1
|
Dai W, Li Y, Wu S, Wang Q, Zheng X, Zhang J, Han X, Zhou Y. Identification of MAGE-A10 specific T cell receptor promising in immunotherapy of hepatocellular carcinoma. Int J Biol Macromol 2025; 315:144243. [PMID: 40379175 DOI: 10.1016/j.ijbiomac.2025.144243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Due to the limitations of current treatment strategies, hepatocellular carcinoma (HCC) continues to impose a severe burden on people's health. In the process of exploring novel therapies, T cell receptor-engineered T cell (TCR-T) therapy has been extensively developed in HCC immunotherapy. Melanoma-associated antigen family A member 10 (MAGE-A10) is a cancer-testis antigen (CTA), specifically expressed on HCC cells. However, the identification of TCR-T targeting MAGE-A10 in HCC remains rarely discussed. In this study, single-cell RNA sequencing (scRNA-seq) and TCR sequencing (scTCR-seq) were performed on samples from HCC patients. The cellular landscape of HCC was illustrated through a single-cell atlas. Reactive T cells were defined based on the matched T cells. Additionally, most reactive T cells were enriched in CD4_CD69_Th, CD4_FOXP3_Treg, CD4_CXCL13_TEX, and CD8_CXCL13_TEX. GLIPH2 was utilized to cluster TCRs from reactive T cells, enabling the identification of reactive TCRs. TCRMatch predicted MAGE-A10 as a specific antigen recognized by one of the reactive TCRs. Furthermore, the affinity assessments between human leukocyte antigen (HLA), epitope of MAGE-A10, and the identified TCR were performed with NetMHCpan and DLpTCR. Finally, cytotoxicity assays indicated the specific recognition and killing of MAGE-A10-TCR-T cells against HCC cells, paving the way for TCR-T immunotherapy in HCC.
Collapse
Affiliation(s)
- Wei Dai
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Yuanqi Li
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Shaoxian Wu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Qi Wang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Xiao Zheng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiao Han
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou 510623, China.
| | - You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China.
| |
Collapse
|
2
|
Bao L, Hao C, Wang J, Guo F, Geng Z, Wang D, Zhao Y, Li Y, Yao W. In vitro co-culture model of human monocyte-derived dendritic cells and T cells to evaluate the sensitization of dinitrochlorobenzene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112331. [PMID: 34015634 DOI: 10.1016/j.ecoenv.2021.112331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Exposure to sensitizer has been suggested to be hazardous to human health, evaluation the sensitization of sensitizer is particularly important and urgently needed. Dendritic cells (DCs) exert an irreplaceable function in immunity, and the T cell receptor (TCR) repertoire is key to ensuring immune response to foreign antigens. We hypothesized that a co-culture model of human monocyte-derived dendritic cells (Mo-DCs) and T cells could be employed to evaluate the sensitization of DNCB. An experimental model of DNCB-induced sensitization in rat was employed to examine alterations of cluster of differentiation CD103+ DCs and T cells. A co-cultured model of Mo-DCs and T cells was developed in vitro to assess the sensitization of DNCB through the phenotypic and functional alterations of Mo-DCs, as well as the TCR repertoire. We found that the CD103+ DCs phenotype and T-helper (Th) cells polarization altered in sensitization rats. In vitro, phenotypic alteration of Mo-DCs caused by DNCB were consistent with in vivo results, antigen uptake capacity of Mo-DCs diminished and capacity of Mo-DCs to prime T cell increased. Clones of the TCR repertoire and the diversity of TCR repertoire were enhanced, changes were noted in the usage of variable, joining, and variable-joining gene combinations. DNCB exposure potentiated alterations and characteristics of Mo-DCs and the TCR repertoire in a co-culture model. Such changes provided innovative ideas for evaluating sensitization of DNCB.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Changfu Hao
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juan Wang
- Department of Staistics, Hebei General Hospital, Shijiazhuang, Hebei 050000, China
| | - Feifei Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Di Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Youliang Zhao
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yiping Li
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wu Yao
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire. Nat Commun 2019; 10:1019. [PMID: 30833553 PMCID: PMC6399321 DOI: 10.1038/s41467-019-08906-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
The αβ T cell receptor (TCR) repertoire on mature T cells is selected in the thymus, but the basis for thymic selection of MHC-restricted TCRs from a randomly generated pre-selection repertoire is not known. Here we perform comparative repertoire sequence analyses of pre-selection and post-selection TCR from multiple MHC-sufficient and MHC-deficient mouse strains, and find that MHC-restricted and MHC-independent TCRs are primarily distinguished by features in their non-germline CDR3 regions, with many pre-selection CDR3 sequences not compatible with MHC-binding. Thymic selection of MHC-independent TCR is largely unconstrained, but the selection of MHC-specific TCR is restricted by both CDR3 length and specific amino acid usage. MHC-restriction disfavors TCR with CDR3 longer than 13 amino acids, limits positively charged and hydrophobic amino acids in CDR3β, and clonally deletes TCRs with cysteines in their CDR3 peptide-binding regions. Together, these MHC-imposed structural constraints form the basis to shape VDJ recombination sequences into MHC-restricted repertoires. For T cells, functional antigen receptors are selected in the thymus from a pre-selection repertoire by interaction with self MHCs. Here the authors show that specific, non-germline coded features located in the complementarity determining region 3 of the pre-selection antigen receptors are essential for the selection of MHC-restricted repertoire.
Collapse
|
4
|
Border EC, Sanderson JP, Weissensteiner T, Gerry AB, Pumphrey NJ. Affinity-enhanced T-cell receptors for adoptive T-cell therapy targeting MAGE-A10: strategy for selection of an optimal candidate. Oncoimmunology 2018; 8:e1532759. [PMID: 30713784 PMCID: PMC6343776 DOI: 10.1080/2162402x.2018.1532759] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Circulating T-cells that have passed thymic selection generally bear T-cell receptors (TCRs) with sub-optimal affinity for cancer-associated antigens, resulting in a limited ability to detect and eliminate tumor cells. Engineering TCRs to increase their affinity for cancer targets is a promising strategy for generating T-cells with enhanced potency for adoptive immunotherapy in cancer patients. However, this manipulation also risks generating cross-reactivity to antigens expressed by normal tissue, with potentially serious consequences. Testing in animal models might not detect such cross-reactivity due to species differences in the antigenic repertoire. To mitigate the risk of off-target toxicities in future clinical trials, we therefore developed an extensive in vitro testing strategy. This approach involved systematic substitution at each position of the antigenic peptide sequence using all natural amino acids to generate a profile of peptide specificity (“X-scan”). The likelihood of off-target reactivity was investigated by searching the human proteome for sequences matching this profile, and testing against a panel of primary cell lines. Starting from a diverse panel of parental TCRs, we engineered several affinity-enhanced TCRs specific for the cancer-testis antigen MAGE-A10. Two of these TCRs had affinities and specificities which appeared to be equally optimal when tested in conventional biochemical and cellular assays. The X-scan method, however, permitted us to select the most specific and potent candidate for further pre-clinical and clinical testing.
Collapse
|
5
|
Attaf M, Malik A, Severinsen MC, Roider J, Ogongo P, Buus S, Ndung'u T, Leslie A, Kløverpris HN, Matthews PC, Sewell AK, Goulder P. Major TCR Repertoire Perturbation by Immunodominant HLA-B *44:03-Restricted CMV-Specific T Cells. Front Immunol 2018; 9:2539. [PMID: 30487790 PMCID: PMC6246681 DOI: 10.3389/fimmu.2018.02539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Lack of disease during chronic human cytomegalovirus (CMV) infection depends on the maintenance of a high-frequency CMV-specific T cell response. The composition of the T cell receptor (TCR) repertoire underlying this response remains poorly characterised, especially within African populations in which CMV is endemic from infancy. Here we focus on the immunodominant CD8+ T cell response to the immediate-early 2 (IE-2)-derived epitope NEGVKAAW (NW8) restricted by HLA-B*44:03, a highly prevalent response in African populations, which in some subjects represents >10% of the circulating CD8+ T cells. Using pMHC multimer staining and sorting of NW8-specific T cells, the TCR repertoire raised against NW8 was characterised here using high-throughput sequencing in 20 HLA-B*44:03 subjects. We found that the CD8+ T cell repertoire raised in response to NW8 was highly skewed and featured preferential use of a restricted set of V and J gene segments. Furthermore, as often seen in immunity against ancient viruses like CMV and Epstein-Barr virus (EBV), the response was strongly dominated by identical TCR sequences shared by multiple individuals, or “public” TCRs. Finally, we describe a pair “superdominant” TCR clonotypes, which were germline or nearly germline-encoded and produced at remarkably high frequencies in certain individuals, with a single CMV-specific clonotype representing up to 17% of all CD8+ T cells. Given the magnitude of the NW8 response, we propose that this major skewing of CMV-specific immunity leads to massive perturbations in the overall TCR repertoire in HLA-B*44:03 individuals.
Collapse
Affiliation(s)
- Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mai C Severinsen
- Africa Health Research Institute, Durban, South Africa.,Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Roider
- Africa Health Research Institute, Durban, South Africa.,Department of infectious diseases, Medizinische Klinik IV, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Paul Ogongo
- Africa Health Research Institute, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa.,Department of Infection and Immunity, University College London, London, United Kingdom
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa.,Department of Infection and Immunity, University College London, London, United Kingdom
| | - Henrik N Kløverpris
- Africa Health Research Institute, Durban, South Africa.,Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infection and Immunity, University College London, London, United Kingdom
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|