex with Ndc80C, but Ska WT failed to do so. These results suggest that multisite Cdk1 phosphorylation-enabled Ska–Ndc80 binding is decisive for Ska localization to kinetochores and its functions. Moreover, we found that Ska decrease at kinetochores triggered by the microtubule-depolymerizing drug nocodazole is independent of Aurora B but can be overridden by Ska3 overexpression, suggestive of a role of spindle microtubules in promoting Ska kinetochore recruitment. Thus, based on the current and previous results, we propose that multisite Cdk1 phosphorylation is critical for the formation of Ska–Ndc80 macro-complexes that are essential for chromosome segregation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| | - Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, New Orleans, LA 70112
| |
Collapse
|
17
|
Wimbish RT, DeLuca KF, Mick JE, Himes J, Jiménez-Sánchez I, Jeyaprakash AA, DeLuca JG. The Hec1/Ndc80 tail domain is required for force generation at kinetochores, but is dispensable for kinetochore-microtubule attachment formation and Ska complex recruitment. Mol Biol Cell 2020; 31:1453-1473. [PMID: 32401635 PMCID: PMC7359571 DOI: 10.1091/mbc.e20-05-0286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
The conserved kinetochore-associated NDC80 complex (composed of Hec1/Ndc80, Nuf2, Spc24, and Spc25) has well-documented roles in mitosis including 1) connecting mitotic chromosomes to spindle microtubules to establish force-transducing kinetochore-microtubule attachments and 2) regulating the binding strength between kinetochores and microtubules such that correct attachments are stabilized and erroneous attachments are released. Although the NDC80 complex plays a central role in forming and regulating attachments to microtubules, additional factors support these processes as well, including the spindle and kinetochore-associated (Ska) complex. Multiple lines of evidence suggest that Ska complexes strengthen attachments by increasing the ability of NDC80 complexes to bind microtubules, especially to depolymerizing microtubule plus ends, but how this is accomplished remains unclear. Using cell-based and in vitro assays, we demonstrate that the Hec1 tail domain is dispensable for Ska complex recruitment to kinetochores and for generation of kinetochore-microtubule attachments in human cells. We further demonstrate that Hec1 tail phosphorylation regulates kinetochore-microtubule attachment stability independently of the Ska complex. Finally, we map the location of the Ska complex in cells to a region near the coiled-coil domain of the NDC80 complex and demonstrate that this region is required for Ska complex recruitment to the NDC80 complex--microtubule interface.
Collapse
Affiliation(s)
- Robert T. Wimbish
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Keith F. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jeanne E. Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jack Himes
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | | | | | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
18
|
Kixmoeller K, Allu PK, Black BE. The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 2020; 10:200051. [PMID: 32516549 PMCID: PMC7333888 DOI: 10.1098/rsob.200051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic chromosome segregation relies upon specific connections from DNA to the microtubule-based spindle that forms at cell division. The chromosomal locus that directs this process is the centromere, where a structure called the kinetochore forms upon entry into mitosis. Recent crystallography and single-particle electron microscopy have provided unprecedented high-resolution views of the molecular complexes involved in this process. The centromere is epigenetically specified by nucleosomes harbouring a histone H3 variant, CENP-A, and we review recent progress on how it differentiates centromeric chromatin from the rest of the chromosome, the biochemical pathway that mediates its assembly and how two non-histone components of the centromere specifically recognize CENP-A nucleosomes. The core centromeric nucleosome complex (CCNC) is required to recruit a 16-subunit complex termed the constitutive centromere associated network (CCAN), and we highlight recent structures reported of the budding yeast CCAN. Finally, the structures of multiple modular sub-complexes of the kinetochore have been solved at near-atomic resolution, providing insight into how connections are made to the CCAN on one end and to the spindle microtubules on the other. One can now build molecular models from the DNA through to the physical connections to microtubules.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Masoudi M, Seki M, Yazdanparast R, Yachie N, Aburatani H. A genome-scale CRISPR/Cas9 knockout screening reveals SH3D21 as a sensitizer for gemcitabine. Sci Rep 2019; 9:19188. [PMID: 31844142 PMCID: PMC6915784 DOI: 10.1038/s41598-019-55893-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022] Open
Abstract
Gemcitabine, 2',2'-difluoro-2'-deoxycytidine, is used as a pro-drug in treatment of variety of solid tumour cancers including pancreatic cancer. After intake, gemcitabine is transferred to the cells by the membrane nucleoside transporter proteins. Once inside the cells, it is converted to gemcitabine triphosphate followed by incorporation into DNA chains where it causes inhibition of DNA replication and thereby cell cycle arrest and apoptosis. Currently gemcitabine is the standard drug for treatment of pancreatic cancer and despite its widespread use its effect is moderate. In this study, we performed a genome-scale CRISPR/Cas9 knockout screening on pancreatic cancer cell line Panc1 to explore the genes that are important for gemcitabine efficacy. We found SH3D21 as a novel gemcitabine sensitizer implying it may act as a therapeutic target for improvement of gemcitabine efficacy in treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Mohammad Masoudi
- Molecular Biology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, 153-8904, Japan
- Genome Science Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
- Synthetic Biology Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
- Molecular Biology Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Motoaki Seki
- Synthetic Biology Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Razieh Yazdanparast
- Molecular Biology Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran.
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroyuki Aburatani
- Molecular Biology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, 153-8904, Japan.
- Genome Science Division, Research Center for Advance Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan.
| |
Collapse
|
20
|
Hu D, Li Z, Li X, Fu H, Zhang M. SKA1 overexpression is associated with the prognosis of esophageal squamous cell carcinoma and regulates cell proliferation and migration. Int J Mol Med 2019; 44:1971-1978. [PMID: 31545481 DOI: 10.3892/ijmm.2019.4343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Spindle and kinetochore‑associated protein 1 (SKA1), a microtubule‑binding subcomplex of the outer kinetochore, is essential for complete chromosomal separation. SKA1 has been suggested as a potential biomarker for various types of cancer. However, the exact role of SKA1 in esophageal squamous cell carcinoma (ESCC) remains unclear. The present study investigated whether SKA1 affects the biological behavior of ESCC. The expression of SKA1 in ESCC tissues was measured using immunohistochemistry and reverse transcription‑quantitative polymerase chain reaction. In addition, a SKA1‑silencing lentivirus was constructed, which was transfected into TE‑1 cells to establish stable SKA1‑knockdown TE‑1 cells. Proliferation was analyzed using a Celigo image cytometer and a MTS assay. Cell cycle progression and apoptosis were analyzed by flow cytometry, while cell migration was assessed using a Transwell assay. SKA1 was significantly overexpressed in ESCC tissues, and SKA1 overexpression was significantly associated with differentiation, pathological N stage and pathological tumor‑node‑metastasis stage. SKA1 was determined to be an independent prognostic factor for ESCC. Furthermore, SKA1 was significantly overexpressed in ESCC cells, and SKA1‑silencing inhibited cell proliferation and migration, arrested the cell cycle and promoted cell apoptosis. In summary, SKA1 may serve as a potential therapeutic target and prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Dongxin Hu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhen Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiao Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Honghao Fu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mingyan Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
21
|
Kinetochore Recruitment of the Spindle and Kinetochore-Associated (Ska) Complex Is Regulated by Centrosomal PP2A in Caenorhabditis elegans. Genetics 2019; 212:509-522. [PMID: 31018924 DOI: 10.1534/genetics.119.302105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
During mitosis, kinetochore-microtubule interactions ensure that chromosomes are accurately segregated to daughter cells. RSA-1 (regulator of spindle assembly-1) is a regulatory B″ subunit of protein phosphatase 2A that was previously proposed to modulate microtubule dynamics during spindle assembly. We have identified a genetic interaction between the centrosomal protein, RSA-1, and the spindle- and kinetochore-associated (Ska) complex in Caenorhabditis elegans In a forward genetic screen for suppressors of rsa-1(or598) embryonic lethality, we identified mutations in ska-1 and ska-3 Loss of SKA-1 and SKA-3, as well as components of the KMN (KNL-1/MIS-12/NDC-80) complex and the microtubule end-binding protein EBP-2, all suppressed the embryonic lethality of rsa-1(or598) These suppressors also disrupted the intracellular localization of the Ska complex, revealing a network of proteins that influence Ska function during mitosis. In rsa-1(or598) embryos, SKA-1 is excessively and prematurely recruited to kinetochores during spindle assembly, but SKA-1 levels return to normal just prior to anaphase onset. Loss of the TPX2 homolog, TPXL-1, also resulted in overrecruitment of SKA-1 to the kinetochores and this correlated with the loss of Aurora A kinase on the spindle microtubules. We propose that rsa-1 regulates the kinetochore localization of the Ska complex, with spindle-associated Aurora A acting as a potential mediator. These data reveal a novel mechanism of protein phosphatase 2A function during mitosis involving a centrosome-based regulatory mechanism for Ska complex recruitment to the kinetochore.
Collapse
|
22
|
Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 2018; 234:7923-7937. [PMID: 30536951 DOI: 10.1002/jcp.27978] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Microtubules (MT) and actin microfilaments are dynamic cytoskeleton components involved in a range of intracellular processes. MTs play a role in cell division, beating of cilia and flagella, and intracellular transport. Over the past decades, much knowledge has been gained regarding MT function and structure, and its role in underlying disease progression. This makes MT potential therapeutic targets for various disorders. Disturbances in MT and their associated proteins are the underlying cause of diseases such as Alzheimer's disease, cancer, and several genetic diseases. Some of the advances in the field of MT research, as well as the potenti G beta gamma, is needed al uses of MT-targeting agents in various conditions have been reviewed here.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
23
|
Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments. Proc Natl Acad Sci U S A 2018; 115:2740-2745. [PMID: 29487209 PMCID: PMC5856539 DOI: 10.1073/pnas.1718553115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Microtubules are dynamic, tube-like structures that drive the segregation of duplicated chromosomes during cell division. The Ska complex is part of a molecular machine that forms force-bearing connections between chromosomes and microtubule ends. Depletion of the Ska complex destabilizes these connections and disrupts cell division. The Ska complex binds microtubules, but it is unknown whether it directly holds force at microtubules or indirectly stabilizes the connections. Here, we show that the Ska complex makes a direct force-bearing linkage with microtubule ends and assembles with another microtubule binding component, the Ndc80 complex, to strengthen its ability to withstand force. Our results suggest that the Ska and Ndc80 complexes work together to maintain the connections between chromosomes and microtubule ends. Accurate segregation of chromosomes relies on the force-bearing capabilities of the kinetochore to robustly attach chromosomes to dynamic microtubule tips. The human Ska complex and Ndc80 complex are outer-kinetochore components that bind microtubules and are required to fully stabilize kinetochore–microtubule attachments in vivo. While purified Ska complex tracks with disassembling microtubule tips, it remains unclear whether the Ska complex–microtubule interaction is sufficiently strong to make a significant contribution to kinetochore–microtubule coupling. Alternatively, Ska complex might affect kinetochore coupling indirectly, through recruitment of phosphoregulatory factors. Using optical tweezers, we show that the Ska complex itself bears load on microtubule tips, strengthens Ndc80 complex-based tip attachments, and increases the switching dynamics of the attached microtubule tips. Cross-linking mass spectrometry suggests the Ska complex directly binds Ndc80 complex through interactions between the Ska3 unstructured C-terminal region and the coiled-coil regions of each Ndc80 complex subunit. Deletion of the Ska complex microtubule-binding domain or the Ska3 C terminus prevents Ska complex from strengthening Ndc80 complex-based attachments. Together, our results indicate that the Ska complex can directly strengthen the kinetochore–microtubule interface and regulate microtubule tip dynamics by forming an additional connection between the Ndc80 complex and the microtubule.
Collapse
|
24
|
The stress response HPA-axis hormone, glucocorticoid, reduces cellular SKA complex gene expression. Psychiatry Res 2018; 260:428-431. [PMID: 29268205 DOI: 10.1016/j.psychres.2017.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/23/2017] [Accepted: 12/10/2017] [Indexed: 11/22/2022]
Abstract
The Spindle- and Kinetochore-Associated (SKA) complex has been proven to be involved in many human mental behavioral disorders. Glucocorticoid, a hypothalamic-pituitary-adrenal (HPA) axis hormone, is a critical mediator of stress response in neurons. However, the underlying mechanisms of glucocorticoid's effects on human neuronal cells remain unclear. This study demonstrates that increased extracellular glucocorticoid levels significantly reduce neuronal cell SKA complex genes' expression levels, followed by altered neuronal cell viability and neurite development. The results suggest that the abnormality of this HPA-axis hormone could impact the neuronal cell functions through the alternation of SKA complex functions, which might induce cell death.
Collapse
|
25
|
Zhang Q, Chen Y, Yang L, Liu H. Multitasking Ska in Chromosome Segregation: Its Distinct Pools Might Specify Various Functions. Bioessays 2018; 40. [PMID: 29359816 DOI: 10.1002/bies.201700176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/12/2017] [Indexed: 01/31/2023]
Abstract
The human spindle and kinetochore associated (Ska) complex is required for proper mitotic progression. Extensive studies have demonstrated its important functions in both stable kinetochore-microtubule interactions and spindle checkpoint silencing. We suggest a model to explain how various Ska functions might be fulfilled by distinct pools of Ska at kinetochores. The Ndc80-loop pool of Ska is recruited by the Ndc80 loop, or together with some of its flanking sequences, and the recruitment is also dependent on Cdk1-mediated Ska3 phosphorylation. This pool seems to play a more important role in silencing the spindle checkpoint than stabilizing kinetochore-microtubule interactions. In contrast, the Ndc80-N-terminus pool of Ska is recruited by the N-terminal domains of Ndc80 and appears to be more important for stabilizing kinetochore-microtubule interactions. Here, we review and discuss the evidence that supports this model and suggest further experiments to test the functioning mechanisms of the Ska complex.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Lu Yang
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
26
|
Lakshmi RB, Nair VM, Manna TK. Regulators of spindle microtubules and their mechanisms: Living together matters. IUBMB Life 2018; 70:101-111. [DOI: 10.1002/iub.1708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/16/2017] [Indexed: 12/23/2022]
Affiliation(s)
- R. Bhagya Lakshmi
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| | - Vishnu M. Nair
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| | - Tapas K. Manna
- School of Biology; Indian Institute of Science Education and Research, CET Campus; Thiruvananthapuram Kerala India
| |
Collapse
|
27
|
Monda JK, Whitney IP, Tarasovetc EV, Wilson-Kubalek E, Milligan RA, Grishchuk EL, Cheeseman IM. Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin-Interacting Surfaces. Curr Biol 2017; 27:3666-3675.e6. [PMID: 29153323 DOI: 10.1016/j.cub.2017.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/02/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Abstract
The macromolecular kinetochore functions to generate interactions between chromosomal DNA and spindle microtubules [1]. To facilitate chromosome movement and segregation, kinetochores must maintain associations with both growing and shrinking microtubule ends. It is critical to define the proteins and their properties that allow kinetochores to associate with dynamic microtubules. The kinetochore-localized human Ska1 complex binds to microtubules and tracks with depolymerizing microtubule ends [2]. We now demonstrate that the Ska1 complex also autonomously tracks with growing microtubule ends in vitro, a key property that would allow this complex to act at kinetochores to mediate persistent associations with dynamic microtubules. To define the basis for Ska1 complex interactions with dynamic microtubules, we investigated the tubulin-binding properties of the Ska1 microtubule binding domain. In addition to binding to the microtubule lattice and dolastatin-induced protofilament-like structures, we demonstrate that the Ska1 microtubule binding domain can associate with soluble tubulin heterodimers and promote assembly of oligomeric ring-like tubulin structures. We generated mutations on distinct surfaces of the Ska1 microtubule binding domain that disrupt binding to soluble tubulin but do not prevent microtubule binding. These mutants display compromised microtubule tracking activity in vitro and result in defective chromosome alignment and mitotic progression in cells using a CRISPR/Cas9-based replacement assay. Our work supports a model in which multiple surfaces of Ska1 interact with diverse tubulin substrates to associate with dynamic microtubule polymers and facilitate optimal chromosome segregation.
Collapse
Affiliation(s)
- Julie K Monda
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ian P Whitney
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Ekaterina V Tarasovetc
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | | | - Ronald A Milligan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
28
|
Sivakumar S, Gorbsky GJ. Phosphatase-regulated recruitment of the spindle- and kinetochore-associated (Ska) complex to kinetochores. Biol Open 2017; 6:1672-1679. [PMID: 28982702 PMCID: PMC5703607 DOI: 10.1242/bio.026930] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinetochores move chromosomes on dynamic spindle microtubules and regulate signaling of the spindle checkpoint. The spindle- and kinetochore-associated (Ska) complex, a hexamer composed of two copies of Ska1, Ska2 and Ska3, has been implicated in both roles. Phosphorylation of kinetochore components by the well-studied mitotic kinases Cdk1, Aurora B, Plk1, Mps1, and Bub1 regulate chromosome movement and checkpoint signaling. Roles for the opposing phosphatases are more poorly defined. Recently, we showed that the C terminus of Ska1 recruits protein phosphatase 1 (PP1) to kinetochores. Here we show that PP1 and protein phosphatase 2A (PP2A) both promote accumulation of Ska at kinetochores. Depletion of PP1 or PP2A by siRNA reduces Ska binding at kinetochores, impairs alignment of chromosomes to the spindle midplane, and causes metaphase delay or arrest, phenotypes that are also seen after depletion of Ska. Artificial tethering of PP1 to the outer kinetochore protein Nuf2 promotes Ska recruitment to kinetochores, and it reduces but does not fully rescue chromosome alignment and metaphase arrest defects seen after Ska depletion. We propose that Ska has multiple functions in promoting mitotic progression and that kinetochore-associated phosphatases function in a positive feedback cycle to reinforce Ska complex accumulation at kinetochores. Summary: Feedback between protein phosphatases and the spindle- and kinetochore-associated (Ska) complex regulates chromosome movement and the metaphase-to-anaphase cell cycle transition. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
29
|
Kinetochore-microtubule interactions in chromosome segregation: lessons from yeast and mammalian cells. Biochem J 2017; 474:3559-3577. [PMID: 29046344 DOI: 10.1042/bcj20170518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
Chromosome congression and segregation require robust yet dynamic attachment of the kinetochore with the spindle microtubules. Force generated at the kinetochore-microtubule interface plays a vital role to drive the attachment, as it is required to move chromosomes and to provide signal to sense correct attachments. To understand the mechanisms underlying these processes, it is critical to describe how the force is generated and how the molecules at the kinetochore-microtubule interface are organized and assembled to withstand the force and respond to it. Research in the past few years or so has revealed interesting insights into the structural organization and architecture of kinetochore proteins that couple kinetochore attachment to the spindle microtubules. Interestingly, despite diversities in the molecular players and their modes of action, there appears to be architectural similarity of the kinetochore-coupling machines in lower to higher eukaryotes. The present review focuses on the most recent advances in understanding of the molecular and structural aspects of kinetochore-microtubule interaction based on the studies in yeast and vertebrate cells.
Collapse
|
30
|
Zhao LJ, Yang HL, Li KY, Gao YH, Dong K, Liu ZH, Wang LX, Zhang B. Knockdown of SKA1 gene inhibits cell proliferation and metastasis in human adenoid cystic carcinoma. Biomed Pharmacother 2017; 90:8-14. [DOI: 10.1016/j.biopha.2017.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
|
31
|
Zhang Q, Sivakumar S, Chen Y, Gao H, Yang L, Yuan Z, Yu H, Liu H. Ska3 Phosphorylated by Cdk1 Binds Ndc80 and Recruits Ska to Kinetochores to Promote Mitotic Progression. Curr Biol 2017; 27:1477-1484.e4. [PMID: 28479321 DOI: 10.1016/j.cub.2017.03.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/27/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023]
Abstract
The spindle and kinetochore-associated (Ska) protein complex is required for accurate chromosome segregation during mitosis [1-6] and consists of two copies each of Ska1, Ska2, and Ska3 proteins [4, 7]. The Ska complex contains multiple microtubule-binding elements and promotes kinetochore-microtubule attachment [8-11]. The Ska1 C-terminal domain (CTD) recruits protein phosphatase 1 (PP1) to kinetochores to promote timely anaphase onset [12]. The Ska complex regulates, and is regulated by, Aurora B [13]. Aurora B phosphorylates both Ska1 and Ska3 to inhibit the kinetochore localization of the Ska complex [14]. Despite its multitude of functions at kinetochores, how the Ska complex itself is recruited to kinetochores is unclear. It is unknown whether any mitotic kinases positively regulate the localization of the Ska complex to kinetochores. Here, we show that Cdk1 phosphorylates Ska3 to promote its direct binding to the Ndc80 complex (Ndc80C), a core outer kinetochore component. We also show that this phosphorylation occurs specifically during mitosis and is required for the kinetochore localization of the Ska complex. Ska3 mutants deficient in Cdk1 phosphorylation are defective in kinetochore localization but retain microtubule localization. These mutants support chromosome alignment but delay anaphase onset. We propose that Ska3 phosphorylated by Cdk1 in mitosis binds to Ndc80C and recruits the Ska complex to kinetochores where Ska1 can bind both PP1 and microtubules to promote anaphase onset.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Sushama Sivakumar
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Haishan Gao
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Lu Yang
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Zhu Yuan
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University Health Science Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
32
|
Musacchio A, Desai A. A Molecular View of Kinetochore Assembly and Function. BIOLOGY 2017; 6:E5. [PMID: 28125021 PMCID: PMC5371998 DOI: 10.3390/biology6010005] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Kinetochores are large protein assemblies that connect chromosomes to microtubules of the mitotic and meiotic spindles in order to distribute the replicated genome from a mother cell to its daughters. Kinetochores also control feedback mechanisms responsible for the correction of incorrect microtubule attachments, and for the coordination of chromosome attachment with cell cycle progression. Finally, kinetochores contribute to their own preservation, across generations, at the specific chromosomal loci devoted to host them, the centromeres. They achieve this in most species by exploiting an epigenetic, DNA-sequence-independent mechanism; notable exceptions are budding yeasts where a specific sequence is associated with centromere function. In the last 15 years, extensive progress in the elucidation of the composition of the kinetochore and the identification of various physical and functional modules within its substructure has led to a much deeper molecular understanding of kinetochore organization and the origins of its functional output. Here, we provide a broad summary of this progress, focusing primarily on kinetochores of humans and budding yeast, while highlighting work from other models, and present important unresolved questions for future studies.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, Dortmund 44227, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45117, Germany.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.
- Department of Cellular & Molecular Medicine, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|