1
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
2
|
Bender PA, Chakraborty S, Durham RJ, Berka V, Carrillo E, Jayaraman V. Bi-directional allosteric pathway in NMDA receptor activation and modulation. Nat Commun 2024; 15:8841. [PMID: 39396999 PMCID: PMC11471786 DOI: 10.1038/s41467-024-53181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors involved in learning and memory. NMDA receptors primarily comprise two GluN1 and two GluN2 subunits. The GluN2 subunit dictates biophysical receptor properties, including the extent of receptor activation and desensitization. GluN2A- and GluN2D-containing receptors represent two functional extremes. To uncover the conformational basis of their functional divergence, we utilize single-molecule fluorescence resonance energy transfer to probe the extracellular domains of these receptor subtypes under resting and ligand-bound conditions. We find that the conformational profile of the GluN2 amino-terminal domain correlates with the disparate functions of GluN2A- and GluN2D-containing receptors. Changes at the pre-transmembrane segments inversely correlate with those observed at the amino-terminal domain, confirming direct allosteric communication between these domains. Additionally, binding of a positive allosteric modulator at the transmembrane domain shifts the conformational profile of the amino-terminal domain towards the active state, revealing a bidirectional allosteric pathway between extracellular and transmembrane domains.
Collapse
Affiliation(s)
- Paula A Bender
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Subhajit Chakraborty
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan J Durham
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vladimir Berka
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elisa Carrillo
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Bender PA, Chakraborty S, Durham RJ, Berka V, Carrillo E, Jayaraman V. Bi-directional allosteric pathway in NMDA receptor activation and modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589813. [PMID: 38659769 PMCID: PMC11042370 DOI: 10.1101/2024.04.16.589813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors involved in learning and memory. NMDA receptors primarily comprise two GluN1 and two GluN2 subunits. The GluN2 subunit dictates biophysical receptor properties, including the extent of receptor activation and desensitization. GluN2A- and GluN2D-containing receptors represent two functional extremes. To uncover the conformational basis of their functional divergence, we utilized single-molecule fluorescence resonance energy transfer to probe the extracellular domains of these receptor subtypes under resting and ligand-bound conditions. We find that the conformational profile of the GluN2 amino-terminal domain correlates with the disparate functions of GluN2A- and GluN2D-containing receptors. Changes at the pre-transmembrane segments inversely correlate with those observed at the amino-terminal domain, confirming direct allosteric communication between these domains. Additionally, binding of a positive allosteric modulator at the transmembrane domain shifts the conformational profile of the amino-terminal domain towards the active state, revealing a bidirectional allosteric pathway between extracellular and transmembrane domains.
Collapse
|
4
|
Terasawa K, Seike T, Sakamoto K, Ohtake K, Terada T, Iwata T, Watabe T, Yokoyama S, Hara‐Yokoyama M. Site-specific photo-crosslinking/cleavage for protein-protein interface identification reveals oligomeric assembly of lysosomal-associated membrane protein type 2A in mammalian cells. Protein Sci 2023; 32:e4823. [PMID: 37906694 PMCID: PMC10659947 DOI: 10.1002/pro.4823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
Genetic code expansion enables site-specific photo-crosslinking by introducing photo-reactive non-canonical amino acids into proteins at defined positions during translation. This technology is widely used for analyzing protein-protein interactions and is applicable in mammalian cells. However, the identification of the crosslinked region still remains challenging. Here, we developed a new method to identify the crosslinked region by pre-installing a site-specific cleavage site, an α-hydroxy acid (Nε -allyloxycarbonyl-α-hydroxyl-l-lysine acid, AllocLys-OH), into the target protein. Alkaline treatment cleaves the crosslinked complex at the position of the α-hydroxy acid residue and thus helps to identify which side of the cleavage site, either closer to the N-terminus or C-terminus, the crosslinked site is located within the target protein. A series of AllocLys-OH introductions narrows down the crosslinked region. By applying this method, we identified the crosslinked regions in lysosomal-associated membrane protein type 2A (LAMP2A), a receptor of chaperone-mediated autophagy, in mammalian cells. The results suggested that at least two interfaces are involved in the homophilic interaction, which requires a trimeric or higher oligomeric assembly of adjacent LAMP2A molecules. Thus, the combination of site-specific crosslinking and site-specific cleavage promises to be useful for revealing binding interfaces and protein complex geometries.
Collapse
Affiliation(s)
- Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- LiberoThera Co., Ltd.Chuo‐kuJapan
| | - Tatsuro Seike
- Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid TechnologyRIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
- Department of Drug Target Protein ResearchShinshu University School of MedicineNaganoJapan
| | - Kazumasa Ohtake
- Laboratory for Nonnatural Amino Acid TechnologyRIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
- Department of Electrical Engineering and BioscienceWaseda UniversityTokyoJapan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shigeyuki Yokoyama
- Department of Drug Target Protein ResearchShinshu University School of MedicineNaganoJapan
- Laboratory for Protein Function and Structural BiologyRIKEN Cluster for Science, Technology and Innovation HubYokohamaJapan
- Department of Structural Biology and Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Miki Hara‐Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
5
|
Zhao S, Liu D. Applications of genetic code expansion and photosensitive UAAs in studying membrane proteins. Open Life Sci 2023; 18:20220752. [PMID: 37828978 PMCID: PMC10566474 DOI: 10.1515/biol-2022-0752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Membrane proteins are the targets for most drugs and play essential roles in many life activities in organisms. In recent years, unnatural amino acids (UAAs) encoded by genetic code expansion (GCE) technology have been widely used, which endow proteins with different biochemical properties. A class of photosensitive UAAs has been widely used to study protein structure and function. Combined with photochemical control with high temporal and spatial resolution, these UAAs have shown broad applicability to solve the problems of natural ion channels and receptor biology. This review will focus on several application examples of light-controlled methods to integrate GCE technology to study membrane protein function in recent years. We will summarize the typical research methods utilizing some photosensitive UAAs to provide common strategies and further new ideas for studying protein function and advancing biological processes.
Collapse
Affiliation(s)
- Shu Zhao
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| |
Collapse
|
6
|
Liang Y, Qie Y, Yang J, Wu R, Cui S, Zhao Y, Anderson GJ, Nie G, Li S, Zhang C. Programming conformational cooperativity to regulate allosteric protein-oligonucleotide signal transduction. Nat Commun 2023; 14:4898. [PMID: 37580346 PMCID: PMC10425332 DOI: 10.1038/s41467-023-40589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Conformational cooperativity is a universal molecular effect mechanism and plays a critical role in signaling pathways. However, it remains a challenge to develop artificial molecular networks regulated by conformational cooperativity, due to the difficulties in programming and controlling multiple structural interactions. Herein, we develop a cooperative strategy by programming multiple conformational signals, rather than chemical signals, to regulate protein-oligonucleotide signal transduction, taking advantage of the programmability of allosteric DNA constructs. We generate a cooperative regulation mechanism, by which increasing the loop lengths at two different structural modules induced the opposite effects manifesting as down- and up-regulation. We implement allosteric logic operations by using two different proteins. Further, in cell culture we demonstrate the feasibility of this strategy to cooperatively regulate gene expression of PLK1 to inhibit tumor cell proliferation, responding to orthogonal protein-signal stimulation. This programmable conformational cooperativity paradigm has potential applications in the related fields.
Collapse
Affiliation(s)
- Yuan Liang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China
- School of Control and Computer Engineering, North China Electric Power University, 102206, Beijing, China
| | - Yunkai Qie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, 102206, Beijing, China
| | - Ranfeng Wu
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China
| | - Shuang Cui
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China
| | - Greg J Anderson
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, Queensland, 4029, Australia
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, 510530, China.
| | - Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, 100871, Beijing, China.
| |
Collapse
|
7
|
Maltan L, Weiß S, Najjar H, Leopold M, Lindinger S, Höglinger C, Höbarth L, Sallinger M, Grabmayr H, Berlansky S, Krivic D, Hopl V, Blaimschein A, Fahrner M, Frischauf I, Tiffner A, Derler I. Photocrosslinking-induced CRAC channel-like Orai1 activation independent of STIM1. Nat Commun 2023; 14:1286. [PMID: 36890174 PMCID: PMC9995687 DOI: 10.1038/s41467-023-36458-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/01/2023] [Indexed: 03/10/2023] Open
Abstract
Ca2+ release-activated Ca2+ (CRAC) channels, indispensable for the immune system and various other human body functions, consist of two transmembrane (TM) proteins, the Ca2+-sensor STIM1 in the ER membrane and the Ca2+ ion channel Orai1 in the plasma membrane. Here we employ genetic code expansion in mammalian cell lines to incorporate the photocrosslinking unnatural amino acids (UAA), p-benzoyl-L-phenylalanine (Bpa) and p-azido-L-phenylalanine (Azi), into the Orai1 TM domains at different sites. Characterization of the respective UAA-containing Orai1 mutants using Ca2+ imaging and electrophysiology reveal that exposure to UV light triggers a range of effects depending on the UAA and its site of incorporation. In particular, photoactivation at A137 using Bpa in Orai1 activates Ca2+ currents that best match the biophysical properties of CRAC channels and are capable of triggering downstream signaling pathways such as nuclear factor of activated T-cells (NFAT) translocation into the nucleus without the need for the physiological activator STIM1.
Collapse
Affiliation(s)
- Lena Maltan
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Sarah Weiß
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Hadil Najjar
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Melanie Leopold
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Sonja Lindinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Carmen Höglinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Lorenz Höbarth
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Sascha Berlansky
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Denis Krivic
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, A-8010, Graz, Austria
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Anna Blaimschein
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Irene Frischauf
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020, Linz, Austria.
| |
Collapse
|
8
|
Hiefinger C, Mandl S, Wieland M, Kneuttinger A. Rational design, production and in vitro analysis of photoxenoproteins. Methods Enzymol 2023; 682:247-288. [PMID: 36948704 DOI: 10.1016/bs.mie.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In synthetic biology, the artificial control of proteins by light is of growing interest since it enables the spatio-temporal regulation of downstream molecular processes. This precise photocontrol can be established by the site-directed incorporation of photo-sensitive non-canonical amino acids (ncAAs) into proteins, which generates so-called photoxenoproteins. Photoxenoproteins can be engineered using ncAAs that facilitate the irreversible activation or reversible regulation of their activity upon irradiation. In this chapter, we provide a general outline of the engineering process based on the current methodological state-of-the-art to obtain artificial photocontrol in proteins using the ncAAs o-nitrobenzyl-O-tyrosine as example for photocaged ncAAs (irreversible), and phenylalanine-4'-azobenzene as example for photoswitchable ncAAs (reversible). We thereby focus on the initial design as well as the production and characterization of photoxenoproteins in vitro. Finally, we outline the analysis of photocontrol under steady-state and non-steady-state conditions using the allosteric enzyme complexes imidazole glycerol phosphate synthase and tryptophan synthase as examples.
Collapse
Affiliation(s)
- Caroline Hiefinger
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sabrina Mandl
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Mona Wieland
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andrea Kneuttinger
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Huang J, Chu X, Luo Y, Wang Y, Zhang Y, Zhang Y, Li H. Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem Biol 2022; 17:1951-1962. [PMID: 35675581 DOI: 10.1021/acschembio.2c00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allosteric regulation plays a fundamental role in innumerable biological processes. Understanding its dynamic mechanism and impact at the molecular level is of great importance in disease diagnosis and drug discovery. Glycogen phosphorylase (GP) is a phosphoprotein responding to allosteric regulation and has significant biological importance to glycogen metabolism. Although the atomic structures of GP have been previously solved, the conformational dynamics of GP related to allostery regulation remain largely elusive due to its macromolecular size (∼196 kDa). Here, we integrated native top-down mass spectrometry (nTD-MS), hydrogen-deuterium exchange MS (HDX-MS), protection factor (PF) analysis, molecular dynamics (MD) simulations, and allostery signaling analysis to examine the structural basis and dynamics for the allosteric regulation of GP by phosphorylation. nTD-MS reveals differences in structural stability as well as oligomeric state between the unphosphorylated (GPb) and phosphorylated (GPa) forms. HDX-MS, PF analysis, and MD simulations further pinpoint the structural differences between GPb and GPa involving the binding interfaces (the N-terminal and tower-tower helices), catalytic site, and PLP-binding region. More importantly, it also allowed us to complete the missing link of the long-range communication process from the N-terminal tail to the catalytic site caused by phosphorylation. This integrative MS and in silico-based platform is highly complementary to biophysical approaches and yields valuable insights into protein structures and dynamic regulation.
Collapse
Affiliation(s)
- Jing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China
| | - Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, College of Life Sciences, Shanghai Institute for Advanced Study, Institute of Quantitative Biology, Zhejiang University, Haining 314400, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China
| | - Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, No. 132 Wai Huan Dong Lu, Guangzhou 510006, China.,Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
10
|
Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022; 403:573-613. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
11
|
Miura Y, Senoo A, Doura T, Kiyonaka S. Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches. RSC Chem Biol 2022; 3:269-287. [PMID: 35359495 PMCID: PMC8905536 DOI: 10.1039/d1cb00195g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cell surface receptors transmit extracellular information into cells. Spatiotemporal regulation of receptor signaling is crucial for cellular functions, and dysregulation of signaling causes various diseases. Thus, it is highly desired to control receptor functions with high spatial and/or temporal resolution. Conventionally, genetic engineering or chemical ligands have been used to control receptor functions in cells. As the alternative, chemogenetics has been proposed, in which target proteins are genetically engineered to interact with a designed chemical partner with high selectivity. The engineered receptor dissects the function of one receptor member among a highly homologous receptor family in a cell-specific manner. Notably, some chemogenetic strategies have been used to reveal the receptor signaling of target cells in living animals. In this review, we summarize the developing chemogenetic methods of transmembrane receptors for cell-specific regulation of receptor signaling. We also discuss the prospects of chemogenetics for clinical applications.
Collapse
Affiliation(s)
- Yuta Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Akinobu Senoo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| |
Collapse
|
12
|
High-throughput characterization of photocrosslinker-bearing ion channel variants to map residues critical for function and pharmacology. PLoS Biol 2021; 19:e3001321. [PMID: 34491979 PMCID: PMC8448361 DOI: 10.1371/journal.pbio.3001321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/17/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Incorporation of noncanonical amino acids (ncAAs) can endow proteins with novel functionalities, such as crosslinking or fluorescence. In ion channels, the function of these variants can be studied with great precision using standard electrophysiology, but this approach is typically labor intensive and low throughput. Here, we establish a high-throughput protocol to conduct functional and pharmacological investigations of ncAA-containing human acid-sensing ion channel 1a (hASIC1a) variants in transiently transfected mammalian cells. We introduce 3 different photocrosslinking ncAAs into 103 positions and assess the function of the resulting 309 variants with automated patch clamp (APC). We demonstrate that the approach is efficient and versatile, as it is amenable to assessing even complex pharmacological modulation by peptides. The data show that the acidic pocket is a major determinant for current decay, and live-cell crosslinking provides insight into the hASIC1a–psalmotoxin 1 (PcTx1) interaction. Further, we provide evidence that the protocol can be applied to other ion channels, such as P2X2 and GluA2 receptors. We therefore anticipate the approach to enable future APC-based studies of ncAA-containing ion channels in mammalian cells. This study describes a method to rapidly screen hundreds of ion channel variants containing non-canonical amino acids. A proof-of-principle introducing photocrosslinking non-canonical amino acids into the human ion channel hASIC1a shows how this approach can provide insights into function and pharmacology.
Collapse
|
13
|
Tian M, Stroebel D, Piot L, David M, Ye S, Paoletti P. GluN2A and GluN2B NMDA receptors use distinct allosteric routes. Nat Commun 2021; 12:4709. [PMID: 34354080 PMCID: PMC8342458 DOI: 10.1038/s41467-021-25058-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Allostery represents a fundamental mechanism of biological regulation that involves long-range communication between distant protein sites. It also provides a powerful framework for novel therapeutics. NMDA receptors (NMDARs), glutamate-gated ionotropic receptors that play central roles in synapse maturation and plasticity, are prototypical allosteric machines harboring large extracellular N-terminal domains (NTDs) that provide allosteric control of key receptor properties with impact on cognition and behavior. It is commonly thought that GluN2A and GluN2B receptors, the two predominant NMDAR subtypes in the adult brain, share similar allosteric transitions. Here, combining functional and structural interrogation, we reveal that GluN2A and GluN2B receptors utilize different long-distance allosteric mechanisms involving distinct subunit-subunit interfaces and molecular rearrangements. NMDARs have thus evolved multiple levels of subunit-specific allosteric control over their transmembrane ion channel pore. Our results uncover an unsuspected diversity in NMDAR molecular mechanisms with important implications for receptor physiology and precision drug development. NMDA receptors are glutamate-gated ion channels essential for synapse maturation and plasticity. Here the authors show that GluN2A and GluN2B NMDA receptors — the two principal subtypes NMDARs in the adult CNS — operate through distinct long range allosteric mechanisms.
Collapse
Affiliation(s)
- Meilin Tian
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laura Piot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Mélissa David
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Shixin Ye
- Unité INSERM U1195, Hôpital de Bicêtre, Université Paris-Saclay, Paris, Le Kremlin-Bicêtre, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France.
| |
Collapse
|
14
|
Photosensitive tyrosine analogues unravel site-dependent phosphorylation in TrkA initiated MAPK/ERK signaling. Commun Biol 2020; 3:706. [PMID: 33239753 PMCID: PMC7689462 DOI: 10.1038/s42003-020-01396-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Tyrosine kinase A (TrkA) is a membrane receptor which, upon ligand binding, activates several pathways including MAPK/ERK signaling, implicated in a spectrum of human pathologies; thus, TrkA is an emerging therapeutic target in treatment of neuronal diseases and cancer. However, mechanistic insights into TrKA signaling are lacking due to lack of site-dependent phosphorylation control. Here we engineer two light-sensitive tyrosine analogues, namely p-azido-L-phenylalanine (AzF) and the caged-tyrosine (ONB), through amber codon suppression to optically manipulate the phosphorylation state of individual intracellular tyrosines in TrkA. We identify TrkA-AzF and ONB mutants, which can activate the ERK pathway in the absence of NGF ligand binding through light control. Our results not only reveal how TrkA site-dependent phosphorylation controls the defined signaling process, but also extend the genetic code expansion technology to enable regulation of receptor-type kinase activation by optical control at the precision of a single phosphorylation site. It paves the way for comprehensive analysis of kinase-associated pathways as well as screening of compounds intervening in a site-directed phosphorylation pathway for targeted therapy. Using genetic code expansion, Zhao, Shi et al. generate light-sensitive tyrosine analogues to obtain insights into the activation of the NGF receptor, TrkA. They identify light-sensitive and NGF-insensitive phosphorylation sites, validating the approach and providing insights into TrkA signaling
Collapse
|
15
|
Abstract
Genetic code expansion is one of the most powerful technologies in protein engineering. In addition to the 20 canonical amino acids, the expanded genetic code is supplemented by unnatural amino acids, which have artificial side chains that can be introduced into target proteins in vitro and in vivo. A wide range of chemical groups have been incorporated co-translationally into proteins in single cells and multicellular organisms by using genetic code expansion. Incorporated unnatural amino acids have been used for novel structure-function relationship studies, bioorthogonal labelling of proteins in cellulo for microscopy and in vivo for tissue-specific proteomics, the introduction of post-translational modifications and optical control of protein function, to name a few examples. In this Minireview, the development of genetic code expansion technology is briefly introduced, then its applications in neurobiology are discussed, with a focus on studies using mammalian cells and mice as model organisms.
Collapse
Affiliation(s)
- Ivana Nikić‐Spiegel
- Werner Reichardt Centre for Integrative NeuroscienceUniversity of TübingenOtfried-Müller-Strasse 2572076TübingenGermany
| |
Collapse
|
16
|
Braun N, Sheikh ZP, Pless SA. The current chemical biology tool box for studying ion channels. J Physiol 2020; 598:4455-4471. [DOI: 10.1113/jp276695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- N. Braun
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - Z. P. Sheikh
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - S. A. Pless
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| |
Collapse
|
17
|
Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2020; 20:514-532. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.
Collapse
Affiliation(s)
- Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | | | - Alexandre Mourot
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
18
|
Gating modules of the AMPA receptor pore domain revealed by unnatural amino acid mutagenesis. Proc Natl Acad Sci U S A 2019; 116:13358-13367. [PMID: 31213549 DOI: 10.1073/pnas.1818845116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are responsible for fast synaptic transmission throughout the vertebrate nervous system. Conformational changes of the transmembrane domain (TMD) underlying ion channel activation and desensitization remain poorly understood. Here, we explored the dynamics of the TMD of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type iGluRs using genetically encoded unnatural amino acid (UAA) photocross-linkers, p-benzoyl-l-phenylalanine (BzF) and p-azido-l-phenylalanine (AzF). We introduced these UAAs at sites throughout the TMD of the GluA2 receptor and characterized the mutants in patch-clamp recordings, exposing them to glutamate and ultraviolet (UV) light. This approach revealed a range of optical effects on the activity of mutant receptors. We found evidence for an interaction between the Pre-M1 and the M4 TMD helix during desensitization. Photoactivation at F579AzF, a residue behind the selectivity filter in the M2 segment, had extraordinarily broad effects on gating and desensitization. This observation suggests coupling to other parts of the receptor and like in other tetrameric ion channels, selectivity filter gating.
Collapse
|
19
|
Coin I. Application of non-canonical crosslinking amino acids to study protein-protein interactions in live cells. Curr Opin Chem Biol 2018; 46:156-163. [PMID: 30077876 DOI: 10.1016/j.cbpa.2018.07.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
The genetic incorporation of non-canonical amino acids (ncAAs) equipped with photo-crosslinking and chemical crosslinking moieties has found broad application in the study of protein-protein interactions from a unique perspective in live cells. We highlight here applications of photo-activatable ncAAs to map protein interaction surfaces and to capture protein-protein interactions, and we describe recent efforts to efficiently couple photo-crosslinking with mass spectrometric analysis. In addition, we describe recent advances in the development and application of ncAAs for chemical crosslinking, including protein stapling, photo-control of protein conformation, two-dimensional crosslinking, and stabilization of transient and low-affinity protein-protein interactions. We expect that the field will keep growing in the near future and enable the tackling of ambitious biological questions.
Collapse
Affiliation(s)
- Irene Coin
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstr. 34, 04301 Leipzig, Germany.
| |
Collapse
|
20
|
Klippenstein V, Mony L, Paoletti P. Probing Ion Channel Structure and Function Using Light-Sensitive Amino Acids. Trends Biochem Sci 2018; 43:436-451. [PMID: 29650383 DOI: 10.1016/j.tibs.2018.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022]
Abstract
Approaches to remotely control and monitor ion channel operation with light are expanding rapidly in the biophysics and neuroscience fields. A recent development directly introduces light sensitivity into proteins by utilizing photosensitive unnatural amino acids (UAAs) incorporated using the genetic code expansion technique. The introduction of UAAs results in unique molecular level control and, when combined with the maximal spatiotemporal resolution and poor invasiveness of light, enables direct manipulation and interrogation of ion channel functionality. Here, we review the diverse applications of light-sensitive UAAs in two superfamilies of ion channels (voltage- and ligand-gated ion channels; VGICs and LGICs) and summarize existing UAA tools, their mode of action, potential, caveats, and technical considerations to their use in illuminating ion channel structure and function.
Collapse
Affiliation(s)
- Viktoria Klippenstein
- Institut de Biologie de I'ENS (IBENS), CNRS UMR8197, INSERM U1024, Ecole Normale Supérieure, Université PSL, 46 rue d'Ulm, 75005 Paris, France; These authors contributed equally to this work
| | - Laetitia Mony
- Institut de Biologie de I'ENS (IBENS), CNRS UMR8197, INSERM U1024, Ecole Normale Supérieure, Université PSL, 46 rue d'Ulm, 75005 Paris, France; These authors contributed equally to this work
| | - Pierre Paoletti
- Institut de Biologie de I'ENS (IBENS), CNRS UMR8197, INSERM U1024, Ecole Normale Supérieure, Université PSL, 46 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
21
|
Chen Y, Lu L, Ye S. Genetic Code Expansion and Optoproteomics. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:599-610. [PMID: 29259524 PMCID: PMC5733852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nature has invented photoreceptor proteins that are involved in sensing and response to light in living organisms. Genetic code expansion (GCE) technology has provided new tools to transform light insensitive proteins into novel photoreceptor proteins. It is achieved by the site-specific incorporation of unnatural amino acids (Uaas) that carry light sensitive moieties serving as "pigments" that react to light via photo-decaging, cross-linking, or isomerization. Over the last two decades, various proteins including ion channels, GPCRs, transporters, and kinases have been successfully rendered light responsive owing to the functionalities of Uaas. Very recently, Cas9 protein has been engineered to enable light activation of genomic editing by CRISPR. Those novel proteins have not only led to discoveries of dynamic protein conformational changes with implications in diseases, but also facilitated the screening of ligand-protein and protein-protein interactions of pharmacological significance. This review covers the genetic editing principles for genetic code expansion and design concepts that guide the engineering of light-sensitive proteins. The applications have brought up a new concept of "optoproteomics" that, in contrast to "optogenetics," aims to combine optical methods and site-specific proteomics for investigating and intervening in biological functions.
Collapse
Affiliation(s)
- Yuting Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University (ECNU), Shanghai, China
| | - Linjie Lu
- Université Pierre-et-Marie-Curie, Laboratory of Computational and Quantitative Biology (LCQB), Institute of Biology Paris-Seine, Paris, France
| | - Shixin Ye
- Université Pierre-et-Marie-Curie, Laboratory of Computational and Quantitative Biology (LCQB), Institute of Biology Paris-Seine, Paris, France,Institut National de la Santé et de la Recherche Médicale, Paris, France,Centre National de la Recherche Scientifique, Paris, France,To whom all correspondence should be addressed: Shixin Ye-Lehmann, Laboratory of Computational and Quantitative Biology, Institute of Biology Paris-Seine, University of Pierre and Marie Curie, Bldg. C, 3rd floor, Room 311a, 4 Place Jussieu, 75006 Paris, France, Tel: 33.(0)1.44.27.60.57, .
| |
Collapse
|
22
|
Klippenstein V, Hoppmann C, Ye S, Wang L, Paoletti P. Optocontrol of glutamate receptor activity by single side-chain photoisomerization. eLife 2017; 6. [PMID: 28534738 PMCID: PMC5441875 DOI: 10.7554/elife.25808] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/01/2017] [Indexed: 12/26/2022] Open
Abstract
Engineering light-sensitivity into proteins has wide ranging applications in molecular studies and neuroscience. Commonly used tethered photoswitchable ligands, however, require solvent-accessible protein labeling, face structural constrains, and are bulky. Here, we designed a set of optocontrollable NMDA receptors by directly incorporating single photoswitchable amino acids (PSAAs) providing genetic encodability, reversibility, and site tolerance. We identified several positions within the multi-domain receptor endowing robust photomodulation. PSAA photoisomerization at the GluN1 clamshell hinge is sufficient to control glycine sensitivity and activation efficacy. Strikingly, in the pore domain, flipping of a M3 residue within a conserved transmembrane cavity impacts both gating and permeation properties. Our study demonstrates the first detection of molecular rearrangements in real-time due to the reversible light-switching of single amino acid side-chains, adding a dynamic dimension to protein site-directed mutagenesis. This novel approach to interrogate neuronal protein function has general applicability in the fast expanding field of optopharmacology. DOI:http://dx.doi.org/10.7554/eLife.25808.001 Nerve cells communicate with each other by releasing chemicals, also known as neurotransmitters, from one cell to the next. Once released, these neurotransmitters bind to specific docking stations, called receptors, which are located on the surface of the neighboring cell. Due to changes in neurotransmitter release or the receptor number, the connections between neurons can either strengthen or weaken over time. This process, called synaptic plasticity, forms the basis of learning and memory. One of the key players in synaptic plasticity are NMDA receptors, and if these receptors are faulty, it can cause disorders such as schizophrenia or epilepsy. NMDAs are a large family of receptors that have many receptor subtypes, each with specific properties. Every subtype is composed of four varying subunits. It is still unclear how these different receptor subtypes contribute to synaptic plasticity and new methods are needed to resolve this puzzle. An emerging strategy to study brain receptors is to engineer them so that they can be controlled with light. One approach to provide light-sensitivity uses molecules that act as ‘light switches’. These switches change their shape when exposed to specific colors of light and this way, turn a receptor on or off. However, commonly used light switches are often very large, meaning that they can only be introduced at specific sites in a receptor, and have limited ability to change the shape of a receptor. Klippenstein et al. have now generated a small light switch molecule with the size of a single amino acid side-chain that, in theory, could replace any of the usual amino acids in the NMDA receptor. Different locations for the light switch were tested to identify those that changed the activity of the receptor. When the receptors were stimulated with light, the light switch changed its shape, which in turn influenced the shape of the receptor. This meant that, depending on which amino acid in the receptor had been replaced with the light switch, light could be used to control the receptor activity in different ways. This new approach of using integrated light switches allows NMDA receptors to be controlled in a fast and reversible manner using something as simple as a beam of light. Further research will use the toolset of light-controllable receptors to study how the different NMDA receptor subtypes affect synaptic plasticity in the normal and diseased brain. DOI:http://dx.doi.org/10.7554/eLife.25808.002
Collapse
Affiliation(s)
- Viktoria Klippenstein
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Christian Hoppmann
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Shixin Ye
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Laboratory of Computational and Quantitative Biology, Université Pierre-et-Marie-Curie, CNRS, Paris, France
| | - Lei Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|