1
|
Zhang HL, Cui Q, Yu XT, Hou YX, Ma RJ, Lu PS, Wang Y, Sun SC, Wang HH. Rab32-based vesicles coordinate mitochondria and actin for spindle migration and organelle rearrangement in oocyte meiosis. J Adv Res 2025:S2090-1232(25)00294-2. [PMID: 40324632 DOI: 10.1016/j.jare.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Rab32 is a part of the Rab GTPase family, which is known as the regulator of vesicle transport for an array of cellular functions including endosomal transport, autophagy, generation of melanosomes, phagocytosis and inflammatory processes. OBJECTIVE However, the role of Rab32 in oocyte meiosis is still not well-defined. METHODS We depleted Rab32 expression by knock down approach, and we also disrupted Rab32 function by exogenous Rab32Q83L/T37N mRNA injection for mutation. RESULTS In our current investigation, we delved into its impacts on the cytoskeleton dynamics and the functionality of organelles during the meiotic maturation process in mouse oocytes. Rab32 expressed during oocyte meiosis and deletion of Rab32 or the expression of exogenous Rab32Q83L/T37N led to oocyte polar body extrusion defects or symmetric division. We showed that Rab32 was essential for ROCK1-based actin assembly which further led to spindle migration for the asymmetry. Besides, perturbation of Rab32 affected DRP1 phosphorylation for the spatial arrangement and functionality of mitochondria in mouse oocytes. And we found that Rab32 disruption caused the miscarriage of membrane organelles such as Golgi apparatus, ER, lysosome and CGs during oocyte meiosis, leading to ER stress and autophagy. CONCLUSIONS In summary, our study unravels the critical functions of Rab32 for the interplay between actin and mitochondria, which further facilitates movement of the spindle apparatus and organelles arrangement in mouse oocyte meiotic development.
Collapse
Affiliation(s)
- Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Cui
- Center of Reproductive Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Xiao-Ting Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yu-Xuan Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rui-Jie Ma
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Hong-Hui Wang
- Center of Reproductive Medicine, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China.
| |
Collapse
|
2
|
Li Y, Yang Y, Wang X, Li L, Zhou M. Extracellular osmolarity regulates osteoblast migration through the TRPV4-Rho/ROCK signaling. Commun Biol 2025; 8:515. [PMID: 40155775 PMCID: PMC11953337 DOI: 10.1038/s42003-025-07946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
For precise bone formation, osteoblasts need to accurately migrate to specific sites guided by various biochemical and mechanical cues. During this migration, fluctuations in extracellular osmolarity may arise from shifts in the surrounding fluid environment. However, as a main regulator of cell morphology and function, whether the extracellular osmolarity change may affect osteoblast migration remains unclear. Here, we provide evidence showing that changes in extracellular osmolarity significantly impact osteoblast migration, with a hypotonic environment enhancing it while a hypertonic environment inhibiting it. Further, our findings reveal that a hypotonic treatment increases intracellular pressure, activating the Transient Receptor Potential Vanilloid 4 (TRPV4) channel. This activation of TRPV4 modulates stress fibers, focal adhesions (FAs), and cell polarity through the Rho/ROCK signaling pathway, ultimately impacting osteoblast migration. Our findings provide valuable insights into the significant influence of extracellular osmolarity on osteoblast migration, which has potential implications for enhancing our understanding of bone remodeling.
Collapse
Affiliation(s)
- Yijie Li
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yanyan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Mouwang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
3
|
Segura-Benítez M, Carbajo-García MC, Quiñonero A, De Los Santos MJ, Pellicer A, Cervelló I, Ferrero H. Endometrial extracellular vesicles regulate processes related to embryo development and implantation in human blastocysts. Hum Reprod 2025; 40:56-68. [PMID: 39576620 DOI: 10.1093/humrep/deae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/26/2024] [Indexed: 01/07/2025] Open
Abstract
STUDY QUESTION What is the transcriptomic response of human blastocysts following internalization of extracellular vesicles (EVs) secreted by the human endometrium? SUMMARY ANSWER EVs secreted by the maternal endometrium induce a transcriptomic response in human embryos that modulates molecular mechanisms related to embryo development and implantation. WHAT IS KNOWN ALREADY EVs mediate intercellular communication by transporting various molecules, and endometrial EVs have been postulated to be involved in the molecular regulation of embryo implantation. Our previous studies showed that endometrial EVs carry miRNAs and proteins associated with implantation events that can be taken up by human blastocysts; however, no studies have yet investigated the transcriptomic response of human embryos to this EV uptake, which is crucial to demonstrate the functional significance of this communication system. STUDY DESIGN, SIZE, DURATION A prospective descriptive study was performed. Primary human endometrial epithelial cells (pHEECs), derived from endometrial biopsies collected from fertile oocyte donors (n = 20), were cultured in vitro to isolate secreted EVs. Following EV characterization, Day 5 human blastocysts (n = 24) were cultured in the presence or absence of the EVs for 24 h and evaluated by RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS EVs were isolated from the conditioned culture media using ultracentrifugation, and characterization was performed using western blot, nanoparticle tracking analysis, and transmission electron microscopy. Human blastocysts were devitrified, divided into two groups (n = 12/group), and cultured in vitro for 24 h with or without previously isolated EVs. RNA-sequencing analysis was performed, and DESeq2 was used to identify differentially expressed genes (DEGs) (FDR < 0.05). QIAGEN Ingenuity Pathway Analysis was used to perform the functional enrichment analysis and integration with our recently published data from the pHEECs' EV-miRNA cargo. MAIN RESULTS AND THE ROLE OF CHANCE Characterization confirmed the isolation of EVs from pHEECs' conditioned culture media. Among the DEGs in blastocysts co-cultured with EVs, we found 519 were significantly upregulated and 395 were significantly downregulated. These DEGs were significantly enriched in upregulated functions related to embryonic development, cellular invasion and migration, cell cycle, cellular organization and assembly, gene expression, and cell viability; and downregulated functions related to cell death and DNA fragmentation. Further, the intracellular signaling pathways regulated by the internalization of endometrial EVs were previously related to early embryo development and implantation potential, for their role in pluripotency, cellular homeostasis, early embryogenesis, and implantation-related processes. Finally, integrating data from miRNA cargo of EVs, we found that the miRNAs carried by endometrial EVs targeted nearly 80% of the DEGs in human blastocysts. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study in which conditions of endometrial cell culture could not mimic the intrauterine environment. WIDER IMPLICATIONS OF THE FINDINGS This study provides novel insights into the functional relevance of EVs secreted by the human endometrium, and particularly the role of EV-miRNA regulation on global transcriptome behavior of human blastocysts during early embryogenesis and embryo implantation. It provides potential biomarkers that could become useful diagnostic targets for predicting implantation success. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Spanish Ministry of Education through FPU awarded to M.S.-B. (FPU18/03735), Generalitat Valenciana through VALi+d Programme awarded to M.C.C.-G. (ACIF/2019/139), and Instituto de Salud Carlos III and cofounded by the European Social Fund (ESF) "Investing in your future" through the Miguel Servet Program (CP20/00120 [H.F.]; CP19/00149 [I.C.]). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Maria Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Alicia Quiñonero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María José De Los Santos
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Rome, Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
4
|
Wang S, Wu X, Zhang M, Chang S, Guo Y, Song S, Dai S, Wu K, Zeng S. NET1 is a critical regulator of spindle assembly and actin dynamics in mouse oocytes. Reprod Biol Endocrinol 2024; 22:5. [PMID: 38169395 PMCID: PMC10759572 DOI: 10.1186/s12958-023-01177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Neuroepithelial transforming gene 1 (NET1) is a RhoA subfamily guanine nucleotide exchange factor that governs a wide array of biological processes. However, its roles in meiotic oocyte remain unclear. We herein demonstrated that the NET1-HACE1-RAC1 pathway mediates meiotic defects in the progression of oocyte maturation. METHODS NET1 was reduced using a specific small interfering RNA in mouse oocytes. Spindle assembly, chromosomal alignment, the actin cap, and chromosomal spreads were visualized by immunostaining and analyzed under confocal microscopy. We also applied mass spectroscopy, and western blot analysis for this investigation. RESULTS Our results revealed that NET1 was localized to the nucleus at the GV stage, and that after GVBD, NET1 was localized to the cytoplasm and predominantly distributed around the chromosomes, commensurate with meiotic progression. NET1 resided in the cytoplasm and significantly accumulated on the spindle at the MI and MII stages. Mouse oocytes depleted of Net1 exhibited aberrant first polar body extrusion and asymmetric division defects. We also determined that Net1 depletion resulted in reduced RAC1 protein expression in mouse oocytes, and that NET1 protected RAC1 from degradation by HACE1, and it was essential for actin dynamics and meiotic spindle formation. Importantly, exogenous RAC1 expression in Net1-depleted oocytes significantly rescued these defects. CONCLUSIONS Our results suggest that NET1 exhibits multiple roles in spindle stability and actin dynamics during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Shiwei Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuan Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengmeng Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siyu Chang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuang Song
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shizhen Dai
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Keliang Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Wu Q, Li B, Li Y, Liu F, Yang L, Ma Y, Zhang Y, Xu D, Li Y. Effects of PAMK on lncRNA, miRNA, and mRNA expression profiles of thymic epithelial cells. Funct Integr Genomics 2022; 22:849-863. [PMID: 35505120 DOI: 10.1007/s10142-022-00863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
Polysaccharides from Atractylodes macrocephala Koidz (PAMK) can promote the proliferation of thymocytes and improve the body's immunity. However, the effect of PAMK on thymic epithelial cells has not been reported. Studies have shown that miRNAs and lncRNAs are key factors in regulating cell proliferation. In this study, we found that PAMK could promote the proliferation of mouse medullary thymic epithelial cell line 1 (MTEC1) cells through CCK-8 and EdU experiments. To further explore its mechanism, we detected the effect of PAMK on the expression profiles of lncRNAs, miRNAs, and mRNAs in MTEC1 cells. The results showed that PAMK significantly affected the expression of 225 lncRNAs, 29 miRNAs, and 800 mRNAs. Functional analysis showed that these differentially expressed genes were significantly enriched in cell cycle, cell division, NF-kappaB signaling, apoptotic process, and MAPK signaling pathway. Finally, we used Cytoscape to visualize lncRNA-miRNA-mRNA(14 lncRNAs, 17 miRNAs, 171 mRNAs) networks based on ceRNA theory. These results suggest that lncRNAs and miRNAs may be involved in the effect of PAMK on the proliferation of MTEC1 cells, providing a new research direction for exploring the molecular mechanism of PAMK promoting the proliferation of thymic epithelial cells.
Collapse
Affiliation(s)
- Qingru Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxin Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Fenfen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Pan ZN, Liu JC, Ju JQ, Wang Y, Sun SC. LRRK2 regulates actin assembly for spindle migration and mitochondrial function in mouse oocyte meiosis. J Mol Cell Biol 2021; 14:6464148. [PMID: 34918122 PMCID: PMC8962687 DOI: 10.1093/jmcb/mjab079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Leucine-rich-repeat kinase 2 (LRRK2) belongs to the Roco GTPase family and is a large multidomain protein harboring both GTPase and kinase activities. LRRK2 plays indispensable roles in many processes, such as autophagy and vesicle trafficking in mitosis. In this study, we showed the critical roles of LRRK2 in mammalian oocyte meiosis. LRRK2 is mainly accumulated at the meiotic spindle periphery during oocyte maturation. Depleting LRRK2 led to the polar body extrusion defects and also induced large polar bodies in mouse oocytes. Mass spectrometry analysis and co-immunoprecipitation results showed that LRRK2 was associated with several actin-regulating factors, such as Fascin and Rho-kinase (ROCK), and depletion of LRRK2 affected the expression of ROCK, phosphorylated cofilin, and Fascin. Further analysis showed that LRRK2 depletion did not affect spindle organization but caused the failure of spindle migration, which was largely due to the decrease of cytoplasmic actin filaments. Moreover, LRRK2 showed a similar localization pattern to mitochondria, and LRRK2 was associated with several mitochondria-related proteins. Indeed, mitochondrial distribution and function were both disrupted in LRRK2-depleted oocytes. In summary, our results indicated the critical roles of LRRK2 in actin assembly for spindle migration and mitochondrial function in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Pisko J, Špirková A, Čikoš Š, Olexiková L, Kovaříková V, Šefčíková Z, Fabian D. Apoptotic cells in mouse blastocysts are eliminated by neighbouring blastomeres. Sci Rep 2021; 11:9228. [PMID: 33927296 PMCID: PMC8085119 DOI: 10.1038/s41598-021-88752-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023] Open
Abstract
Apoptosis is a physiological process that occurs commonly during the development of the preimplantation embryo. The present work examines the ability of apoptotic embryonic cells to express a signal promoting their phagocytosis, and quantifies the ability of neighbouring, normal embryonic cells to perform that task. Microscopic analysis of mouse blastocysts revealed phosphatidylserine externalization to be 10 times less common than incidence of apoptotic cells (as detected by TUNEL). In spite of the low frequency of phosphatidylserine-flipping (in inner cell mass, no annexin V staining was recorded), fluorescence staining of the plasma membrane showed more than 20% of apoptotic cells to have been engulfed by neighbouring blastomeres. The mean frequency of apoptotic cells escaping phagocytosis by their extrusion into blastocyst cavities did not exceed 10%. Immunochemically visualised RAC1 (an enzyme important in actin cytoskeleton rearrangement) was seen in phagosome-like structures containing a nucleus with a condensed morphology. Gene transcript analysis showed that the embryonic cells expressed 12 receptors likely involved in phagocytic process (Scarf1, Msr1, Cd36, Itgav, Itgb3, Cd14, Scarb1, Cd44, Stab1, Adgrb1, Cd300lf, Cd93). In conclusion, embryonic cells possess all the necessary mechanisms for recognising, engulfing and digesting apoptotic cells, ensuring the clearance of most dying blastomeres.
Collapse
Affiliation(s)
- Jozef Pisko
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Alexandra Špirková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Štefan Čikoš
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Lucia Olexiková
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre (NPPC), Hlohovecká 2, 951 41, Lužianky, Slovak Republic
| | - Veronika Kovaříková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Zuzana Šefčíková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovak Republic.
| |
Collapse
|
8
|
Pennarossa G, Gandolfi F, Brevini TAL. "Biomechanical Signaling in Oocytes and Parthenogenetic Cells". Front Cell Dev Biol 2021; 9:646945. [PMID: 33644079 PMCID: PMC7905081 DOI: 10.3389/fcell.2021.646945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Oocyte-specific competence remains one of the major targets of current research in the field of reproduction. Several mechanisms are involved in meiotic maturation and the molecular signature of an oocyte is considered to reflect its quality and to predict its subsequent developmental and functional capabilities. In the present minireview, we focus on the possible role of mechanotransduction and mechanosensor signaling pathways, namely the Hippo and the RhoGTPase, in the maturing oocyte. Due to the limited access to female gametes, we propose the use of cells isolated from parthenogenetic embryos as a promising model to characterize and dissect the oocyte distinctive molecular signatures, given their exclusive maternal origin. The brief overview here reported suggests a role of the mechanosensing related pathways in oocyte quality and developmental competence and supports the use of uniparental cells as a useful tool for oocyte molecular signature characterization.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Duan X, Zhang HL, Wu LL, Liu MY, Pan MH, Ou XH, Sun SC. Involvement of LIMK1/2 in actin assembly during mouse embryo development. Cell Cycle 2018; 17:1381-1389. [PMID: 29943641 DOI: 10.1080/15384101.2018.1482138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
LIMKs (LIMK1 and LIMK2) are serine/threonine protein kinases that involve in various cellular activities such as cell migration, morphogenesis and cytokinesis. However, its roles during mammalian early embryo development are still unclear. In the present study, we disrupted LIMK1/2 activity to explore the functions of LIMK1/2 during mouse early embryo development. We found that p-LIMK1/2 mainly located at the cortex of each blastomeres from 2-cell to 8-cell stage, and p-LIMK1/2 also expressed at morula and blastocyst stage in mouse embryos. Inhibition of LIMK1/2 activity by LIMKi 3 (BMS-5) at the zygote stage caused the failure of embryo early cleavage, and the disruption of LIMK1/2 activity at 8-cell stage caused the defects of embryo compaction and blastocyst formation. Fluorescence staining and intensity analysis results demonstrated that the inhibition of LIMK1/2 activity caused aberrant cortex actin expression and the decrease of phosphorylated cofilin in mouse embryos. Taken together, we identified LIMK1/2 as an important regulator for cofilin phosphorylation and actin assembly during mouse early embryo development.
Collapse
Affiliation(s)
- Xing Duan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Hao-Lin Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Lan-Lan Wu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Yao Liu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Hao Pan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Xiang-Hong Ou
- b Fertility Preservation Lab, Reproductive Medicine Center , Guangdong Second Provincial General Hospital , Guangzhou , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
10
|
Duan X, Sun SC. Actin cytoskeleton dynamics in mammalian oocyte meiosis†. Biol Reprod 2018; 100:15-24. [DOI: 10.1093/biolre/ioy163] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Liang S, Guo J, Choi JW, Shin KT, Wang HY, Jo YJ, Kim NH, Cui XS. Protein phosphatase 2A regulatory subunit B55α functions in mouse oocyte maturation and early embryonic development. Oncotarget 2018; 8:26979-26991. [PMID: 28439046 PMCID: PMC5432312 DOI: 10.18632/oncotarget.15927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 2A regulatory subunit B55α (PP2A-B55α) has been studied in mitosis. However, its functions in mammalian meiosis and early embryonic development remain unknown. Here, we report that PP2A-B55α is critical for mouse oocyte meiosis and preimplantation embryo development. Knockdown of PP2A-B55α in oocytes led to abnormal asymmetric division, disordered spindle dynamics, defects in chromosome congression, an increase in aneuploidy, and induction of the DNA damage response. Moreover, knockdown of PP2A-B55α in fertilized mouse zygotes impaired development to the blastocyst stage. The impairment of embryonic development might have been due to induction of sustained DNA damage in embryos, which caused apoptosis and inhibited cell proliferation and outgrowth potential at the blastocyst stage. Overall, these results provide a novel insight into the role of PP2A-B55α as a novel meiotic and embryonic competence factor at the onset of life.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Jing Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Jeong-Woo Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Kyung-Tae Shin
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Hai-Yang Wang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Yu-Jin Jo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| |
Collapse
|
12
|
Lu A, Zhou CJ, Wang DH, Han Z, Kong XW, Ma YZ, Yun ZZ, Liang CG. Cytoskeleton-associated protein 5 and clathrin heavy chain binding regulates spindle assembly in mouse oocytes. Oncotarget 2017; 8:17491-17503. [PMID: 28177917 PMCID: PMC5392264 DOI: 10.18632/oncotarget.15097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation.
Collapse
Affiliation(s)
- Angeleem Lu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Dong-Hui Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Zhe Han
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Xiang-Wei Kong
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Yu-Zhen Ma
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Zhi-Zhong Yun
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| |
Collapse
|