1
|
Zhang B, Liu JB, Zhou L, Wang X, Khan S, Hu WH, Ho WZ. Cytosolic DNA sensor activation inhibits HIV infection of macrophages. J Med Virol 2023; 95:e28253. [PMID: 36286245 PMCID: PMC9839519 DOI: 10.1002/jmv.28253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 01/17/2023]
Abstract
Cytosolic recognition of microbial DNA in macrophages results in the activation of the interferon (IFN)-dependent antiviral innate immunity. Here, we examined whether activating DNA sensors in peripheral blood monocyte-derived macrophages (MDMs) can inhibit human immunodeficiency virus (HIV). We observed that the stimulation of MDMs with poly(dA:dT) or poly(dG:dC) (synthetic ligands for the DNA sensors) inhibited HIV infection and replication. MDMs treated with poly(dA:dT) or poly(dG:dC) expressed higher levels of both type I and type III IFNs than untreated cells. Activation of the DNA sensors in MDMs also induced the expression of the multiple intracellular anti-HIV factors, including IFN-stimulated genes (ISGs: ISG15, ISG56, Viperin, OAS2, GBP5, MxB, and Tetherin) and the HIV restriction microRNAs (miR-29c, miR-138, miR-146a, miR-155, miR-198, and miR-223). In addition, the DNA sensor activation of MDM upregulated the expression of the CC chemokines (RANTES, MIP-1α, MIP-1β), the ligands for HIV entry coreceptor CCR5. These observations indicate that the cytosolic DNA sensors have a protective role in the macrophage intracellular immunity against HIV and that targeting the DNA sensors has therapeutic potential for immune activation-based anti-HIV treatment.
Collapse
Affiliation(s)
| | | | - Lina Zhou
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shazheb Khan
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Basson AR, Ahmed S, Almutairi R, Seo B, Cominelli F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods 2021; 10:foods10040774. [PMID: 33916612 PMCID: PMC8066255 DOI: 10.3390/foods10040774] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, particularly diet, are considered central to the pathogenesis of the inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis. In particular, the Westernization of diet, characterized by high intake of animal protein, saturated fat, and refined carbohydrates, has been shown to contribute to the development and progression of IBD. During the last decade, soybean, as well as soy-derived bioactive compounds (e.g., isoflavones, phytosterols, Bowman-Birk inhibitors) have been increasingly investigated because of their anti-inflammatory properties in animal models of IBD. Herein we provide a scoping review of the most studied disease mechanisms associated with disease induction and progression in IBD rodent models after feeding of either the whole food or a bioactive present in soybean.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
- Correspondence:
| | - Saleh Ahmed
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Rawan Almutairi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian Seo
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| |
Collapse
|
3
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
A serine protease inhibitor suppresses autoimmune neuroinflammation by activating the STING/IFN-β axis in macrophages. Cell Mol Immunol 2020; 17:1278-1280. [PMID: 32203194 DOI: 10.1038/s41423-020-0405-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
|
5
|
Bowman‒Birk Inhibitor Suppresses Herpes Simplex Virus Type 2 Infection of Human Cervical Epithelial Cells. Viruses 2018; 10:v10100557. [PMID: 30322047 PMCID: PMC6213026 DOI: 10.3390/v10100557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The Bowman‒Birk inhibitor (BBI), a protease inhibitor derived from soybeans, has been extensively studied in anti-tumor and anti-inflammation research. We recently reported that BBI has an anti-HIV-1 property in primary human macrophages. Because HSV-2 infection plays a role in facilitating HIV-1 sexual transmission, we thus examined whether BBI has the ability to inhibit HSV-2 infection. We demonstrated that BBI could potently inhibit HSV-2 replication in human cervical epithelial cells (End1/E6E7). This BBI-mediated HSV-2 inhibition was partially through blocking HSV-2-mediated activation of NF-κB and p38 MAPK pathways. In addition, BBI could activate the JAK/STAT pathway and enhance the expression of several antiviral interferon-stimulated genes (ISGs). Furthermore, BBI treatment of End1/E6E7 cells upregulated the expression of tight junction proteins and reduced HSV-2-mediated cellular ubiquitinated proteins’ degradation through suppressing the ubiquitin‒proteasome system. These observations indicate that BBI may have therapeutic potential for the prevention and treatment of HSV-2 infections.
Collapse
|
6
|
Su QJ, Wang X, Zhou RH, Guo L, Liu H, Li JL, Ho WZ. IFN-λ4 inhibits HIV infection of macrophages through signalling of IFN-λR1/IL-10R2 receptor complex. Scand J Immunol 2018; 88:e12717. [PMID: 30247785 PMCID: PMC6286684 DOI: 10.1111/sji.12717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 12/28/2022]
Abstract
The recently discovered IFN‐λ4 has been found to have antiviral activity against several viruses. However, it's unknown whether IFN‐λ4 can inhibit HIV infection. Here, we show that IFN‐λ4 could suppress HIV infection of macrophages. This IFN‐λ4‐mediated HIV inhibition was compromised by the antibodies against IFN‐λ receptor complex, IFN‐λR1/IL‐10R2. IFN‐λ4 enhanced the phosphorylation of STAT1, and induced antiviral interferon‐stimulated genes. These findings indicated that IFN‐λ4 can inhibit HIV via JAK/STAT signalling pathway.
Collapse
Affiliation(s)
- Qi-Jian Su
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Run-Hong Zhou
- School of Basic Medical Sciences/State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Le Guo
- School of Basic Medical Sciences/State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Hang Liu
- School of Basic Medical Sciences/State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.,School of Basic Medical Sciences/State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Abstract
The study of natural products in biomedical research is not a modern concept. Many of the most successful medical therapeutics are derived from natural products, including those studied in the field of HIV/AIDS. Biomedical research has a rich history of discovery based on screens of medicinal herbs and traditional medicine practices. Compounds derived from natural products, which repress HIV and those that activate latent HIV, have been reported. It is important to remember the tradition in medical research to derive therapies based on these natural products and to overcome the negative perception of natural products as an "alternative medicine."
Collapse
Affiliation(s)
- Daniele C. Cary
- Department of Medicine, University of California at San Francisco, San Francisco, California
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California
| | - B. Matija Peterlin
- Department of Medicine, University of California at San Francisco, San Francisco, California
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
8
|
Ma TC, Le Guo, Zhou RH, Wang X, Liu JB, Li JL, Zhou Y, Hou W, Ho WZ. Soybean-derived Bowman-Birk inhibitor (BBI) blocks HIV entry into macrophages. Virology 2017; 513:91-97. [PMID: 29040829 DOI: 10.1016/j.virol.2017.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/16/2023]
Abstract
Bowman-Birk inhibitor (BBI) is a soybean-derived protease inhibitor that has anti-inflammation and anti-HIV effect. Here, we further investigated the anti-HIV action of BBI in macrophages, focusing on its effect on viral entry. We found that BBI could significantly block HIV entry into macrophages. Investigation of the mechanism(s) of the BBI action on HIV inhibition showed that BBI down-regulated the expression of CD4 receptor (as much as 80%) and induced the production of the CC chemokines (up to 60 folds at protein level) in macrophages. This inhibitory effect of BBI on HIV entry could be blocked by the neutralization antibodies to CC chemokines. These findings indicate that BBI may have therapeutic potential as a viral entry inhibitor for the prevention and treatment of HIV infection.
Collapse
Affiliation(s)
- Tong-Cui Ma
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Le Guo
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Run-Hong Zhou
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Jin-Biao Liu
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wei Hou
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China
| | - Wen-Zhe Ho
- Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, PR China; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|