1
|
Nguyen CL, Fan W, Fisher S, Matthews K, Norman JO, Abendroth J, Barrett KF, Craig JK, Edwards TE, Lorimer DD, McLaughlin KJ. Structures of Legionella pneumophila serogroup 1 peptide deformylase bound to nickel(II) and actinonin. Acta Crystallogr F Struct Biol Commun 2025; 81:163-170. [PMID: 40091854 PMCID: PMC11970127 DOI: 10.1107/s2053230x25001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Legionella pneumophila serogroup 1 is the primary causative agent of Legionnaires' disease, a rare but severe respiratory infection. While the fatality rate of Legionnaires' disease is low in the general population, it is more pronounced in vulnerable communities such as the immunocompromised. Thus, the development of new antimicrobials is of interest for use when existing antibiotics may not be applicable. Peptide deformylases (PDFs) have been under continued investigation as targets for novel antimicrobial compounds. PDF plays an essential role in protein synthesis, removing the N-terminal formyl group from new polypeptides, and is required for growth in most bacteria. Here, we report two crystal structures of L. pneumophila serogroup 1 PDF (LpPDF) bound to either Ni2+, an active state, or inhibited by actinonin and Zn2+; the structures were determined to 1.5 and 1.65 Å resolution, respectively, and were solved by the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is charged with determining structures of biologically important proteins and molecules from human pathogens. As actinonin is an antimicrobial natural product that has been used as a reference compound in drug development, these structures will help support the ongoing drug-development process.
Collapse
Affiliation(s)
- Chi L. Nguyen
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - William Fan
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Sean Fisher
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Krystal Matthews
- Chemistry DepartmentVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Jordan O. Norman
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| | - Jan Abendroth
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Kayleigh F. Barrett
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious DiseasesUniversity of Washington School of MedicineSeattleWA98195USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious DiseasesUniversity of Washington School of MedicineSeattleWA98195USA
| | - Thomas E. Edwards
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Donald D. Lorimer
- UCB Biosciences, 7869 Day Road West, Bainbridge Island, WA98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Krystle J. McLaughlin
- Biochemistry ProgramVassar College124 Raymond AvenuePoughkeepsieNY12604USA
- Chemistry DepartmentVassar College124 Raymond AvenuePoughkeepsieNY12604USA
| |
Collapse
|
2
|
Kirschner H, Heister N, Zouatom M, Zhou T, Hofmann E, Scherkenbeck J, Stoll R. Toward More Selective Antibiotic Inhibitors: A Structural View of the Complexed Binding Pocket of E. coli Peptide Deformylase. J Med Chem 2024; 67:6384-6396. [PMID: 38574272 DOI: 10.1021/acs.jmedchem.3c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Peptide deformylase (PDF) is involved in bacterial protein maturation processes. Originating from the interest in a new antibiotic, tremendous effort was put into the refinement of PDF inhibitors (PDFIs) and their selectivity. We obtained a full NMR backbone assignment the emergent additional protein backbone resonances of ecPDF 1-147 in complex with 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide (2), a potential new structural scaffold for more selective PDFIs. We also determined the complex crystal structures of E. coli PDF (ecPDF fl) and 2. Our structure suggests an alternative ligand conformation within the protein, a possible starting point for further selectivity optimization. The orientation of the second ligand conformation in the crystal structure points toward a small region of the S1' pocket, which differs between bacterial PDFs and human PDF. Moreover, we analyzed the binding mode of 2 via NMR TITAN line shape analysis, revealing an induced fit mechanism.
Collapse
Affiliation(s)
- Hendrik Kirschner
- Biochemistry II, Biomolecular NMR Spectroscopy, RUBiospec|NMR, and PhenomeCentre@RUBUAR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Nicole Heister
- Biochemistry II, Biomolecular NMR Spectroscopy, RUBiospec|NMR, and PhenomeCentre@RUBUAR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Manuela Zouatom
- Faculty of Mathematics and Natural Sciences, Bioorganic Chemistry, University of Wuppertal, Gaußstraße 20, Wuppertal 42119, Germany
| | - Tianyi Zhou
- Faculty of Mathematics and Natural Sciences, Bioorganic Chemistry, University of Wuppertal, Gaußstraße 20, Wuppertal 42119, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Jürgen Scherkenbeck
- Faculty of Mathematics and Natural Sciences, Bioorganic Chemistry, University of Wuppertal, Gaußstraße 20, Wuppertal 42119, Germany
| | - Raphael Stoll
- Biochemistry II, Biomolecular NMR Spectroscopy, RUBiospec|NMR, and PhenomeCentre@RUBUAR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| |
Collapse
|
3
|
Kirschner H, John M, Zhou T, Bachmann N, Schultz A, Hofmann E, Bandow JE, Scherkenbeck J, Metzler-Nolte N, Stoll R. Structural Insights into Antibacterial Payload Release from Gold Nanoparticles Bound to E. coli Peptide Deformylase. ChemMedChem 2024; 19:e202300538. [PMID: 38057137 DOI: 10.1002/cmdc.202300538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The lack of new antibiotics and the rapidly rising number of pathogens resistant to antibiotics pose a serious problem to mankind. In bacteria, the cell membrane provides the first line of defence to antibiotics by preventing them from reaching their molecular target. To overcome this entrance barrier, it has been suggested[1] that small Gold-Nanoparticles (AuNP) could possibly function as drug delivery systems for antibiotic ligands. Using actinonin-based ligands, we provide here proof-of-principle of AuNP functionalisation, the capability to bind and inhibit the target protein of the ligand, and the possibility to selectively release the antimicrobial payload. To this end, we successfully synthesised AuNP coated with thio-functionalised actinonin and a derivative. Interactions between 15N-enriched His-peptide deformylase 1-147 from E. coli (His-ecPDF 1-147) and compound-coated AuNP were investigated via 2D 1H-15N-HSQC NMR spectra proving the direct binding to His-ecPDF 1-147. More importantly by adding dithiothreitol (DTT), we show that the derivative is successfully released from AuNPs while still bound to His-ecPDF 1-147. Our findings indicate that AuNP-conjugated ligands can address and bind intracellular target proteins. The system introduced here presents a new delivery platform for antibiotics and allows for the easy optimisation of ligand coated AuNPs.
Collapse
Affiliation(s)
- Hendrik Kirschner
- Biochemistry II, Biomolecular NMR Spectroscopy, RUBiospec|NMR and PhenomeCentre@RUBUAR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Milena John
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tianyi Zhou
- Bioorganic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Nathalie Bachmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - André Schultz
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Jürgen Scherkenbeck
- Bioorganic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Raphael Stoll
- Biochemistry II, Biomolecular NMR Spectroscopy, RUBiospec|NMR and PhenomeCentre@RUBUAR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
4
|
Chowdhury AR, Kumar R, Mahanty A, Mukherjee K, Kumar S, Tribhuvan KU, Sheel R, Lenka S, Singh BK, Chattopadhyay C, Sharma TR, Bhadana VP, Sarkar B. Inhibitory role of copper and silver nanocomposite on important bacterial and fungal pathogens in rice (Oryza sativa). Sci Rep 2024; 14:1779. [PMID: 38245579 PMCID: PMC10799878 DOI: 10.1038/s41598-023-49918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Rice (Oryza sativa) being among the most important food crops in the world is also susceptible to various bacterial and fungal diseases that are the major stumbling blocks in the way of increased production and productivity. The bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae and the sheath blight disease caused by Rhizoctonia solani are among the most devastating diseases of the rice crop. In spite of the availability of array of chemical control, there are chances of development of resistance. Thus, there is a need for the nanotechnological intervention for management of disease in the form of copper and silver nano-composites. The copper (CuNPs) and silver nanoparticles (AgNPs) were synthesized using green route and characterized using different high throughput techniques, i.e., UV-Vis, FT-IR, DLS, XRD, FE-SEM, TEM. The particle size and zeta potential of synthesized CuNPs and AgNPs were found 273 nm and - 24.2 mV; 95.19 nm and - 25.5 mV respectively. The nanocomposite of CuNPs and AgNPs were prepared having particle size in the range of 375-306 nm with improved stability (zeta potential - 54.7 to - 39.4 mV). The copper and silver nanoparticle composites evaluated against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani were found to have higher antibacterial (inhibition zone 13 mm) and antifungal activities (77%) compared to only the copper nanoparticle (8 mm; 62% respectively). Net house trials of nano-composite formulations against the bacterial blight of rice also corroborated the potential of nanocomposite formulation. In silico studies were carried out selecting two disease-causing proteins, peptide deformylase (Xanthomonas oryzae) and pectate lyase (Rhizoctonia solani) to perform the molecular docking. Interaction studies indicatedthat both of these proteins generated better complex with CuNPs than AgNPs. The study suggested that the copper and silver nano-composites could be used for developing formulations to control these devastating rice diseases.
Collapse
Affiliation(s)
- Arnab Roy Chowdhury
- ICAR-National Institute of Secondary Agriculture, Namkum, Ranchi, 834 010, Jharkhand, India
| | - Rishikesh Kumar
- ICAR-Indian Institute of Agricultural Biotechnology, GarhkhatangaRanchi, Jharkhand, 834 003, India
| | - Arabinda Mahanty
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Koel Mukherjee
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sudhir Kumar
- ICAR-Indian Institute of Agricultural Biotechnology, GarhkhatangaRanchi, Jharkhand, 834 003, India
| | - Kishor U Tribhuvan
- ICAR-Indian Institute of Agricultural Biotechnology, GarhkhatangaRanchi, Jharkhand, 834 003, India
| | - Rishav Sheel
- ICAR-Indian Institute of Agricultural Biotechnology, GarhkhatangaRanchi, Jharkhand, 834 003, India
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Srikanta Lenka
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Binay K Singh
- ICAR-Indian Institute of Agricultural Biotechnology, GarhkhatangaRanchi, Jharkhand, 834 003, India
| | - Chirantan Chattopadhyay
- ICAR-Indian Institute of Agricultural Biotechnology, GarhkhatangaRanchi, Jharkhand, 834 003, India
| | - T R Sharma
- ICAR-Indian Institute of Agricultural Biotechnology, GarhkhatangaRanchi, Jharkhand, 834 003, India
| | - Vijai Pal Bhadana
- ICAR-Indian Institute of Agricultural Biotechnology, GarhkhatangaRanchi, Jharkhand, 834 003, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology, GarhkhatangaRanchi, Jharkhand, 834 003, India.
| |
Collapse
|
5
|
Verma A, Naik B, Kumar V, Mishra S, Choudhary M, Khan JM, Gupta AK, Pandey P, Rustagi S, Kakati B, Gupta S. Revolutionizing Tuberculosis Treatment: Uncovering New Drugs and Breakthrough Inhibitors to Combat Drug-Resistant Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2369-2385. [PMID: 37944023 DOI: 10.1021/acsinfecdis.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, UP, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchur 788011, Assam, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, U.K., India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| |
Collapse
|
6
|
Singh AK, Maurya S, Kumar S. Repurposing FDA-approved anti-diabetic drug to target H. pyloripeptidyl deformylase using computer-based drug discovery approach. MOLECULAR SIMULATION 2023; 49:124-132. [DOI: 10.1080/08927022.2022.2130377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/21/2022] [Indexed: 10/10/2022]
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Santosh Maurya
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
7
|
Prediction of Pharmacokinetics of IDP-73152 in Humans Using Physiologically-Based Pharmacokinetics. Pharmaceutics 2022; 14:pharmaceutics14061157. [PMID: 35745730 PMCID: PMC9227536 DOI: 10.3390/pharmaceutics14061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
IDP-73152, a novel peptide deformylase inhibitor with an antibacterial effect against Gram-positive bacteria, is in phase I development. The objective of this study was to develop a physiologically-based pharmacokinetic model (PBPK) for IDP-73152 in animals, and to extend the model to humans. Biopharmaceutical properties of IDP-73152 are determined using in vitro/in vivo experimentations for the PBPK model. A transit model consisting of gastrointestinal segments is applied for an estimation of the intestinal absorption kinetics. The PBPK model of IDP-73152 in rats is able to appropriately predict the plasma concentration–time profiles after the administration of IDP-73152 at different doses and by different routes (combined absolute average fold error (cAAFE), 1.77). The model is also found to be adequate in predicting the plasma concentration–time profiles of IDP-73152 in mice (cAAFE 1.59) and dogs (cAAFE 1.42). Assuming the oral administration of IDP-73152 to humans at doses of 640 and 1280 mg, the model is able to reproduce the concentration–time profiles obtained in humans (cAAFE 1.38); therefore, these observations indicate that the PBPK model used for IDP-73152 is applicable to animal species and humans. This model may be useful in predicting efficacious doses of IDP-73152 for the management of infectious disease in humans.
Collapse
|
8
|
Sunder Raj D, Kesavan DK, Kottaisamy CPD, Kumar VP, Hopper W, Sankaran U. Atomic level and structural understanding of natural ligands inhibiting Helicobacter pylori peptide deformylase through ligand and receptor based screening, SIFT, molecular dynamics and DFT - a structural computational approach. J Biomol Struct Dyn 2022; 41:3440-3461. [PMID: 35293845 DOI: 10.1080/07391102.2022.2050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Helicobacter pylori is a Gram-negative microaerophilic gastric pathogen, responsible for the cause of peptic ulcer around half of the global population. Although several antibiotics and combination therapies have been employed for H. pylori-related gastric ulcer and cancer regiments, identifying potent inhibitors for specific targets of this bacterium will help assessing better treatment periodicity and methods to eradicate H. pylori. Herein, 1,000,000 natural compounds were virtually screened against Helicobacter pylori Peptide deformylase (HpPDF). Pharmacophore hypotheses were created using ligand and receptor-based pharmacophore modeling of GLIDE. Stringent HTVS and IFD docking protocol of GLIDE predicted leads with stable intermolecular bonds and scores. Molecular dynamics simulation of HpPDF was carried out for 100 ns using GROMACS. Hits ZINC00225109 and ZINC44896875 came up with a glide score of -9.967 kcal/mol and -12.114 kcal/mol whereas; reference compound actinonin produced a glide score of -9.730 kcal/mol. Binding energy values of these hits revealed the involvement of significant Van der Waals and Coulomb forces and the deduction of lipophilic forces that portray the deep hydrophobic residues in the S1pocket of H. pylori. The DFT analysis established the electron density-based features of the molecules and observed that the results correlate with intermolecular docking interactions. Analysis of the MD trajectories revealed the crucial residues involved in HpPDF - ligand binding and the conformational changes in the receptor. We have identified and deciphered the crucial features necessary for the potent ligand binding at catalytic site of HpPDF. The resulting ZINC natural compound hits from the study could be further employed for potent drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Divya Sunder Raj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, India
| | | | | | - V Prasanth Kumar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Waheetha Hopper
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM University, Kattankulathur Campus, Chennai, India
| | | |
Collapse
|
9
|
Hematian A, Goudarzi H, Ghalavand Z, Goudarzi M, Shafieian M, Hashemi A, Ghafourian S. The relationship between phoH and colistin-heteroresistant in clinical isolates of Acinetobacter baumannii. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Metal utilization in genome-reduced bacteria: Do human mycoplasmas rely on iron? Comput Struct Biotechnol J 2021; 19:5752-5761. [PMID: 34765092 PMCID: PMC8566771 DOI: 10.1016/j.csbj.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Mycoplasmas are parasitic bacteria with streamlined genomes and complex nutritional requirements. Although iron is vital for almost all organisms, its utilization by mycoplasmas is controversial. Despite its minimalist nature, mycoplasmas can survive and persist within the host, where iron availability is rigorously restricted through nutritional immunity. In this review, we describe the putative iron-enzymes, transporters, and metalloregulators of four relevant human mycoplasmas. This work brings in light critical differences in the mycoplasma-iron interplay. Mycoplasma penetrans, the species with the largest genome (1.36 Mb), shows a more classic repertoire of iron-related proteins, including different enzymes using iron-sulfur clusters as well as iron storage and transport systems. In contrast, the iron requirement is less apparent in the three species with markedly reduced genomes, Mycoplasma genitalium (0.58 Mb), Mycoplasma hominis (0.67 Mb) and Mycoplasma pneumoniae (0.82 Mb), as they exhibit only a few proteins possibly involved in iron homeostasis. The multiple facets of iron metabolism in mycoplasmas illustrate the remarkable evolutive potential of these minimal organisms when facing nutritional immunity and question the dependence of several human-infecting species for iron. Collectively, our data contribute to better understand the unique biology and infective strategies of these successful pathogens.
Collapse
Key Words
- ABC, ATP-binding cassette
- ECF transporter
- ECF, energy-coupling factor
- Fur, ferric uptake regulator
- Hrl, histidine-rich lipoprotein
- Iron homeostasis
- Metal acquisition
- Metalloenzyme
- Mge, Mycoplasma genitalium
- Mho, Mycoplasma hominis
- Mollicutes
- Mpe, Mycoplasma penetrans
- Mpn, Mycoplasma pneumonia
- Mycoplasmas
- PDB, protein data bank
- RNR, ribonucleotide reductase
- XRF, X-ray fluorescence
- ZIP, zinc-iron permease
Collapse
|
11
|
Singh N, Mansoori A, Jiwani G, Solanke AU, Thakur TK, Kumar R, Chaurasiya M, Kumar A. Antioxidant and antimicrobial study of Schefflera vinosa leaves crude extracts against rice pathogens. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Akbar S, Bhakta S, Sengupta J. Structural insights into the interplay of protein biogenesis factors with the 70S ribosome. Structure 2021; 29:755-767.e4. [PMID: 33761323 DOI: 10.1016/j.str.2021.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Bacterial co-translational N-terminal methionine excision, an early event of nascent polypeptide chain processing, is mediated by two enzymes: peptide deformylase (PDF) and methionine aminopeptidase (MetAP). Trigger factor (TF), the only ribosome-associated bacterial chaperone, offers co-translational chaperoning assistance. Here, we present two high-resolution cryoelectron microscopy structures of tRNA-bound E. coli ribosome complexes showing simultaneous binding of PDF and TF, in the absence (3.4 Å) and presence of MetAP (4.1 Å). These structures establish molecular details of the interactions of the factors with the ribosome, and thereby reveal the structural basis of nascent chain processing. Our results suggest that simultaneous binding of all three factors is not a functionally favorable mechanism of nascent chain processing. Strikingly, an unusual structural distortion of the 70S ribosome, potentially driven by binding of multiple copies of MetAP, is observed when MetAP is incubated with a pre-formed PDF-TF-bound ribosome complex.
Collapse
Affiliation(s)
- Shirin Akbar
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sayan Bhakta
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Jayati Sengupta
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Prasad KS, Pillai RR, Ghimire MP, Ray R, Richter M, Shivamallu C, Jain AS, Prasad SK, P S, Armaković S, Armaković SJ, Amachawadi RG. Indole moiety induced biological potency in pseudo-peptides derived from 2-amino-2-(1H-indole-2-yl) based acetamides: Chemical synthesis, in vitro anticancer activity and theoretical studies. J Mol Struct 2020; 1217:128445. [DOI: 10.1016/j.molstruc.2020.128445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Kozsup M, Keogan DM, Fitzgerald-Hughes D, Enyedy ÉA, Twamley B, Buglyó P, Griffith DM. Synthesis and characterisation of Co(iii) complexes of N-formyl hydroxylamines and antibacterial activity of a Co(iii) peptide deformylase inhibitor complex. Dalton Trans 2020; 49:6980-6988. [PMID: 32347254 DOI: 10.1039/d0dt01123a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The X-ray crystal structure and pKa values of GSK322, a well-known and effective peptide deformylase inhibitor and antibacterial drug candidate, are reported. The first examples of Co(iii) complexes of N-formyl hydroxylamines are reported. Reaction of N-hydroxy-N-phenylformamide (HFA) with [Co(tren)Cl2]Cl and [Co(tpa)Cl2]Cl (where tren = tris(2-aminoethyl)amine, tpa = tris(2-pyridylmethyl)amine) with one equivalent of NaOH in H2O afforded [Co(tren)(HFA-1H)](PF6)1.5Cl0.5 (1) and [Co(tpa)(HFA-1H)]Cl2 (2), respectively. X-ray crystal structures of both complexes revealed that the N-formyl hydroxylamine group acts as a bidentate ligand, coordinating the Co(iii) centres via the carbonyl oxygen and deprotonated hydroxy group (O,O'), a coordination mode typically observed for closely related mono-deprotonated hydroxamic acids. Reaction of the N-formyl hydroxylamine-based GSK322 with [Co(tpa)Cl2]Cl afforded the corresponding Co(iii) chaperone complex of the peptide deformylase inhibitor, [Co(tpa)(GSK322-1H)](PF6)2. GSK322 and [Co(tpa)(GSK322-1H)](PF6)2 exhibited better Gram-positive activity than Gram-negative, where low MICs (1.56-6.25 μM) were determined for S. aureus strains, independent of their antibiotic susceptibility.
Collapse
Affiliation(s)
- Máté Kozsup
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Donal M Keogan
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| | - Deirdre Fitzgerald-Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education & Research Centre, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland. and SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| |
Collapse
|
15
|
Moulishankar A, Lakshmanan K. Data on molecular docking of naturally occurring flavonoids with biologically important targets. Data Brief 2020; 29:105243. [PMID: 32072001 PMCID: PMC7016233 DOI: 10.1016/j.dib.2020.105243] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Flavonoids in nature are known to possess various activities such as anti-inflammatory, antimicrobial, anticancer, antioxidant, neuroprotective, anti-HIV activities etc., The molecular docking was performed by 26 naturally occurring flavonoids with selected targets COX-2, hydroxyacyl-ACP dehydratase, tyrosinase from Agaricus bisporus, isomaltase from Saccharomyces cerevisiae, Human IkB kinase beta, Human ABC transporter, topoisomerase II, topoisomerase IV, N-myristoyltransferase from Candida albicans, Peptide deformylase from Pseudomonas aeruginosa, polypeptide deformylase from Streptococcus pneumoniae. The analysis was based on docking score, glide energy, interactions type (bond type and distance) and interaction with amino acids. The top 5 flavonoids with best docking score was reported. The in-silico results provided for 26 naturally occurring flavonoid shows that they reduce the risk of inflammation, cancer and infectious disease if people have taken in diet continuously. The provided docking data of flavonoids may be useful to synthesis novel drug candidate for the mentioned targets.
Collapse
|
16
|
Joshi T, Joshi T, Sharma P, Chandra S, Pande V. Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase. J Biomol Struct Dyn 2020; 39:823-840. [PMID: 31965918 DOI: 10.1080/07391102.2020.1719200] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xanthomonas oryzae pv. Oryzae (Xoo) causes bacterial leaf blight (BLB) of rice which results in a huge loss in production. Many chemicals are used to control BLB disease. However, these chemicals are toxic to the environments, animals and human beings. Thus, there is a demand to discover potential and safe natural pesticides to manage BLB disease successfully. Therefore, we screened a library of phytochemicals of different plants having antibacterial activity by targeting Peptide Deformylase (PDF) of Xoo using in silico techniques. A library of 318 phytochemicals was prepared and subjected to rigid and flexible molecular docking against PDF followed by molecular dynamics simulation and free energy analysis of protein-ligand complexes. The results of virtual screening showed that 14 compounds from different plants have good binding energy as compare to reference molecule (3 R)-2,3-dihydro[1,3] thiazolo [3,2 a]benzimidazol-3-ol) (-7.7 kcal mol-1). Out of 14 hit compounds, eight compounds that were selected based on binding energy were analyzed by Molecular dynamic (MD) simulation. Analysis of MD simulation revealed that eight compounds namely; Bisdemethoxycurcumin, Rosmarinic acid, Piperanine, Dihydropiperlonguminine, Piperdardine, Dihydrocurcumin and Lonhumosides B achieved good stability during the 80 ns MD simulation at 300 K in term of the RMSD. Further, we calculated RMSF, RG, SASA, and interaction energy after 40 ns due to showing the stability of complexes. From our results, we conclude that these natural compounds could inhibit Xoo by targeting PDF receptor and can be used as potential bactericidal candidates against BLB disease of rice against Xoo and other bacteria. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tushar Joshi
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India.,Department of Botany, Kumaun University, Almora, Uttarakhand, India
| | - Tanuja Joshi
- Department of Botany, Kumaun University, Almora, Uttarakhand, India
| | - Priyanka Sharma
- Department of Botany, Kumaun University, Nainital, Uttarakhand, India
| | - Subhash Chandra
- Department of Botany, Kumaun University, Almora, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| |
Collapse
|
17
|
Zaghouani M, Bögeholz LAK, Mercier E, Wintermeyer W, Roche SP. Total synthesis of (±)-fumimycin and analogues for biological evaluation as peptide deformylase inhibitors. Tetrahedron 2019; 75:3216-3230. [PMID: 31555018 PMCID: PMC6759494 DOI: 10.1016/j.tet.2019.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concise 7-step total synthesis of (±)-fumimycin in 11.6 % overall yield is reported. An acid-catalyzed intramolecular aza-Friedel-Crafts cyclization was developed to construct the benzofuranone skeleton of the natural product bearing an α,α-disubstituted amino acid moiety in a single step. Regioselective chlorination followed by a Suzuki-Miyaura cross-coupling rapidly enabled the preparation of a library of analogues which were evaluated against peptide deformylase for antibacterial activity.
Collapse
Affiliation(s)
- Mehdi Zaghouani
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Lena A. K. Bögeholz
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Evan Mercier
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Stéphane P. Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, USA
| |
Collapse
|
18
|
Bintari YR, Risandiansyah R. In Silico Study to Assess Antibacterial Activity from Cladophora Sp. on Peptide Deformylase: Molecular Docking Approach. BORNEO JOURNAL OF PHARMACY 2019. [DOI: 10.33084/bjop.v2i1.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Increasing antibiotic-resistant pathogenic bacteria is a severe problem in the world. Therefore, there is a need to identify new drugs from natural products and also new drug targets. Cladophora sp. is a marine organism which is known to have bioactive compounds and a potential antibacterial. On the other hand, Peptide Deformylase (PDf) may prove to be a novel drug target since it is crucial for native peptide functioning in most pathogenic bacteria. This study screens for PDf inhibition activity of compounds from Cladophora sp. using molecular docking approach and screening the binding affinity of bioactive compounds against the peptide receptor PDf using Pyrex Autodock Vina software. Docking results were stored and visualized using Biovia Discovery Studio and PyMOL ligand. Ligands were obtained from previous literature in PubChem, and receptor peptide PDf from pathogenic bacteria: Pseudomonas aeruginosa (PDB ID:1N5N), Escherichia coli (PDB ID:1BSK), Enterococcus faecium (PDB ID:3G6N) and Staphylococcus aureus (PDB ID:1LQW), was obtained from the peptide data bank. The results of this screening show with ligand the highest binding affinity against PDf of P. aeruginosa, E. coli, E. faecium, and S. aureus is stearic acid (-5.9 kcal/mol), eicosapentaenoic acid (-6.6 kcal/mol), stearic acid (-5.8 kcal/mol), and stearic acid (-6.2 kcal/mol) respectively. The binding of natural compounds from Cladophora sp. with PDf models may provide a new drug with a different drug target for antibacterial potential.
Collapse
|
19
|
Belete TM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.humic.2019.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Rampogu S, Zeb A, Baek A, Park C, Son M, Lee KW. Discovery of Potential Plant-Derived Peptide Deformylase (PDF) Inhibitors for Multidrug-Resistant Bacteria Using Computational Studies. J Clin Med 2018; 7:jcm7120563. [PMID: 30563019 PMCID: PMC6306950 DOI: 10.3390/jcm7120563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial peptide deformylase (PDF) is an attractive target for developing novel inhibitors against several types of multidrug-resistant bacteria. The objective of the current study is to retrieve potential phytochemicals as prospective drugs against Staphylococcus aureus peptide deformylase (SaPDF). The current study focuses on applying ligand-based pharmacophore model (PharmL) and receptor-based pharmacophore (PharmR) approaches. Utilizing 20 known active compounds, pharmL was built and validated using Fischer's randomization, test set method and the decoy set method. PharmR was generated from the knowledge imparted by the Interaction Generation protocol implemented on the Discovery Studio (DS) v4.5 and was validated using the decoy set that was employed for pharmL. The selection of pharmR was performed based upon the selectivity score and further utilizing the Pharmacophore Comparison module available on the DS. Subsequently, the validated pharmacophore models were escalated for Taiwan Indigenous Plants (TIP) database screening and furthermore, a drug-like evaluation was performed. Molecular docking was initiated for the resultant compounds, employing CDOCKER (available on the DS) and GOLD. Eventually, the stability of the final PDF⁻hit complexes was affirmed using molecular dynamics (MD) simulation conducted by GROMACS v5.0.6. The redeemed hits demonstrated a similar binding mode and stable intermolecular interactions with the key residues, as determined by no aberrant behaviour for 50 ns. Taken together, it can be stated that the hits can act as putative scaffolds against SaPDF, with a higher therapeutic value. Furthermore, they can act as fundamental structures for designing new drug candidates.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Amir Zeb
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Ayoung Baek
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Chanin Park
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Minky Son
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), Jinju 52828, Korea.
| |
Collapse
|
21
|
Žalubovskis R, Winum JY. Inhibitors of Selected Bacterial Metalloenzymes. Curr Med Chem 2018; 26:2690-2714. [PMID: 29611472 DOI: 10.2174/0929867325666180403154018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022]
Abstract
The utilization of bacterial metalloenzymes, especially ones not having mammalian (human) counterparts, has drawn attention to develop novel antibacterial agents to overcome drug resistance and especially multidrug resistance. In this review, we focus on the recent achievements on the development of inhibitors of bacterial enzymes peptide deformylase (PDF), metallo-β-lactamase (MBL), methionine aminopeptidase (MetAP) and UDP-3-O-acyl- N-acetylglucosamine deacetylase (LpxC). The state of the art of the design and investigation of inhibitors of bacterial metalloenzymes is presented, and challenges are outlined and discussed.
Collapse
Affiliation(s)
- Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Latvia
| | - Jean-Yves Winum
- Institut des Biomolecules Max Mousseron, Universite de Montpellier, France
| |
Collapse
|
22
|
Grzela R, Nusbaum J, Fieulaine S, Lavecchia F, Desmadril M, Nhiri N, Van Dorsselaer A, Cianferani S, Jacquet E, Meinnel T, Giglione C. Peptide deformylases from Vibrio parahaemolyticus phage and bacteria display similar deformylase activity and inhibitor binding clefts. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:348-355. [PMID: 29101077 DOI: 10.1016/j.bbapap.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 01/06/2023]
Abstract
Unexpected peptide deformylase (PDF) genes were recently retrieved in numerous marine phage genomes. While various hypotheses dealing with the occurrence of these intriguing sequences have been made, no further characterization and functional studies have been described thus far. In this study, we characterize the bacteriophage Vp16 PDF enzyme, as representative member of the newly identified C-terminally truncated viral PDFs. We show here that conditions classically used for bacterial PDFs lead to an enzyme exhibiting weak activity. Nonetheless, our integrated biophysical and biochemical approaches reveal specific effects of pH and metals on Vp16 PDF stability and activity. A novel purification protocol taking in account these data allowed strong improvement of Vp16 PDF specific activity to values similar to those of bacterial PDFs. We next show that Vp16 PDF is as sensitive to the natural inhibitor compound of PDFs, actinonin, as bacterial PDFs. Comparison of the 3D structures of Vp16 and E. coli PDFs bound to actinonin also reveals that both PDFs display identical substrate binding mode. We conclude that bacteriophage Vp16 PDF protein has functional peptide deformylase activity and we suggest that encoded phage PDFs might be important for viral fitness.
Collapse
Affiliation(s)
- Renata Grzela
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Julien Nusbaum
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Sonia Fieulaine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Francesco Lavecchia
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Michel Desmadril
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, UPR2301, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, UPR2301, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
23
|
Grzela R, Nusbaum J, Fieulaine S, Lavecchia F, Bienvenut WV, Dian C, Meinnel T, Giglione C. The C-terminal residue of phage Vp16 PDF, the smallest peptide deformylase, acts as an offset element locking the active conformation. Sci Rep 2017; 7:11041. [PMID: 28887476 PMCID: PMC5591237 DOI: 10.1038/s41598-017-11329-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Prokaryotic proteins must be deformylated before the removal of their first methionine. Peptide deformylase (PDF) is indispensable and guarantees this mechanism. Recent metagenomics studies revealed new idiosyncratic PDF forms as the most abundant family of viral sequences. Little is known regarding these viral PDFs, including the capacity of the corresponding encoded proteins to ensure deformylase activity. We provide here the first evidence that viral PDFs, including the shortest PDF identified to date, Vp16 PDF, display deformylase activity in vivo, despite the absence of the key ribosome-interacting C-terminal region. Moreover, characterization of phage Vp16 PDF underscores unexpected structural and molecular features with the C-terminal Isoleucine residue significantly contributing to deformylase activity both in vitro and in vivo. This residue fully compensates for the absence of the usual long C-domain. Taken together, these data elucidate an unexpected mechanism of enzyme natural evolution and adaptation within viral sequences.
Collapse
Affiliation(s)
- Renata Grzela
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, Paris, France.,Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Julien Nusbaum
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, Paris, France
| | - Sonia Fieulaine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, Paris, France
| | - Francesco Lavecchia
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, Paris, France
| | - Willy V Bienvenut
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, Paris, France
| | - Cyril Dian
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, Paris, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, Paris, France.
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, Paris, France.
| |
Collapse
|