1
|
Yuzyuk TN, Nelson HA, Johnson LM. Inherited causes of exocrine pancreatic insufficiency in pediatric patients: clinical presentation and laboratory testing. Crit Rev Clin Lab Sci 2023:1-16. [PMID: 36876586 DOI: 10.1080/10408363.2023.2179968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Pediatric patients with exocrine pancreatic insufficiency (EPI) have symptoms that include abdominal pain, weight loss or poor weight gain, malnutrition, and steatorrhea. This condition can be present at birth or develop during childhood for certain genetic disorders. Cystic fibrosis (CF) is the most prevalent disorder in which patients are screened for EPI; other disorders also are associated with pancreatic dysfunction, such as hereditary pancreatitis, Pearson syndrome, and Shwachman-Diamond syndrome. Understanding the clinical presentation and proposed pathophysiology of the pancreatic dysfunction of these disorders aids in diagnosis and treatment. Testing pancreatic function is challenging. Directly testing aspirates produced from the pancreas after stimulation is considered the gold standard, but the procedures are not standardized or widely available. Instead, indirect tests are often used in diagnosis and monitoring. Although indirect tests are more widely available and easier to perform, they have inherent limitations due to a lack of sensitivity and/or specificity for EPI.
Collapse
Affiliation(s)
- Tatiana N Yuzyuk
- Department of Pathology, University of Utah/ARUP Laboratories, Salt Lake City, UT, USA
| | - Heather A Nelson
- Department of Pathology, University of Utah/ARUP Laboratories, Salt Lake City, UT, USA
| | - Lisa M Johnson
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
2
|
Breunig M, Merkle J, Wagner M, Melzer MK, Barth TFE, Engleitner T, Krumm J, Wiedenmann S, Cohrs CM, Perkhofer L, Jain G, Krüger J, Hermann PC, Schmid M, Madácsy T, Varga Á, Griger J, Azoitei N, Müller M, Wessely O, Robey PG, Heller S, Dantes Z, Reichert M, Günes C, Bolenz C, Kuhn F, Maléth J, Speier S, Liebau S, Sipos B, Kuster B, Seufferlein T, Rad R, Meier M, Hohwieler M, Kleger A. Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell 2021; 28:1105-1124.e19. [PMID: 33915078 DOI: 10.1016/j.stem.2021.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Personalized in vitro models for dysplasia and carcinogenesis in the pancreas have been constrained by insufficient differentiation of human pluripotent stem cells (hPSCs) into the exocrine pancreatic lineage. Here, we differentiate hPSCs into pancreatic duct-like organoids (PDLOs) with morphological, transcriptional, proteomic, and functional characteristics of human pancreatic ducts, further maturing upon transplantation into mice. PDLOs are generated from hPSCs inducibly expressing oncogenic GNAS, KRAS, or KRAS with genetic covariance of lost CDKN2A and from induced hPSCs derived from a McCune-Albright patient. Each oncogene causes a specific growth, structural, and molecular phenotype in vitro. While transplanted PDLOs with oncogenic KRAS alone form heterogenous dysplastic lesions or cancer, KRAS with CDKN2A loss develop dedifferentiated pancreatic ductal adenocarcinomas. In contrast, transplanted PDLOs with mutant GNAS lead to intraductal papillary mucinous neoplasia-like structures. Conclusively, PDLOs enable in vitro and in vivo studies of pancreatic plasticity, dysplasia, and cancer formation from a genetically defined background.
Collapse
Affiliation(s)
- Markus Breunig
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Jessica Merkle
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Michael K Melzer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany; Department of Urology, Ulm University, Ulm, Germany
| | | | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sandra Wiedenmann
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian M Cohrs
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Gaurav Jain
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jana Krüger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Patrick C Hermann
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Maximilian Schmid
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Tamara Madácsy
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Árpád Varga
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Joscha Griger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Martin Müller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Sandra Heller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Zahra Dantes
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | | | | | - Florian Kuhn
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - József Maléth
- First Department of Internal Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary; HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bence Sipos
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|
3
|
Abstract
Alagille syndrome is a complex multisystem autosomal dominant disorder with a wide variability in penetrance of clinical features. A majority of patients have pathogenic mutations in either the JAG1 gene, encoding a Notch pathway ligand, or the receptor NOTCH2. No genotype-phenotype correlations have been found in any organ system. Liver disease is a major cause of morbidity in this population, whereas cardiac and vascular involvement accounts for most of the mortality. Current therapies are supportive, but the future is promising for the development of targeted interventions to augment Notch pathway signaling in involved tissues.
Collapse
Affiliation(s)
- Ellen Mitchell
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Melissa Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|