1
|
Bai C, Zhao W, Klisz M, Rossi S, Shen W, Guo X. Growth Rate and Not Growing Season Explains the Increased Productivity of Masson Pine in Mixed Stands. PLANTS (BASEL, SWITZERLAND) 2025; 14:313. [PMID: 39942875 PMCID: PMC11819970 DOI: 10.3390/plants14030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 02/16/2025]
Abstract
Increased tree species diversity can promote forest production by reducing intra-specific competition and promoting an efficient unitization of resources. However, questions remain on whether and how mixed stands affect the dynamics of intra-annual xylem formation in trees, especially in subtropical forests. In this study, we randomly selected 18 trees from a monoculture of 63-year-old Masson pine (Pinus massoniana) growing in pure stands and mixed them with 39-year-old Castanopsis hystrix in Pinxiang, southern China. A total of 828 microcores were collected biweekly throughout the growing season from 2022 to 2023 to monitor the intra-annual xylem formation. Cell production started in early March and ended in late December and lasted about 281 to 284 days. Xylem phenology was similar between mixed and pure stands. During both seasons, the Masson pine in mixed stands showed higher xylem production and growth rates than those in pure stands. The Masson pine in mixed stands produced 45-51 cells in 2022 (growth rate of 0.22 cells day-1) and 35-41 cells in 2023 (0.17 cells day-1). Growth rate, and not growth seasons, determined the superior xylem growth in the mixed stands. Our study shows that after 39 years of management, Masson pine and C. hystrix unevenly aged mixed stands have a significant positive mixing effect on Masson pine xylem cell production, which demonstrates that monitoring intra-annual xylem growth dynamics can be an important tool to evaluate the effect of species composition and reveal the mechanisms to promote tree growth behind the mixing effect.
Collapse
Affiliation(s)
- Chunmei Bai
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; (C.B.); (W.Z.)
| | - Wendi Zhao
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; (C.B.); (W.Z.)
| | - Marcin Klisz
- Dendrolab IBL, Department of Silviculture and Genetics, Forest Research Institute, 05-090 Raszyn, Poland;
| | - Sergio Rossi
- Laboratoire sur les Ecosystèmes Terrestres Boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada;
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; (C.B.); (W.Z.)
| | - Xiali Guo
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; (C.B.); (W.Z.)
| |
Collapse
|
2
|
Huang D, An Q, Huang S, Tan G, Quan H, Chen Y, Zhou J, Liao H. Biomod2 modeling for predicting the potential ecological distribution of three Fritillaria species under climate change. Sci Rep 2023; 13:18801. [PMID: 37914761 PMCID: PMC10620159 DOI: 10.1038/s41598-023-45887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
The Fritillaria species ranked as a well-known traditional medicine in China and has become rare due to excessive harvesting. To find reasonable strategy for conservation and cultivation, identification of new ecological distribution of Fritillaria species together with prediction of those responses to climate change are necessary. In terms of current occurrence records and bioclimatic variables, the suitable habitats for Fritillaria delavayi, Fritillaria taipaiensis, and Fritillaria wabuensis were predicted. In comparison with Maxent and GARP, Biomod2 obtained the best AUC, KAPPA and TSS values of larger than 0.926 and was chosen to construct model. Temperature seasonality was indicated to put the greatest influence on Fritillaria taipaiensis and Fritillaria wabuensis, while isothermality was of most importance for Fritillaria delavayi. The current suitable areas for three Fritillaria species were distributed in south-west China, accounting for approximately 17.72%, 23.06% and 20.60% of China's total area, respectively. During 2021-2100 period, the suitable habitats of F. delavayi and F. wabuensis reached the maximum under SSP585 scenario, while that of F. taipaiensis reached the maximum under SSP126 scenario. The high niche overlap among three Fritillaria species showed correlation with the chemical composition (P ≤ 0.05), while no correlation was observed between niche overlap and DNA barcodes, indicating that spatial distribution had a major influence on chemical composition in the Fritillaria species. Finally, the acquisition of species-specific habitats would contribute to decrease in habitat competition, and future conservation and cultivation of Fritillaria species.
Collapse
Affiliation(s)
- Deya Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Sipei Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Guodong Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yineng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
3
|
Zhang Y, Niu J, Zhang S, Si X, Bian TT, Wu H, Li D, Sun Y, Jia J, Xin E, Yan X, Li Y. Comparative study on the gastrointestinal- and immune- regulation functions of Hedysari Radix Paeparata Cum Melle and Astragali Radix Praeparata cum Melle in rats with spleen-qi deficiency, based on fuzzy matter-element analysis. PHARMACEUTICAL BIOLOGY 2022; 60:1237-1254. [PMID: 35763552 PMCID: PMC9246251 DOI: 10.1080/13880209.2022.2086990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 05/27/2023]
Abstract
CONTEXT Hedysari Radix Praeparata Cum Melle (HRPCM) and Astragali Radix Praeparata Cum Melle (ARPCM) are used interchangeably in clinics to treat spleen-qi deficiency (SQD) symptom mainly including gastrointestinal dysfunction and decreased immunity, which has unknown differences in efficacy. OBJECTIVE To investigate the differences between HRPCM and ARPCM on intervening gastrointestinal- and immune-function with SQD syndrome. MATERIALS AND METHODS After the SQD model was established, the Sprague-Dawley (SD) rats were randomly divided into nine groups (n = 10): normal; model; Bu-Zhong-Yi-Qi Pills; 18.9, 12.6 and 6.3 g/kg dose groups of HRPCM and ARPCM. Gastrointestinal function including d-xylose, gastrin, amylase vasoactive intestinal peptide, motilin, pepsin, H+/K+-ATPase, Na+/K+-ATPase, sodium-glucose cotransporter 1 (SGLT1), glucose transporter 2 (GLUT2) and immune function including spleen and thymus index, blood routine, interleukin (IL)-2, IL-6, interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), immunoglobulin (Ig) M, IgA, IgG and delayed-type hypersensitivity (DTH) were detected. Finally, the efficacy differences were analysed comprehensively by the fuzzy matter-element method. RESULTS In regulating immune, the doses differences in efficacy between HRPCM and ARPCM showed in the high-dose (18.9 g/kg), but there were no differences in the middle- and low- dose (12.6 and 6.37 g/kg); the efficacy differences were primarily reflected in levels of IL-6, IFN-γ, TNF-α and IgM in serum, and the mRNA expression of IL-6 and IFN-γ in the spleen. In regulating gastrointestinal, the efficacy differences were primarily reflected in the levels of D-xylose, MTL, and GAS in serum, and the mRNA and protein expression of SGLT1 and GLUT2 in jejunum and ileum. DISCUSSION AND CONCLUSIONS HRPCM is more effective than ARPCM on regulating gastrointestinal function and immune function with SQD syndrome. Therefore, we propose that HRPCM should be mainly used to treat SQD syndrome in the future.
Collapse
Affiliation(s)
- Yugui Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Jiangtao Niu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Shujuan Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Xinlei Si
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Tian-Tian Bian
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Hongwei Wu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Donghui Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Yujing Sun
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Jing Jia
- College of Acupuncture-Moxibustion and Tuina, Laboratory of Molecular Biology, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Erdan Xin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Xingke Yan
- College of Acupuncture-Moxibustion and Tuina, Laboratory of Molecular Biology, Gansu University of Chinese Medicine, Lanzhou, PR China
| | - Yuefeng Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, PR China
- Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, PR China
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, PR China
| |
Collapse
|
4
|
Environmental Fragility Zoning Using GIS and AHP Modeling: Perspectives for the Conservation of Natural Ecosystems in Brazil. CONSERVATION 2022. [DOI: 10.3390/conservation2020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The degradation of natural ecosystems triggers global environmental, economic, and social problems. To prevent this, it is necessary to identify the aptitude of priority areas for conservation or use by considering land fragility from multiple environmental and spatial perspectives. We applied the concept of environmental fragility to a hydrographic basin in southeastern Brazil that establishes (i) potential fragility levels according to slope, soil classes, geological domains, drainage hierarchy, and rainfall information using an algebraic map, and (ii) emerging fragility levels via the addition of the land-use parameters. The methodological approach involved the integration of the analytic hierarchy process (AHP) and weighted linear combination (WLC) into a geographic information system (GIS). The medium and slightly low fragility classes predominated in terms of potential (~60%), and emerging (~70%) environmental fragility models used to model the basin. The model indicated that high and extremely high potential fragilities were concentrated in the upper basin, a region that is considered a global biodiversity hotspot. The areas with high/extremely high classes of emerging fragility in the upper basin decreased, indicating that the natural cover classes and land-use types are not in danger. We also introduce acceptable conservation practices for land management and use according to the environmental fragility categories established in the present work. The methodology applied in this study can be replicated in other global ecoregions. It provides low-cost territorial and environmental zoning and flexible replication and can be adjusted by administrators who are interested in land-use planning.
Collapse
|
5
|
Quantitative Assessment of Impact of the Proposed Poyang Lake Hydraulic Project (China) on the Habitat Suitability of Migratory Birds. WATER 2019. [DOI: 10.3390/w11081639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poyang Lake is the largest wintering habitat for migratory birds in Asia. In the last decade, the lake has experienced an early-occurring and prolonged dry season that has deteriorated the lake’s ecological status. To tackle this issue, the Chinese government has proposed the construction of the Poyang Lake Hydraulic Project (PLHP) to regulate water flow to the lake. However, its impact on migratory bird habitats is unknown. In this study, we simulated the habitat suitability for migratory birds in Poyang Lake during wet and dry years, with and without the presence/operation of the hydraulic project. A two-dimensional hydrodynamic model was used to simulate the water conditions for each case. Matter-element theory, 3S technology and ecological knowledge were combined to develop a matter-element-based habitat suitability model in a geographic information system (GIS)-based platform. We assessed and compared the habitat suitability in four scenarios: (1) Wet year without the hydraulic project, (2) wet year with the hydraulic project, (3) dry year without the hydraulic project, and (4) dry year with the hydraulic project. The results showed that the operation of the hydraulic project can effectively alleviate the water shortage issue in the wetland and increase the area of habitats suitable for migratory birds in typical dry years. However, it can reduce the area of suitable habitats in the northern provincial nature reserve of the lake. In addition, a reasonable management of the lake’s fishing activities can also increase habitat suitability and promote balanced patterns between human activities and migratory bird habitats.
Collapse
|
6
|
Peng LP, Cheng FY, Hu XG, Mao JF, Xu XX, Zhong Y, Li SY, Xian HL. Modelling environmentally suitable areas for the potential introduction and cultivation of the emerging oil crop Paeonia ostii in China. Sci Rep 2019; 9:3213. [PMID: 30824717 PMCID: PMC6397192 DOI: 10.1038/s41598-019-39449-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/09/2019] [Indexed: 11/18/2022] Open
Abstract
Paeonia ostii is a traditional ornamental and medicinal species that has attracted considerable interest for its high oil value. To facilitate the effective and rational cultivation and application of P. ostii in China, it is necessary to determine its potential spatial habitat distribution and environmental requirements. Using high-resolution environmental data for current and future climate scenarios, the potential suitable area and climatic requirements of P. ostii were modelled. Among the 11 environmental variables investigated, growing degree days, precipitation of the wettest month, mean temperature of the coldest quarter, global UV-B radiation, annual precipitation, and soil pH played major roles in determining the suitability of a habitat for the cultivation of P. ostii. Under the current environmental conditions in China, a total area of 20.31 × 105 km2 is suitable for growing P. ostii, accounting for 21.16% of the country's total land area. Under the two future climate scenario/year combinations (i.e., representative concentration pathways [RCPs], RCP2.6 and RCP8.5 in 2050), this species would increase its suitable area at high latitudes while decrease at low latitudes. These results present valuable information and a theoretical reference point for identifying the suitable cultivation areas of P. ostii.
Collapse
Affiliation(s)
- Li-Ping Peng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fang-Yun Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Xian-Ge Hu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jian-Feng Mao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Xing-Xing Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Zhong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - San-Yuan Li
- Forestry Department of Shaanxi Province, Xi'an, Shaanxi, 710082, China
| | - Hong-Li Xian
- Forestry Department of Shaanxi Province, Xi'an, Shaanxi, 710082, China
| |
Collapse
|