1
|
Berger P, Dumevi RM, Berger M, Hastor I, Treffon J, Kouzel IU, Kehl A, Scherff N, Dobrindt U, Mellmann A. RpoS Acts as a Global Repressor of Virulence Gene Expression in Escherichia coli O104:H4 and Enteroaggregative E coli. J Infect Dis 2024; 230:840-851. [PMID: 38526342 DOI: 10.1093/infdis/jiae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024] Open
Abstract
In 2011, in Germany, Escherichia coli O104:H4 caused the enterohemorrhagic E coli (EHEC) outbreak with the highest incidence rate of hemolytic uremic syndrome. This pathogen carries an exceptionally potent combination of EHEC- and enteroaggregative E coli (EAEC)-specific virulence factors. Here, we identified an E coli O104:H4 isolate that carried a single-nucleotide polymorphism (SNP) in the start codon (ATG > ATA) of rpoS, encoding the alternative sigma factor S. The rpoS ATG > ATA SNP was associated with enhanced EAEC-specific virulence gene expression. Deletion of rpoS in E coli O104:H4 Δstx2 and typical EAEC resulted in a similar effect. Both rpoS ATG > ATA and ΔrpoS strains exhibited stronger virulence-related phenotypes in comparison to wild type. Using promoter-reporter gene fusions, we demonstrated that wild-type RpoS repressed aggR, encoding the main regulator of EAEC virulence. In summary, our work demonstrates that RpoS acts as a global repressor of E coli O104:H4 virulence, primarily through an AggR-dependent mechanism.
Collapse
Affiliation(s)
- Petya Berger
- Institute of Hygiene, University of Münster
- National Consulting Laboratory for Hemolytic Uremic Syndrome, Institute of Hygiene, University of Münster
| | | | | | | | | | - Ian U Kouzel
- Department of Biology, University of Konstanz, Germany
| | | | | | | | - Alexander Mellmann
- Institute of Hygiene, University of Münster
- National Consulting Laboratory for Hemolytic Uremic Syndrome, Institute of Hygiene, University of Münster
| |
Collapse
|
2
|
Zehentner B, Scherer S, Neuhaus K. Non-canonical transcriptional start sites in E. coli O157:H7 EDL933 are regulated and appear in surprisingly high numbers. BMC Microbiol 2023; 23:243. [PMID: 37653502 PMCID: PMC10469882 DOI: 10.1186/s12866-023-02988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Analysis of genome wide transcription start sites (TSSs) revealed an unexpected complexity since not only canonical TSS of annotated genes are recognized by RNA polymerase. Non-canonical TSS were detected antisense to, or within, annotated genes as well new intergenic (orphan) TSS, not associated with known genes. Previously, it was hypothesized that many such signals represent noise or pervasive transcription, not associated with a biological function. Here, a modified Cappable-seq protocol allows determining the primary transcriptome of the enterohemorrhagic E. coli O157:H7 EDL933 (EHEC). We used four different growth media, both in exponential and stationary growth phase, replicated each thrice. This yielded 19,975 EHEC canonical and non-canonical TSS, which reproducibly occurring in three biological replicates. This questions the hypothesis of experimental noise or pervasive transcription. Accordingly, conserved promoter motifs were found upstream indicating proper TSSs. More than 50% of 5,567 canonical and between 32% and 47% of 10,355 non-canonical TSS were differentially expressed in different media and growth phases, providing evidence for a potential biological function also of non-canonical TSS. Thus, reproducible and environmentally regulated expression suggests that a substantial number of the non-canonical TSSs may be of unknown function rather than being the result of noise or pervasive transcription.
Collapse
Affiliation(s)
- Barbara Zehentner
- Chair for Microbial Ecology, TUM School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, TUM School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
- Core Facility Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Amemiya K, Rozak DA, Dankmeyer JL, Dorman WR, Marchand C, Fetterer DP, Worsham PL, Purcell BK. Shiga-Toxin-Producing Strains of Escherichia coli O104:H4 and a Strain of O157:H7, Which Can Cause Human Hemolytic Uremic Syndrome, Differ in Biofilm Formation in the Presence of CO 2 and in Their Ability to Grow in a Novel Cell Culture Medium. Microorganisms 2023; 11:1744. [PMID: 37512916 PMCID: PMC10384166 DOI: 10.3390/microorganisms11071744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
One pathogen that commonly causes gastrointestinal illnesses from the consumption of contaminated food is Escherichia coli O157:H7. In 2011 in Germany, however, there was a prominent outbreak of bloody diarrhea with a high incidence of hemolytic uremic syndrome (HUS) caused by an atypical, more virulent E. coli O104:H4 strain. To facilitate the identification of this lesser-known, atypical E. coli O104:H4 strain, we wanted to identify phenotypic differences between it and a strain of O157:H7 in different media and culture conditions. We found that E. coli O104:H4 strains produced considerably more biofilm than the strain of O157:H7 at 37 °C (p = 0.0470-0.0182) Biofilm production was significantly enhanced by the presence of 5% CO2 (p = 0.0348-0.0320). In our study on the innate immune response to the E. coli strains, we used HEK293 cells that express Toll-like receptors (TLRs) 2 or 4. We found that E. coli O104:H4 strains had the ability to grow in a novel HEK293 cell culture medium, while the E. coli O157:H7 strain could not. Thus, we uncovered previously unknown phenotypic properties of E. coli O104:H4 to further differentiate this pathogen from E. coli O157:H7.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David A Rozak
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - William R Dorman
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles Marchand
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David P Fetterer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Brett K Purcell
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Department of Medicine, University of Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Kislichkina AA, Kartsev NN, Skryabin YP, Sizova AA, Kanashenko ME, Teymurazov MG, Kuzina ES, Bogun AG, Fursova NK, Svetoch EA, Dyatlov IA. Genomic Analysis of a Hybrid Enteroaggregative Hemorrhagic Escherichia coli O181:H4 Strain Causing Colitis with Hemolytic-Uremic Syndrome. Antibiotics (Basel) 2022; 11:antibiotics11101416. [PMID: 36290074 PMCID: PMC9598891 DOI: 10.3390/antibiotics11101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hybrid diarrheagenic E. coli strains combining genetic markers belonging to different pathotypes have emerged worldwide and have been reported as a public health concern. The most well-known hybrid strain of enteroaggregative hemorrhagic E. coli is E. coli O104:H4 strain, which was an agent of a serious outbreak of acute gastroenteritis and hemolytic uremic syndrome (HUS) in Germany in 2011. A case of intestinal infection with HUS in St. Petersburg (Russian Federation) occurred in July 2018. E. coli strain SCPM-O-B-9427 was obtained from the rectal swab of the patient with HUS. It was determined as O181:H4-, stx2-, and aggR-positive and belonged to the phylogenetic group B2. The complete genome assembly of the strain SCPM-O-B-9427 contained one chromosome and five plasmids, including the plasmid coding an aggregative adherence fimbriae I. MLST analysis showed that the strain SCPM-O-B-9427 belonged to ST678, and like E. coli O104:H4 strains, 2011C-3493 caused the German outbreak in 2011, and 2009EL-2050 was isolated in the Republic of Georgia in 2009. Comparison of three strains showed almost the same structure of their chromosomes: the plasmids pAA and the stx2a phages are very similar, but they have distinct sets of the plasmids and some unique regions in the chromosomes.
Collapse
Affiliation(s)
- Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Correspondence:
| | - Nikolay N. Kartsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Yury P. Skryabin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Angelika A. Sizova
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Maria E. Kanashenko
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Marat G. Teymurazov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Ekaterina S. Kuzina
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Alexander G. Bogun
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Edward A. Svetoch
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Ivan A. Dyatlov
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| |
Collapse
|
5
|
Chevez-Guardado R, Peña-Castillo L. Promotech: a general tool for bacterial promoter recognition. Genome Biol 2021; 22:318. [PMID: 34789306 PMCID: PMC8597233 DOI: 10.1186/s13059-021-02514-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Promoters are genomic regions where the transcription machinery binds to initiate the transcription of specific genes. Computational tools for identifying bacterial promoters have been around for decades. However, most of these tools were designed to recognize promoters in one or few bacterial species. Here, we present Promotech, a machine-learning-based method for promoter recognition in a wide range of bacterial species. We compare Promotech's performance with the performance of five other promoter prediction methods. Promotech outperforms these other programs in terms of area under the precision-recall curve (AUPRC) or precision at the same level of recall. Promotech is available at https://github.com/BioinformaticsLabAtMUN/PromoTech .
Collapse
Affiliation(s)
- Ruben Chevez-Guardado
- Department of Computer Science, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, A1C 5S7, Canada
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, A1C 5S7, Canada. .,Department of Biology, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, Newfoundland, A1C 5S7, Canada.
| |
Collapse
|
6
|
Schiller P, Knödler M, Berger P, Greune L, Fruth A, Mellmann A, Dersch P, Berger M, Dobrindt U. The Superior Adherence Phenotype of E. coli O104:H4 is Directly Mediated by the Aggregative Adherence Fimbriae Type I. Virulence 2021; 12:346-359. [PMID: 33356871 PMCID: PMC7834096 DOI: 10.1080/21505594.2020.1868841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Whereas the O104:H4 enterohemorrhagic Escherichia coli (EHEC) outbreak strain from 2011 expresses aggregative adherence fimbriae of subtype I (AAF/I), its close relative, the O104:H4 enteroaggregative Escherichia coli (EAEC) strain 55989, encodes AAF of subtype III. Tight adherence mediated by AAF/I in combination with Shiga toxin 2 production has been suggested to result in the outbreak strain’s exceptional pathogenicity. Furthermore, the O104:H4 outbreak strain adheres significantly better to cultured epithelial cells than archetypal EAEC strains expressing different AAF subtypes. To test whether AAF/I expression is associated with the different virulence phenotypes of the outbreak strain, we heterologously expressed AAF subtypes I, III, IV, and V in an AAF-negative EAEC 55989 mutant and compared AAF-mediated phenotypes, incl. autoaggregation, biofilm formation, as well as bacterial adherence to HEp-2 cells. We observed that the expression of all four AAF subtypes promoted bacterial autoaggregation, though with different kinetics. Disturbance of AAF interaction on the bacterial surface via addition of α-AAF antibodies impeded autoaggregation. Biofilm formation was enhanced upon heterologous expression of AAF variants and inversely correlated with the autoaggregation phenotype. Co-cultivation of bacteria expressing different AAF subtypes resulted in mixed bacterial aggregates. Interestingly, bacteria expressing AAF/I formed the largest bacterial clusters on HEp-2 cells, indicating a stronger host cell adherence similar to the EHEC O104:H4 outbreak strain. Our findings show that, compared to the closely related O104:H4 EAEC strain 55989, not only the acquisition of the Shiga toxin phage, but also the acquisition of the AAF/I subtype might have contributed to the increased EHEC O104:H4 pathogenicity.
Collapse
Affiliation(s)
| | - Michael Knödler
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Lilo Greune
- Institute for Infectiology, University of Münster , Münster, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute , Wernigerode, Germany
| | | | - Petra Dersch
- Institute for Infectiology, University of Münster , Münster, Germany
| | - Michael Berger
- Institute of Hygiene, University of Münster , Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster , Münster, Germany
| |
Collapse
|
7
|
A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nat Commun 2020; 11:3557. [PMID: 32678091 PMCID: PMC7366714 DOI: 10.1038/s41467-020-17348-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria of the genus Bacteroides are common members of the human intestinal microbiota and important degraders of polysaccharides in the gut. Among them, the species Bacteroides thetaiotaomicron has emerged as the model organism for functional microbiota research. Here, we use differential RNA sequencing (dRNA-seq) to generate a single-nucleotide resolution transcriptome map of B. thetaiotaomicron grown under defined laboratory conditions. An online browser, called ‘Theta-Base’ (www.helmholtz-hiri.de/en/datasets/bacteroides), is launched to interrogate the obtained gene expression data and annotations of ~4500 transcription start sites, untranslated regions, operon structures, and 269 noncoding RNA elements. Among the latter is GibS, a conserved, 145 nt-long small RNA that is highly expressed in the presence of N-acetyl-D-glucosamine as sole carbon source. We use computational predictions and experimental data to determine the secondary structure of GibS and identify its target genes. Our results indicate that sensing of N-acetyl-D-glucosamine induces GibS expression, which in turn modifies the transcript levels of metabolic enzymes. Bacteroides thetaiotaomicron is a human gut microbe and an emergent model organism. Here, Ryan et al. generate single-nucleotide resolution RNA-seq data for this bacterium and map transcription start sites and noncoding RNAs, one of which modulates expression of metabolic enzymes.
Collapse
|
8
|
IHF stabilizes pathogenicity island I of uropathogenic Escherichia coli strain 536 by attenuating integrase I promoter activity. Sci Rep 2020; 10:9397. [PMID: 32523028 PMCID: PMC7286903 DOI: 10.1038/s41598-020-66215-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022] Open
Abstract
Pathogenicity islands (PAIs) represent horizontally acquired chromosomal regions and encode their cognate integrase, which mediates chromosomal integration and excision of the island. These site-specific recombination reactions have to be tightly controlled to maintain genomic stability, and their directionality depends on accessory proteins. The integration host factor (IHF) and the factor for inversion stimulation (Fis) are often involved in recombinogenic complex formation and controlling the directionality of the recombination reaction. We investigated the role of the accessory host factors IHF and Fis in controlling the stability of six PAIs in uropathogenic Escherichia coli strain 536. By comparing the loss of individual PAIs in the presence or absence of IHF or Fis, we showed that IHF specifically stabilized PAI I536 and that in particular the IHFB subunit seems to be important for this function. We employed complex genetic studies to address the role of IHF in PAI I536-encoded integrase (IntI) expression. Based on different YFP-reporter constructs and electrophoretic mobility shift assays we demonstrated that IntI acts a strong repressor of its own synthesis, and that IHF binding to the intI promoter region reduces the probability of intI promoter activation. Our results extend the current knowledge of the role of IHF in controlling directionality of site specific recombination reactions and thus PAI stability.
Collapse
|
9
|
Hou M, Sun S, Feng Q, Dong X, Zhang P, Shi B, Liu J, Shi D. Genetic editing of the virulence gene of Escherichia coli using the CRISPR system. PeerJ 2020; 8:e8881. [PMID: 32292652 PMCID: PMC7144585 DOI: 10.7717/peerj.8881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/10/2020] [Indexed: 01/17/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is an emerging gene-editing technology that is widely used in prokaryotes and eukaryotes. It can realize the specific manipulation of the genome efficiently and accurately. CRISPR/Cas9 coupled λ-Red recombination technology was used to perform genome editing in different genes. For finding an efficient method to edit the virulence genes of enterotoxigenic E. coli (ETEC), the two-plasmid system was used. The coding sequence (CDS) region of the estA, eltI, estB, eltIIc1, and faeG locus were deleted. The coding region of estB was substituted with estA. Gene recombination efficiency ranged from 0 to 77.78% when the length of the homology arm was from 50 to 300 bp. Within this range, the longer the homology arm, the higher the efficiency of genetic recombination. The results showed that this system can target virulence genes located in plasmids and on chromosomes of ETEC strains. A single base mutation was performed by two-step gene fragment replacement. This study lays the foundation for research on virulence factors and genetic engineering of vaccines for ETEC.
Collapse
Affiliation(s)
- Meijia Hou
- Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Simeng Sun
- Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Qizheng Feng
- Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xiumei Dong
- Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Ping Zhang
- Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Bo Shi
- Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jiali Liu
- Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Dongfang Shi
- Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
10
|
Berger P, Kouzel IU, Berger M, Haarmann N, Dobrindt U, Koudelka GB, Mellmann A. Carriage of Shiga toxin phage profoundly affects Escherichia coli gene expression and carbon source utilization. BMC Genomics 2019; 20:504. [PMID: 31208335 PMCID: PMC6580645 DOI: 10.1186/s12864-019-5892-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 02/03/2023] Open
Abstract
Background Enterohemorrhagic Escherichia coli (E. coli) are intestinal pathogenic bacteria that cause life-threatening disease in humans. Their cardinal virulence factor is Shiga toxin (Stx), which is encoded on lambdoid phages integrated in the chromosome. Stx phages can infect and lysogenize susceptible bacteria, thus either increasing the virulence of already pathogenic bacterial hosts or transforming commensal strains into potential pathogens. There is increasing evidence that Stx phage-encoded factors adaptively regulate bacterial host gene expression. Here, we investigated the effects of Stx phage carriage in E. coli K-12 strain MG1655. We compared the transcriptome and phenotype of naive MG1655 and two lysogens carrying closely related Stx2a phages: ϕO104 from the exceptionally pathogenic 2011 E. coli O104:H4 outbreak strain and ϕPA8 from an E. coli O157:H7 isolate. Results Analysis of quantitative RNA sequencing results showed that, in comparison to naive MG1655, genes involved in mixed acid fermentation were upregulated, while genes encoding NADH dehydrogenase I, TCA cycle enzymes and proteins involved in the transport and assimilation of carbon sources were downregulated in MG1655::ϕO104 and MG1655::ϕPA8. The majority of the changes in gene expression were found associated with the corresponding phenotypes. Notably, the Stx2a phage lysogens displayed moderate to severe growth defects in minimal medium supplemented with single carbon sources, e.g. galactose, ribose, L-lactate. In addition, in phenotype microarray assays, the Stx2a phage lysogens were characterized by a significant decrease in the cell respiration with gluconeogenic substrates such as amino acids, nucleosides, carboxylic and dicarboxylic acids. In contrast, MG1655::ϕO104 and MG1655::ϕPA8 displayed enhanced respiration with several sugar components of the intestinal mucus, e.g. arabinose, fucose, N-acetyl-D-glucosamine. We also found that prophage-encoded factors distinct from CI and Cro were responsible for the carbon utilization phenotypes of the Stx2a phage lysogens. Conclusions Our study reveals a profound impact of the Stx phage carriage on E. coli carbon source utilization. The Stx2a prophage appears to reprogram the carbon metabolism of its bacterial host by turning down aerobic metabolism in favour of mixed acid fermentation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5892-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany.
| | - Ivan U Kouzel
- Institute of Hygiene, University of Münster, Münster, Germany.,Institute of Bioinformatics, University of Münster, Münster, Germany
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Nadja Haarmann
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Gerald B Koudelka
- Department of Biological Sciences, University at Buffalo, Buffalo, USA
| | | |
Collapse
|
11
|
Martini MC, Zhou Y, Sun H, Shell SS. Defining the Transcriptional and Post-transcriptional Landscapes of Mycobacterium smegmatis in Aerobic Growth and Hypoxia. Front Microbiol 2019; 10:591. [PMID: 30984135 PMCID: PMC6448022 DOI: 10.3389/fmicb.2019.00591] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
The ability of Mycobacterium tuberculosis to infect, proliferate, and survive during long periods in the human lungs largely depends on the rigorous control of gene expression. Transcriptome-wide analyses are key to understanding gene regulation on a global scale. Here, we combine 5′-end-directed libraries with RNAseq expression libraries to gain insight into the transcriptome organization and post-transcriptional mRNA cleavage landscape in mycobacteria during log phase growth and under hypoxia, a physiologically relevant stress condition. Using the model organism Mycobacterium smegmatis, we identified 6,090 transcription start sites (TSSs) with high confidence during log phase growth, of which 67% were categorized as primary TSSs for annotated genes, and the remaining were classified as internal, antisense, or orphan, according to their genomic context. Interestingly, over 25% of the RNA transcripts lack a leader sequence, and of the coding sequences that do have leaders, 53% lack a strong consensus Shine-Dalgarno site. This indicates that like M. tuberculosis, M. smegmatis can initiate translation through multiple mechanisms. Our approach also allowed us to identify over 3,000 RNA cleavage sites, which occur at a novel sequence motif. To our knowledge, this represents the first report of a transcriptome-wide RNA cleavage site map in mycobacteria. The cleavage sites show a positional bias toward mRNA regulatory regions, highlighting the importance of post-transcriptional regulation in gene expression. We show that in low oxygen, a condition associated with the host environment during infection, mycobacteria change their transcriptomic profiles and endonucleolytic RNA cleavage is markedly reduced, suggesting a mechanistic explanation for previous reports of increased mRNA half-lives in response to stress. In addition, a number of TSSs were triggered in hypoxia, 56 of which contain the binding motif for the sigma factor SigF in their promoter regions. This suggests that SigF makes direct contributions to transcriptomic remodeling in hypoxia-challenged mycobacteria. Taken together, our data provide a foundation for further study of both transcriptional and posttranscriptional regulation in mycobacteria.
Collapse
Affiliation(s)
- M Carla Martini
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Ying Zhou
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Huaming Sun
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
12
|
Berger M, Berger P, Denamur E, Mellmann A, Dobrindt U. Core elements of the vegetative replication control of the Inc1 plasmid pO104_90 of Escherichia coli O104:H4 also regulate its transfer frequency. Int J Med Microbiol 2018; 308:962-968. [DOI: 10.1016/j.ijmm.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023] Open
|
13
|
Kampmeier S, Berger M, Mellmann A, Karch H, Berger P. The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 Outbreak-The Danger Is Still Out There. Curr Top Microbiol Immunol 2018; 416:117-148. [PMID: 30062592 DOI: 10.1007/82_2018_107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are Shiga toxin (Stx) producing bacteria causing a disease characterized by bloody (or non-bloody) diarrhea, which might progress to hemolytic uremic syndrome (HUS). EHEC O104:H4 caused the largest ever recorded EHEC outbreak in Germany in 2011, which in addition showed the so far highest incidence rate of EHEC-related HUS worldwide. The aggressive outbreak strain carries an unusual combination of virulence traits characteristic to both EHEC-a chromosomally integrated Stx-encoding bacteriophage, and enteroaggregative Escherichia coli-pAA plasmid-encoded aggregative adherence fimbriae mediating its tight adhesion to epithelia cells. There are currently still open questions regarding the 2011 EHEC outbreak, e.g., with respect to the exact molecular mechanisms resulting in the hypervirulence of the strain, the natural reservoir of EHEC O104:H4, and suitable therapeutic strategies. Nevertheless, our knowledge on these issues has substantially expanded since 2011. Here, we present an overview of the epidemiological, clinical, microbiological, and molecular biological data available on the 2011 German EHEC O104:H4 outbreak.
Collapse
Affiliation(s)
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Helge Karch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany.
| |
Collapse
|
14
|
Hays JP. Why is scientific research on 'data-poor' microorganisms being ignored? Future Microbiol 2017; 12:645-650. [PMID: 28541792 DOI: 10.2217/fmb-2017-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- John P Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| |
Collapse
|