1
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
2
|
Huang J, Li Y, Zhu S, Wang L, Pei H, Wang X, Bao T, Jiang Z, Yang L, He C. Pulsed Electromagnetic Field Promotes Bone Anabolism in Postmenopausal Osteoporosis through the miR-6976/BMP/Smad4 Axis. J Tissue Eng Regen Med 2023; 2023:8857436. [PMID: 40226399 PMCID: PMC11919207 DOI: 10.1155/2023/8857436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 04/15/2025]
Abstract
Background Insufficient bone formation is the key reason for the imbalance of bone metabolism and one of the main mechanisms for the occurrence and deterioration of postmenopausal osteoporosis (PMOP). Accumulating evidence has demonstrated that pulsed electromagnetic field (PEMF), as a physiotherapy, can treat osteoporosis by promoting osteogenic differentiation in osteoblasts. However, little is known about its mechanisms. Methods In vivo, ovariectomized mice were administered PEMF for 4 weeks, and skeletal analysis was conducted. In vitro, hydrogen peroxide-treated mouse osteoblast precursor cells with or without PEMF intervention were subjected to osteogenic differentiation testing and miRNA microarrays. The potential target miRNAs were validated, followed by gene expression assays to further clarify their regulatory relationships with target pathways. Results We found that PEMF reduced bone loss in ovariectomized mice and promoted osteogenic differentiation of hydrogen peroxide-treated osteoblast precursor cells via downregulation of miR-6976-5p. Mechanistically, reduced miR-6976-5p enhanced the nuclear transport of phosphorylated Smad1/5/9 by upregulating Smad4, thereby activating the BMP/Smad pathway. Additionally, the administration of miR-6976-5p inhibitors successfully promoted osteogenic differentiation in vitro, and its antagomirs protected bone mass in vivo. miR-6976-5p mimics and agomirs acted in the opposite way. Conclusion These results provide evidence that PEMF alleviates estrogen deficiency-induced bone loss by activating osteoblastic progenitor cells and maintaining their osteogenic differentiation and shed light on the mechanisms involved, which may provide a potential option for the clinical application of PEMF in PMOP.
Collapse
Affiliation(s)
- Jinming Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liqiong Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongliang Pei
- Human Engineering Laboratory, The School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangxiu Wang
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianjie Bao
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lin Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Xia Y, Inoue K, Du Y, Baker SJ, Reddy EP, Greenblatt MB, Zhao B. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis. Nat Commun 2022; 13:3920. [PMID: 35798734 PMCID: PMC9263175 DOI: 10.1038/s41467-022-31475-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/20/2022] [Indexed: 01/12/2023] Open
Abstract
It is well-established that receptor activator of NF-κB ligand (RANKL) is the inducer of physiological osteoclast differentiation. However, the specific drivers and mechanisms driving inflammatory osteoclast differentiation under pathological conditions remain obscure. This is especially true given that inflammatory cytokines such as tumor necrosis factor (TNF) demonstrate little to no ability to directly drive osteoclast differentiation. Here, we found that transforming growth factor β (TGFβ) priming enables TNF to effectively induce osteoclastogenesis, independently of the canonical RANKL pathway. Lack of TGFβ signaling in macrophages suppresses inflammatory, but not basal, osteoclastogenesis and bone resorption in vivo. Mechanistically, TGFβ priming reprograms the macrophage response to TNF by remodeling chromatin accessibility and histone modifications, and enables TNF to induce a previously unrecognized non-canonical osteoclastogenic program, which includes suppression of the TNF-induced IRF1-IFNβ-IFN-stimulated-gene axis, IRF8 degradation and B-Myb induction. These mechanisms are active in rheumatoid arthritis, in which TGFβ level is elevated and correlates with osteoclast activity. Our findings identify a TGFβ/TNF-driven inflammatory osteoclastogenic program, and may lead to development of selective treatments for inflammatory osteolysis.
Collapse
Affiliation(s)
- Yuhan Xia
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yong Du
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Stacey J Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew B Greenblatt
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
4
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
5
|
Pakravan K, Razmara E, Mahmud Hussen B, Sattarikia F, Sadeghizadeh M, Babashah S. SMAD4 contributes to chondrocyte and osteocyte development. J Cell Mol Med 2022; 26:1-15. [PMID: 34841647 PMCID: PMC8742202 DOI: 10.1111/jcmm.17080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Fatemeh Sattarikia
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
6
|
Umezu T, Nakamura S, Sato Y, Kobayashi T, Ito E, Abe T, Kaneko M, Nomura M, Yoshimura A, Oya A, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. Smad2 and Smad3 expressed in skeletal muscle promote immobilization-induced bone atrophy in mice. Biochem Biophys Res Commun 2021; 582:111-117. [PMID: 34710825 DOI: 10.1016/j.bbrc.2021.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022]
Abstract
Skeletal muscle is known to regulate bone homeostasis through muscle-bone interaction, although factors that control this activity remain unclear. Here, we newly established Smad3-flox mice, and then generated skeletal muscle-specific Smad2/Smad3 double conditional knockout mice (DcKO) by crossing Smad3-flox with skeletal muscle-specific Ckmm Cre and Smad2-flox mice. We show that immobilization-induced gastrocnemius muscle atrophy occurring due to sciatic nerve denervation was partially but significantly inhibited in DcKO mice, suggesting that skeletal muscle cell-intrinsic Smad2/3 is required for immobilization-induced muscle atrophy. Also, tibial bone atrophy seen after sciatic nerve denervation was partially but significantly inhibited in DcKO mice. Bone formation rate in wild-type mouse tibia was significantly inhibited by immobilization, but inhibition was abrogated in DcKO mice. We propose that skeletal muscle regulates immobilization-induced bone atrophy via Smad2/3, and Smad2/3 represent potential therapeutic targets to prevent both immobilization-induced bone and muscle atrophy.
Collapse
Affiliation(s)
- Taro Umezu
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Satoshi Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Orthopedic Surgery, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba, 286-8520, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eri Ito
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi Ward, Fukuoka, 812-8582, Japan
| | - Akihiko Yoshimura
- Department of Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akihito Oya
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Arihiko Kanaji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
7
|
Ito E, Sato Y, Kobayashi T, Soma T, Matsumoto T, Kimura A, Miyamoto K, Matsumoto H, Matsumoto M, Nakamura M, Sato K, Miyamoto T. Transient alendronate administration to pregnant or lactating mothers prevents bone loss in mice without adverse effects on offspring. Bone 2021; 153:116133. [PMID: 34329815 DOI: 10.1016/j.bone.2021.116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
Changes in bone metabolism occur in mothers during pregnancy or lactation that may decrease bone mass and result in fragility fractures after partum. However, use of drugs during pregnancy or lactation to counteract these effects is often prohibited or strongly discouraged. Therefore, approaches to protect mothers from fragility fractures have not been established. Here we show that bone mineral density was significantly lower in female mice after partum than in age-matched female mice without partum. We also show that temporary administration of the bisphosphonate alendronate, either just before or just after pregnancy, to female mice was protective against bone loss due to pregnancy or lactation and had no adverse effects on offspring, such as growth retardation. Furthermore, we show that alendronate administration to female mice during lactation was effective in increasing bone mass in mothers without promoting bone abnormalities or growth retardation in offspring. Calcium levels in milk from female mice administered alendronate during lactation were equivalent to those in milk from mothers not treated with alendronate. Overall, we propose that alendronate administration to mothers could prevent bone loss and fragility fractures during pregnancy and lactation.
Collapse
Affiliation(s)
- Eri Ito
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomoya Soma
- Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tatsuaki Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Atsushi Kimura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hideo Matsumoto
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| |
Collapse
|
8
|
Ito E, Sato Y, Kobayashi T, Nakamura S, Kaneko Y, Soma T, Matsumoto T, Kimura A, Miyamoto K, Matsumoto H, Matsumoto M, Nakamura M, Sato K, Miyamoto T. Treatment with an active vitamin D analogue blocks hypothalamic dysfunction-induced bone loss in mice. Biochem Biophys Res Commun 2021; 542:48-53. [PMID: 33486191 DOI: 10.1016/j.bbrc.2021.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
Estrogen deficiency can be caused by ovarian dysfunction in females. Mechanisms underlying osteoporosis in this condition have been characterized in animal models, such as ovariectomized mice and rats, although it remains unclear how hypothalamic dysfunction promotes osteoporosis. Here, we show that administration of a gonadotropin-releasing hormone antagonist (GnRHa) significantly decreases uterine weight, a manifestation of hypothalamic dysfunction, and promotes both cortical and trabecular bone loss in female mice in vivo. We also report that osteoclast number significantly increased in mice administered GnRHa, and that the transcription factor hypoxia inducible factor 1 alpha (HIF1α) accumulated in those osteoclasts. We previously reported that treatment of mice with the active vitamin D analogue ED71, also known as eldecalcitol, inhibited HIF1α accumulation in osteoclasts. We show here that in mice, co-administration of ED71 with GnRHa significantly rescued the reduced cortical and trabecular bone mass promoted by GnRHa administration alone. GnRHa-dependent HIF1α accumulation in osteoclasts was also blocked by co-administration of ED71. We conclude that hypothalamic dysfunction promotes HIF1α accumulation in osteoclasts and likely results in reduced bone mass. We conclude that treatment with ED71 could serve as a therapeutic option to counter osteoporotic conditions in humans.
Collapse
Affiliation(s)
- Eri Ito
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Satoshi Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yosuke Kaneko
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomoya Soma
- Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tatsuaki Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atushi Kimura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideo Matsumoto
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuki Sato
- Institute for Integrated Sports Medicine, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
9
|
Lademann F, Hofbauer LC, Rauner M. The Bone Morphogenetic Protein Pathway: The Osteoclastic Perspective. Front Cell Dev Biol 2020; 8:586031. [PMID: 33178699 PMCID: PMC7597383 DOI: 10.3389/fcell.2020.586031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
Bone health crucially relies on constant bone remodeling and bone regeneration, both tightly controlled processes requiring bone formation and bone resorption. Plenty of evidence identifies bone morphogenetic proteins (BMP) as major players in osteoblast differentiation and thus, bone formation. However, in recent past years, researchers also increasingly reported on the pivotal role of these multi-functional growth factors in osteoclast formation and activity. This review aims to summarize the current knowledge of BMP signaling within the osteoclast lineage, its role in bone resorption, and osteoblast-osteoclast coupling. Furthermore, subsequent clinical implications for recombinant BMP therapy will be discussed in view of recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Yu Y, Feng XH. TGF-β signaling in cell fate control and cancer. Curr Opin Cell Biol 2019; 61:56-63. [PMID: 31382143 DOI: 10.1016/j.ceb.2019.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
Abstract
Members of the transforming growth factor-β (TGF-β) family regulate cell fate decisions during early embryonic development and tissue homeostasis in the adult. Deregulation of TGF-β family signaling contributes to developmental anomalies, fibrotic disorders, tumorigenesis and immune diseases. TGF-β exerts a wide spectrum of cellular functions by activating canonical (SMAD-dependent) or non-canonical (SMAD-independent) pathways in a cell type-specific and context-dependent manner. Here, we focus on recent advances in the understanding of the mechanisms and functions of SMAD and non-SMAD pathways in physiology and pathology.
Collapse
Affiliation(s)
- Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; DeBakey Department of Surgery and Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Bone morphogenetic proteins: Their role in regulating osteoclast differentiation. Bone Rep 2019; 10:100207. [PMID: 31193008 PMCID: PMC6513777 DOI: 10.1016/j.bonr.2019.100207] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The ability to create recombinant bone morphogenetic proteins (BMPs) in recent years has led to their rise as a common clinical adjuvant. Their application varies, from spinal fixation to repairing palatal clefts, to coating implants for osseointegration. In recent years questions have been raised as to the efficacy of BMPs in several of these procedures. These questions are due to the unwanted side effect of BMPs on other cell types, such as osteoclasts which can resorb bone at the graft/implant site. However, most BMP research focuses on the anabolic osteoinductive effects of BMPs on osteoblasts rather than its counterpart- stimulation of the osteoclasts, which are cells responsible for resorbing bone. In this review, we discuss the data available from multiple in-vitro and in-vivo BMP-related knockout models to elucidate the different functions BMPs have on osteoclast differentiation and activity. BMPs can act directly on osteoclasts to regulate differentiation and activity. Osteoclasts express multiple BMP signaling components. BMPs signal through both SMAD independent and dependent mechanisms in osteoclasts. SMAD dependent BMP signaling regulates osteoclast-osteoblast coupling factors.
Collapse
|
12
|
Zhou Y, Zhu W, Zhang L, Zeng Y, Xu C, Tian Q, Deng HW. Transcriptomic Data Identified Key Transcription Factors for Osteoporosis in Caucasian Women. Calcif Tissue Int 2018; 103:581-588. [PMID: 30056508 PMCID: PMC6343666 DOI: 10.1007/s00223-018-0457-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/14/2018] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a prevalent bone metabolic disease, mainly caused by excessive bone resorption (by osteoclasts) over bone formation (by osteoblasts). Identifying the key transcription factors and understanding the regulatory network influencing osteoclastogenesis will be helpful to explore the potential biological mechanism for osteoporosis. In our study, peripheral blood monocyte (PBM) was used as a cell model for bone mineral density (BMD) research. PBMs serve as progenitors of osteoclasts and produce important cytokines for osteoclastogenesis. In our study, via exon arrays, gene expression profiles of PBMs were analyzed between high versus low hip BMD groups. Transcription factors for differentially expressed genes were then predicted based on the enrichment analysis. We found that 591 genes were differentially expressed between the two BMD groups (nominally significant, raw p value < 0.05). For high BMD subjects, 482 genes were up-regulated and 109 genes were down-regulated. We then found 29 potential transcription factors for up-regulated genes and nine transcription factors for down-regulated genes. Among these transcription factors, HMGA1 and NFKB2 were differentially expressed between high versus low BMD groups. In addition, their regulation types with their target genes were consistent with the information from public databases. Our findings of key transcription factors and their target genes for osteoporosis were further validated by GWAS analysis. Overall, we predicted important transcription factors for osteoporosis. We were also able to infer the regulatory mechanism that exists between transcription factors and target genes in bone metabolism.
Collapse
Affiliation(s)
- Yu Zhou
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Wei Zhu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Lan Zhang
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Yong Zeng
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Chao Xu
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Qing Tian
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., RM 1619F, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
Yang J, Wang S, Wang F, Mu X, Qu Y, Zhao Z, Yu X. Downregulation of miR-10b promotes osteoblast differentiation through targeting Bcl6. Int J Mol Med 2017; 39:1605-1612. [DOI: 10.3892/ijmm.2017.2955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/05/2017] [Indexed: 11/06/2022] Open
|
14
|
Mito K, Sato Y, Kobayashi T, Miyamoto K, Nitta E, Iwama A, Matsumoto M, Nakamura M, Sato K, Miyamoto T. The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass. Sci Rep 2017; 7:45597. [PMID: 28349965 PMCID: PMC5368561 DOI: 10.1038/srep45597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023] Open
Abstract
The nicotinic receptor α7nAchR reportedly regulates vagal nerve targets in brain and cardiac tissue. Here we show that nAchR7−/− mice exhibit increased bone mass due to decreased osteoclast formation, accompanied by elevated osteoprotegerin/RANKL ratios in serum. Vagotomy in wild-type mice also significantly increased the serum osteoprotegerin/RANKL ratio, and elevated bone mass seen in nAchR7−/− mice was reversed in α7nAchR/osteoprotegerin-doubly-deficient mice. α7nAchR loss significantly increased TNFα expression in Mac1-positive macrophages, and TNFα increased the osteoprotegerin/RANKL ratio in osteoblasts. Targeting TNFα in nAchR7−/− mice normalized both serum osteoprotegerin/RANKL ratios and bone mass. Administration of nicotine, an α7nAchR ligand, to wild-type mice increased serum RANKL levels. Thus, vagal nerve stimulation of macrophages via α7nAchR regulates bone mass by modulating osteoclast formation.
Collapse
Affiliation(s)
- Kazuaki Mito
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Eriko Nitta
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohara, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohara, Chuo-ku, Chiba 260-8670, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuki Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
15
|
Selective estrogen receptor modulators and the vitamin D analogue eldecalcitol block bone loss in male osteoporosis. Biochem Biophys Res Commun 2016; 482:1430-1436. [PMID: 27974229 DOI: 10.1016/j.bbrc.2016.12.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
Abstract
Rapid increases in the number of elderly people have dramatically increased the number of female and male osteoporosis patients. Osteoporosis often causes bone fragility fractures, and males exhibit particularly poor prognosis after these fractures, indicating that control of osteoporosis is crucial to maintain quality of men's lives. However, osteoporosis therapies available for men have lagged behind advances available for women. Here, we show that three selective estrogen receptor modulators (SERMs), namely, raloxifene, bazedoxifene, and tamoxifen, plus the vitamin D analogue ED71, also called eldecalcitol, completely block orchiectomy-induced, testosterone-depleted bone loss in male mice in vivo. Patients treated with hormone deprivation therapy for prostate cancer also exhibit male osteoporosis, and bone management is critical for these patients. Given that androgen replacement therapy is not an option for these patients, our results represent a novel approach potentially useful to control male osteoporosis.
Collapse
|