1
|
Franco-Fuquen P, Figueroa-Aguirre J, Martínez DA, Moreno-Cortes EF, Garcia-Robledo JE, Vargas-Cely F, Castro-Martínez DA, Almaini M, Castro JE. Cellular therapies in rheumatic and musculoskeletal diseases. J Transl Autoimmun 2025; 10:100264. [PMID: 39931050 PMCID: PMC11808717 DOI: 10.1016/j.jtauto.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
A substantial proportion of patients diagnosed with rheumatologic and musculoskeletal diseases (RMDs) exhibit resistance to conventional therapies or experience recurrent symptoms. These diseases, which include autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus, are marked by the presence of autoreactive B cells that play a critical role in their pathogenesis. The persistence of these autoreactive B cells within lymphatic organs and inflamed tissues impairs the effectiveness of B-cell-depleting monoclonal antibodies like rituximab. A promising therapeutic approach involves using T cells genetically engineered to express chimeric antigen receptors (CARs) that target specific antigens. This strategy has demonstrated efficacy in treating B-cell malignancies by achieving long-term depletion of malignant and normal B cells. Preliminary data from patients with RMDs, particularly those with lupus erythematosus and dermatomyositis, suggest that CAR T-cells targeting CD19 can induce rapid and sustained depletion of circulating B cells, leading to complete clinical and serological responses in cases that were previously unresponsive to conventional therapies. This review will provide an overview of the current state of preclinical and clinical studies on the use of CAR T-cells and other cellular therapies for RMDs. Additionally, it will explore potential future applications of these innovative treatment modalities for managing patients with refractory and recurrent manifestations of these diseases.
Collapse
Affiliation(s)
- Pedro Franco-Fuquen
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juana Figueroa-Aguirre
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - David A. Martínez
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Eider F. Moreno-Cortes
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juan E. Garcia-Robledo
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Fabio Vargas-Cely
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | | | - Mustafa Almaini
- Rheumatology, Allergy & Clinical Immunology Division, Mafraq Hospital, United Arab Emirates
| | - Januario E. Castro
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
2
|
An X, Lu Y, Huang X. Silencing of transient receptor potential canonical channel 4 inhibits endothelial progenitor cell angiogenesis by suppressing VEGF and SDF-1. Am J Transl Res 2024; 16:2278-2289. [PMID: 39006266 PMCID: PMC11236671 DOI: 10.62347/pnpq8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/18/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES Endothelial progenitor cells (EPCs) play a crucial role in acquired angiogenesis and endothelial injury repair. Transient receptor potential canonical channel 4 (TRPC4), a key component of store-operated calcium channels, is essential for EPC function. While the role of TRPCs has been clarified in vascular diseases, the relationship between TRPC4 and EPC function, along with the underlying molecular mechanisms, remains unclear and requires further elucidation. METHODS EPCs were isolated from canine bone marrow and identified by morphology and flow cytometry. TRPC4 was transfected into EPCs using lentivirus or negative control, and its expression was assessed using real-time polymerase chain reaction (RT-PCR). Proliferation, migration, and tube formation were evaluated using Cell Counting Kit-8 (CCK-8), Transwell, and Matrigel assays, respectively. Levels of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS TRPC4 mRNA expression was significantly reduced in TRPC4-short hairpin RNA (shRNA) transfected EPCs compared to the normal control (NC)-shRNA groups. Migration and tube formation were significantly decreased after TRPC4 silencing, while proliferation showed no difference. Additionally, levels of SDF-1 and VEGF in EPCs were markedly reduced following TRPC4 silencing. CONCLUSION TRPC4 plays a crucial role in regulating angiogenesis in EPCs. Silencing of TRPC4 can lead to decreased angiogenesis by inhibiting VEGF and SDF-1 expression, suggesting that TRPC4 knockdown might be a novel therapeutic strategy for vascular diseases.
Collapse
Affiliation(s)
- Xiaoning An
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University Nanning 530000, Guangxi, P. R. China
| | - Yuting Lu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University Nanning 530000, Guangxi, P. R. China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University Nanning 530000, Guangxi, P. R. China
| |
Collapse
|
3
|
Dobrucki IT, Miskalis A, Nelappana M, Applegate C, Wozniak M, Czerwinski A, Kalinowski L, Dobrucki LW. Receptor for advanced glycation end-products: Biological significance and imaging applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1935. [PMID: 37926944 DOI: 10.1002/wnan.1935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Catherine Applegate
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Yildirim D, Baykul M, Edek YC, Gulengul M, Alp GT, Eroglu FS, Adisen E, Kucuk H, Erden A, Goker B, Nas K, Ozturk MA. Could serum HMGB1 levels be a predictor associated with psoriatic arthritis? Biomark Med 2023; 17:871-880. [PMID: 38117143 DOI: 10.2217/bmm-2023-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Background/aim: Psoriasis is a chronic autoimmune disease that predominantly affects the skin and musculoskeletal system. We hypothesized that HMGB1, an inflammatory nuclear protein, may play a role in the musculoskeletal involvement of psoriasis. Methods: Forty patients with psoriasis and 45 with psoriatic arthritis were involved in the study; the results were compared with 22 healthy controls. Serum HMGB1 levels were evaluated from peripheral blood samples. Results: Serum HMGB1 levels were found to be significantly higher in patients with psoriasis regardless of joint involvement (p < 0.001). Also, HMGB1 levels were correlated with the extent of psoriasis. Conclusion: Serum HMGB1 levels may contribute to the progression of psoriasis to psoriatic arthritis and correlate with the severity of skin involvement.
Collapse
Affiliation(s)
- Derya Yildirim
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Merve Baykul
- Division of Rheumatology, Department of Physical Medicine & Rehabilitation, Faculty of Medicine, Sakarya University, 54100, Sakarya, Turkey
| | - Yusuf C Edek
- Department of Dermatology, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Mehmet Gulengul
- Department of Dermatology, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Gizem T Alp
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Fatma S Eroglu
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Esra Adisen
- Department of Dermatology, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Hamit Kucuk
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Abdulsamet Erden
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Berna Goker
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| | - Kemal Nas
- Division of Rheumatology, Department of Physical Medicine & Rehabilitation, Faculty of Medicine, Sakarya University, 54100, Sakarya, Turkey
| | - Mehmet A Ozturk
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Gazi University, 06460, Ankara, Turkey
| |
Collapse
|
5
|
Lee GY, Yao C, Hwang SJ, Ma J, Joehanes R, Lee DH, Ellison RC, Moore LL, Liu C, Levy D. Integrative Mendelian randomization reveals the soluble receptor for advanced glycation end products as protective in relation to rheumatoid arthritis. Sci Rep 2023; 13:8002. [PMID: 37198231 PMCID: PMC10192300 DOI: 10.1038/s41598-023-35098-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
Rheumatoid arthritis (RA) is a risk factor for atherosclerotic cardiovascular diseases (CVD). Given the critical roles of the immune system and inflammatory signals in the pathogenesis of CVD, we hypothesized that interrogation of CVD-related proteins using integrative genomics might provide new insights into the pathophysiology of RA. We utilized two-sample Mendelian randomization (MR) for causal inference between circulating protein levels and RA by incorporating genetic variants, followed by colocalization to characterize the causal associations. Genetic variants from three sources were obtained: those associated with 71 CVD-related proteins measured in nearly 7000 Framingham Heart Study participants, a published genome-wide association study (GWAS) of RA (19 234 cases, 61 565 controls), and GWAS of rheumatoid factor (RF) levels from the UK Biobank (n = 30 565). We identified the soluble receptor for advanced glycation end products (sRAGE), a critical inflammatory pathway protein, as putatively causal and protective for both RA (odds ratio per 1-standard deviation increment in inverse-rank normalized sRAGE level = 0.364; 95% confidence interval 0.342-0.385; P = 6.40 × 10-241) and RF levels (β [change in RF level per sRAGE increment] = - 1.318; SE = 0.434; P = 0.002). Using an integrative genomic approach, we highlight the AGER/RAGE axis as a putatively causal and promising therapeutic target for RA.
Collapse
Affiliation(s)
- Gha Young Lee
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
| | - Chen Yao
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
| | - Jiantao Ma
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
- School of Nutrition Science and Policy, Tufts University, Boston, USA
| | - Roby Joehanes
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
| | - Dong Heon Lee
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
| | - R Curtis Ellison
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Lynn L Moore
- Boston University School of Medicine, Boston, MA, USA
| | - Chunyu Liu
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
- School of Public Health, Boston University, Boston, MA, USA
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA.
| |
Collapse
|
6
|
The Potential Influence of Advanced Glycation End Products and (s)RAGE in Rheumatic Diseases. Int J Mol Sci 2023; 24:ijms24032894. [PMID: 36769213 PMCID: PMC9918052 DOI: 10.3390/ijms24032894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Advanced glycation end products (AGEs) are a class of compounds formed by nonenzymatic interactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs can alter the protein structure and activate one of their receptors, specifically the receptor for advanced glycation end products (RAGE). These phenomena impair the functions of cells, extracellular matrix, and tissues. RAGE is expressed by a variety of cells and has been linked to chronic inflammatory autoimmune disorders such as rheumatoid arthritis, systemic lupus erythematosus, and Sjögren's syndrome. The soluble (s)RAGE cleavage product is a positively charged 48-kDa cleavage product that retains the ligand binding site but loses the transmembrane and signaling domains. By acting as a decoy, this soluble receptor inhibits the pro-inflammatory processes mediated by RAGE and its ligands. In the present review, we will give an overview of the role of AGEs, sRAGE, and RAGE polymorphisms in several rheumatic diseases. AGE overproduction may play a role in the pathogenesis and is linked to accelerated atherosclerosis. Low serum sRAGE concentrations are linked to an increased cardiovascular risk profile and a poor prognosis. Some RAGE polymorphisms may be associated with increased disease susceptibility. Finally, sRAGE levels can be used to track disease progression.
Collapse
|
7
|
A Study on the Protective Effect of sRAGE-MSCs in a Rodent Reperfusion Model of Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232415630. [PMID: 36555270 PMCID: PMC9779272 DOI: 10.3390/ijms232415630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the major leading causes of death in humans globally. Recently, increased levels of recruited macrophages and AGE-albumin were observed in the hearts of humans and animals with acute myocardial infarction. Thus, the purposes of this study were to investigate whether the elevated levels of AGE-albumin from activated macrophage cells are implicated in ischemia-induced cardiomyocyte death and to develop therapeutic strategies for AMI based on its underlying molecular mechanisms with respect to AGEs. The present study demonstrated that activated macrophages and AGE-albumin were observed in heart tissues obtained from humans and rats with AMI incidences. In the cellular model of AMI, it was found that increased expression of AGE-albumin was shown to be co-localized with macrophages, and the presence of AGE-albumin led to increased expression of RAGE through the mitogen-activated protein kinase pathway. After revealing cardiomyocyte apoptosis induced by toxicity of the AGE-RAGE system, sRAGE-secreting MSCs were generated using the CRISPR/Cas9 platform to investigate the therapeutic effects of sRAGE-MSCs in an AMI rat model. Gene-edited sRAGE-MSCs showed greater therapeutic effects against AMI pathogenesis in rat models compared to mock MSCs, and promising results of the functional improvement of stem cells could result in significant improvements in the clinical management of cardiovascular diseases.
Collapse
|
8
|
Yue Q, Song Y, Liu Z, Zhang L, Yang L, Li J. Receptor for Advanced Glycation End Products (RAGE): A Pivotal Hub in Immune Diseases. Molecules 2022; 27:molecules27154922. [PMID: 35956875 PMCID: PMC9370360 DOI: 10.3390/molecules27154922] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023] Open
Abstract
As a critical molecule in the onset and sustainment of inflammatory response, the receptor for advanced glycation end products (RAGE) has a variety of ligands, such as advanced glycation end products (AGEs), S100/calcium granule protein, and high-mobility group protein 1 (HMGB1). Recently, an increasing number studies have shown that RAGE ligand binding can initiate the intracellular signal cascade, affect intracellular signal transduction, stimulate the release of cytokines, and play a vital role in the occurrence and development of immune-related diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and Alzheimer’s disease. In addition, other RAGE signaling pathways can play crucial roles in life activities, such as inflammation, apoptosis, autophagy, and endoplasmic reticulum stress. Therefore, the strategy of targeted intervention in the RAGE signaling pathway may have significant therapeutic potential, attracting increasing attention. In this paper, through the systematic induction and analysis of RAGE-related signaling pathways and their regulatory mechanisms in immune-related diseases, we provide theoretical clues for the follow-up targeted intervention of RAGE-mediated diseases.
Collapse
Affiliation(s)
- Qing Yue
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Yu Song
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Zi Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu 241002, China;
| | - Ling Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Jinlong Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
- Correspondence: ; Tel.: +86-0315-8805572
| |
Collapse
|
9
|
Kim SJ. Meet the Editorial Board Member. Curr Pharm Biotechnol 2022. [DOI: 10.2174/138920102305220203094009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Seok J. Kim
- The Catholic University of Korea,
Seoul, Korea
| |
Collapse
|
10
|
An L, Chu T, Wang L, An S, Li Y, Hao H, Zhang Z, Yue H. Frequent injections of high-dose human umbilical cord mesenchymal stem cells slightly aggravate arthritis and skeletal muscle cachexia in collagen-induced arthritic mice. Exp Ther Med 2021; 22:1272. [PMID: 34594409 DOI: 10.3892/etm.2021.10707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
A single injection of low-dose human umbilical cord-derived mesenchymal stem cells (UC-MSCs) has been previously demonstrated to relieve synovitis and bone erosion in animal models of arthritis, but whether frequent injections of high-dose UC-MSCs relieve arthritis and inhibit loss of muscle mass has remained elusive. In the present study, DBA/1 mice were randomly divided into three groups: Normal (wild-type mice; n=11), collagen-induced arthritis (CIA; n=12) and CIA treated with UC-MSCs (n=11; 5x106 UC-MSCs per week for 3 weeks). Arthritis and skeletal muscle cachexia were evaluated until the end of the experiment on day 84. It was indicated that both the CIA and UC-MSC groups had lower body weights compared with the normal mice. Clinical arthritis scores, hind ankle diameters, synovitis and bone erosion progressively increased and were similar between the CIA and UC-MSC groups. Although there was no difference in food intake among the three groups, the normalized food intake of normal group was significantly higher than CIA group and UC-MSC group from day 42 onwards; there was no significance on day 77 but this could be neglected. Furthermore, gastrocnemius muscle weight in the UC-MSC group was significantly reduced compared with that in the CIA and normal groups. The UC-MSC group had higher levels of proinflammatory cytokines, such as TNF-α, IL-6 and IL-1β than those in the CIA group. However, the other cytokines assessed and the fibrosis indices in the CIA and UC-MSC groups were not different from those in the control group and there was no inflammatory cell infiltration. Thus, frequent injections of high-dose UC-MSCs slightly aggravated synovitis and muscle cachexia in the murine CIA model and should therefore be avoided in the treatment of arthritis.
Collapse
Affiliation(s)
- Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Tianshu Chu
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Liujun Wang
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Songtao An
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yalong Li
- Henan Key Laboratory of Stem Cell Differentiation and Modification, Stem Cell Research Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Hongbo Hao
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Han Yue
- Henan Key Laboratory of Stem Cell Differentiation and Modification, Stem Cell Research Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
11
|
Evens L, Beliën H, D’Haese S, Haesen S, Verboven M, Rummens JL, Bronckaers A, Hendrikx M, Deluyker D, Bito V. Combinational Therapy of Cardiac Atrial Appendage Stem Cells and Pyridoxamine: The Road to Cardiac Repair? Int J Mol Sci 2021; 22:ijms22179266. [PMID: 34502175 PMCID: PMC8431115 DOI: 10.3390/ijms22179266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
Myocardial infarction (MI) occurs when the coronary blood supply is interrupted. As a consequence, cardiomyocytes are irreversibly damaged and lost. Unfortunately, current therapies for MI are unable to prevent progression towards heart failure. As the renewal rate of cardiomyocytes is minimal, the optimal treatment should achieve effective cardiac regeneration, possibly with stem cells transplantation. In that context, our research group identified the cardiac atrial appendage stem cells (CASCs) as a new cellular therapy. However, CASCs are transplanted into a hostile environment, with elevated levels of advanced glycation end products (AGEs), which may affect their regenerative potential. In this study, we hypothesize that pyridoxamine (PM), a vitamin B6 derivative, could further enhance the regenerative capacities of CASCs transplanted after MI by reducing AGEs’ formation. Methods and Results: MI was induced in rats by ligation of the left anterior descending artery. Animals were assigned to either no therapy (MI), CASCs transplantation (MI + CASCs), or CASCs transplantation supplemented with PM treatment (MI + CASCs + PM). Four weeks post-surgery, global cardiac function and infarct size were improved upon CASCs transplantation. Interstitial collagen deposition, evaluated on cryosections, was decreased in the MI animals transplanted with CASCs. Contractile properties of resident left ventricular cardiomyocytes were assessed by unloaded cell shortening. CASCs transplantation prevented cardiomyocyte shortening deterioration. Even if PM significantly reduced cardiac levels of AGEs, cardiac outcome was not further improved. Conclusion: Limiting AGEs’ formation with PM during an ischemic injury in vivo did not further enhance the improved cardiac phenotype obtained with CASCs transplantation. Whether AGEs play an important deleterious role in the setting of stem cell therapy after MI warrants further examination.
Collapse
Affiliation(s)
- Lize Evens
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Hanne Beliën
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Sarah D’Haese
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Sibren Haesen
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Maxim Verboven
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Jean-Luc Rummens
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
- UHasselt—Hasselt University, Faculty of Medicine and Life Sciences, Agoralaan, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Marc Hendrikx
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Dorien Deluyker
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
| | - Virginie Bito
- UHasselt—Hasselt University, BIOMED—Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (L.E.); (H.B.); (S.D.); (S.H.); (M.V.); (J.-L.R.); (A.B.); (M.H.); (D.D.)
- Correspondence: ; Tel.: +32-11269285
| |
Collapse
|
12
|
Lopez-Santalla M, Bueren JA, Garin MI. Mesenchymal stem/stromal cell-based therapy for the treatment of rheumatoid arthritis: An update on preclinical studies. EBioMedicine 2021; 69:103427. [PMID: 34161884 PMCID: PMC8237294 DOI: 10.1016/j.ebiom.2021.103427] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and progressive joint destruction and is a primary cause of disability worldwide. Despite the existence of numerous anti-rheumatic drugs, a significant number of patients with RA do not respond or are intolerant to current treatments. Mesenchymal stem/stromal cell (MSCs) therapy represents a promising therapeutic tool to treat RA, mainly attributable to the immunomodulatory effects of these cells. This review comprises a comprehensive analysis of the scientific literature related to preclinical studies of MSC-based therapy in RA to analyse key aspects of current protocols as well as novel approaches which aim to improve the efficacy of MSC-based therapy.
Collapse
Affiliation(s)
- Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid; Spain; Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM).
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid; Spain; Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM)
| | - Marina I Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid; Spain; Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM).
| |
Collapse
|
13
|
Advanced Glycation End Products Impair Cardiac Atrial Appendage Stem Cells Properties. J Clin Med 2021; 10:jcm10132964. [PMID: 34279448 PMCID: PMC8269351 DOI: 10.3390/jcm10132964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND During myocardial infarction (MI), billions of cardiomyocytes are lost. The optimal therapy should effectively replace damaged cardiomyocytes, possibly with stem cells able to engraft and differentiate into adult functional cardiomyocytes. As such, cardiac atrial appendage stem cells (CASCs) are suitable candidates. However, the presence of elevated levels of advanced glycation end products (AGEs) in cardiac regions where CASCs are transplanted may affect their regenerative potential. In this study, we examine whether and how AGEs alter CASCs properties in vitro. METHODS AND RESULTS CASCs in culture were exposed to ranging AGEs concentrations (50 µg/mL to 400 µg/mL). CASCs survival, proliferation, and migration capacity were significantly decreased after 72 h of AGEs exposure. Apoptosis significantly increased with rising AGEs concentration. The harmful effects of these AGEs were partially blunted by pre-incubation with a receptor for AGEs (RAGE) inhibitor (25 µM FPS-ZM1), indicating the involvement of RAGE in the observed negative effects. CONCLUSION AGEs have a time- and concentration-dependent negative effect on CASCs survival, proliferation, migration, and apoptosis in vitro, partially mediated through RAGE activation. Whether anti-AGEs therapies are an effective treatment in the setting of stem cell therapy after MI warrants further examination.
Collapse
|
14
|
Kim SJ. Meet Our Editorial Board Member. Curr Pharm Biotechnol 2021. [DOI: 10.2174/138920102206210405111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Seok J. Kim
- The Catholic University of Korea, Seoul, South Korea,Korea
| |
Collapse
|
15
|
Jang SG, Lee J, Hong SM, Kwok SK, Cho ML, Park SH. Metformin enhances the immunomodulatory potential of adipose-derived mesenchymal stem cells through STAT1 in an animal model of lupus. Rheumatology (Oxford) 2020; 59:1426-1438. [PMID: 31904843 DOI: 10.1093/rheumatology/kez631] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) are considered potential therapeutic agents for treating autoimmune disease because of their immunomodulatory capacities and anti-inflammatory effects. However, several studies have shown that there is no consistency in the effectiveness of the MSCs to treat autoimmune disease, including SLE. In this study, we investigated whether metformin could enhance the immunoregulatory function of MSCs, what mechanism is relevant, and whether metformin-treated MSCs could be effective in an animal lupus model. METHODS Adipose-derived (Ad)-MSCs were cultured for 72 h in the presence of metformin. Immunoregulatory factors expression was analysed by real-time PCR and ELISA. MRL/lpr mice weekly injected intravenously with 1 × 106 Ad-MSCs or metformin-treated Ad-MSCs for 8 weeks. 16-week-old mice were sacrificed and proteinuria, anti-dsDNA IgG antibody, glomerulonephritis, immune complex, cellular subset were analysed in each group. RESULTS Metformin enhanced the immunomodulatory functions of Ad-MSCs including IDO, IL-10 and TGF-β. Metformin upregulated the expression of p-AMPK, p-STAT1 and inhibited the expression of p-STAT3, p-mTOR in Ad-MSCs. STAT1 inhibition by siRNA strongly diminished IDO, IL-10, TGF-β in metformin-treated Ad-MSCs. As a result, metformin promoted the immunoregulatory effect of Ad-MSCs by enhancing STAT1 expression, which was dependent on the AMPK/mTOR pathway. Administration of metformin-treated Ad-MSCs resulted in significant disease activity improvement including inflammatory phenotype, glomerulonephritis, proteinuria and anti-dsDNA IgG antibody production in MRL/lpr mice. Moreover, metformin-treated Ad-MSCs inhibited CD4-CD8- T-cell expansion and Th17/Treg cell ratio. CONCLUSION Metformin optimized the immunoregulatory properties of Ad-MSCs and may be a novel therapeutic agent for the treatment of lupus.
Collapse
Affiliation(s)
- Se Gwang Jang
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeseon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Min Hong
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
16
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
17
|
Zavvar M, Assadiasl S, Soleimanifar N, Pakdel FD, Abdolmohammadi K, Fatahi Y, Abdolmaleki M, Baghdadi H, Tayebi L, Nicknam MH. Gene therapy in rheumatoid arthritis: Strategies to select therapeutic genes. J Cell Physiol 2019; 234:16913-16924. [PMID: 30809802 DOI: 10.1002/jcp.28392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/01/2019] [Indexed: 12/15/2022]
Abstract
Significant advances have been achieved in recent years to ameliorate rheumatoid arthritis (RA) in animal models using gene therapy approaches rather than biological treatments. Although biological agents serve as antirheumatic drugs with suppressing proinflammatory cytokine activities, they are usually accompanied by systemic immune suppression resulting from continuous or high systemic dose injections of biological agents. Therefore, gene transfer approaches have opened an interesting perspective to deliver one or multiple genes in a target-specific or inducible manner for the sustained intra-articular expression of therapeutic products. Accordingly, many studies have focused on gene transferring methods in animal models by using one of the available approaches. In this study, the important strategies used to select effective genes for RA gene therapy have been outlined. Given the work done in this field, the future looks bright for gene therapy as a new method in the clinical treatment of autoimmune diseases such as RA, and by ongoing efforts in this field, we hope to achieve feasible, safe, and effective treatment methods.
Collapse
Affiliation(s)
- Mahdi Zavvar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Soleimanifar
- Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dadgar Pakdel
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abdolmaleki
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Baghdadi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin
| | - Mohammad H Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Jafari Nakhjavani MR, Jafarpour M, Ghorbanihaghjo A, Abedi Azar S, Malek Mahdavi A. Relationship between serum-soluble receptor for advanced glycation end products (sRAGE) and disease activity in rheumatoid arthritis patients. Mod Rheumatol 2019; 29:943-948. [PMID: 30474471 DOI: 10.1080/14397595.2018.1551107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objective: Considering the important role of serum soluble receptor for advanced glycation end product (sRAGE/RAGE)-ligand system in rheumatoid arthritis (RA), this study aimed to evaluate serum sRAGE levels in RA patients compared to healthy subjects and to assess whether there is an association between sRAGE levels and disease characteristics in RA.Methods: In this cross-sectional study, 60 RA patients according to the ACR/EULAR 2010 criteria and 30 age- and sex-matched healthy controls were included. In patients, clinical examination was performed and disease activity score 28 (DAS-28) measure of disease activity was assessed. Serum sRAGE level was measured using ELISA kit.Results: The mean ± SD age of patients and controls was 54.86 ± 11.65 and 50.71 ± 3.72 years, respectively). Serum sRAGE level was significantly higher in RA patients (median [25th and 75th percentiles], 1000.3 [792.00, 1486.8]) compared to healthy controls (median [25th and 75th percentiles], 293.25 [220.35, 364.24]) (p < .001). There was significant difference in serum sRAGE level according to the activity of disease (p < .001). There were significant positive correlations between serum sRAGE level with disease activity (r = 0.67, p < .001), ESR (r = 0.411, p = .001) and CRP (r = 0.273, p = .035). There were no significant correlations between serum sRAGE level with demographic characteristics as well as biochemical measurements including serum creatinine, BUN, RF, and Anti-CCP (p > .05).Conclusions: Our study revealed higher serum sRAGE levels in RA patients compared to healthy controls, which correlated positively with disease activity.
Collapse
Affiliation(s)
| | - Mahdi Jafarpour
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abedi Azar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Lee SY, Lee SH, Na HS, Kwon JY, Kim GY, Jung K, Cho KH, Kim SA, Go EJ, Park MJ, Baek JA, Choi SY, Jhun J, Park SH, Kim SJ, Cho ML. The Therapeutic Effect of STAT3 Signaling-Suppressed MSC on Pain and Articular Cartilage Damage in a Rat Model of Monosodium Iodoacetate-Induced Osteoarthritis. Front Immunol 2018; 9:2881. [PMID: 30619261 PMCID: PMC6305125 DOI: 10.3389/fimmu.2018.02881] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/23/2018] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that induces pain, cartilage deformation, and joint inflammation. Mesenchymal stem cells (MSCs) are potential therapeutic agents for treatment of OA. However, MSC therapy can cause excessive inflammation. Signal transducer and activator of transcription 3 (STAT3) modulates secretion of many proinflammatory cytokines. Experimental OA was induced by intra-articular (IA) injection of monosodium iodoacetate (MIA) to the right knee of rats. MSCs from OA patients (OA-MSCs) were treated with STA21, a small molecule that blocks STAT3 signaling, by IA or intravenous (IV) injection after MIA injection. Pain severity was quantified by assessment of secondary tactile allodynia using the von Frey assessment test. Cartilage degradation was measured by microcomputed tomography image analysis, histological analysis, and the Mankin score. Protein and gene expression was evaluated by enzyme-linked immunosorbent assay, immunohistochemistry, and real-time polymerase chain reaction. MSCs increased production of proinflammatory cytokines under inflammatory conditions. STA21 significantly decreased expression of these proinflammatory molecules via inhibition of STAT3 activity but increased gene expression of molecules related to migration potential and immunomodulation in OA-MSCs. STAT3-inhibited OA-MSCs administrated by IV or IA injection decreased pain severity and cartilage damage in rats with MIA-induced OA rats by decreasing proinflammatory cytokines in the joints. Combined IA and IV-injected STAT3-inhibited OA-MSCs had an additive effect of pain relief in MIA-induced OA rats. STAT3 inhibition may optimize the therapeutic activities of MSCs for treating OA by attenuating pain and progression of MIA by inhibiting inflammation and cartilage damage.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Goo-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon Ae Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun Jeong Go
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Si Young Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Impact Biotech, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
20
|
Leyendecker A, Pinheiro CCG, Amano MT, Bueno DF. The Use of Human Mesenchymal Stem Cells as Therapeutic Agents for the in vivo Treatment of Immune-Related Diseases: A Systematic Review. Front Immunol 2018; 9:2056. [PMID: 30254638 PMCID: PMC6141714 DOI: 10.3389/fimmu.2018.02056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: One of the greatest challenges for medicine is to find a safe and effective treatment for immune-related diseases. However, due to the low efficacy of the treatment available and the occurrence of serious adverse effects, many groups are currently searching for alternatives to the traditional therapy. In this regard, the use of human mesenchymal stem cells (hMSCs) represents a great promise for the treatment of a variety of immune-related diseases due to their potent immunomodulatory properties. The main objective of this study is, therefore, to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of the administration of hMSCs for the treatment of immune-related diseases was evaluated. Methods: The article search was conducted in PubMed/MEDLINE, Scopus and Web of Science databases. Original research articles assessing the therapeutic potential of hMSCs administration for the in vivo treatment immune-related diseases, published from 1984 to December 2017, were selected and evaluated. Results: A total of 132 manuscripts formed the basis of this systematic review. Most of the studies analyzed reported positive results after hMSCs administration. Clinical effects commonly observed include an increase in the survival rates and a reduction in the severity and incidence of the immune-related diseases studied. In addition, hMSCs administration resulted in an inhibition in the proliferation and activation of CD19+ B cells, CD4+ Th1 and Th17 cells, CD8+ T cells, NK cells, macrophages, monocytes, and neutrophils. The clonal expansion of both Bregs and Tregs cells, however, was stimulated. Administration of hMSCs also resulted in a reduction in the levels of pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-1, IL-2, IL-12, and IL-17 and in an increase in the levels of immunoregulatory cytokines such as IL-4, IL-10, and IL-13. Conclusions: The results obtained in this study open new avenues for the treatment of immune-related diseases through the administration of hMSCs and emphasize the importance of the conduction of further studies in this area.
Collapse
|
21
|
Su P, Tian Y, Yang C, Ma X, Wang X, Pei J, Qian A. Mesenchymal Stem Cell Migration during Bone Formation and Bone Diseases Therapy. Int J Mol Sci 2018; 19:E2343. [PMID: 30096908 PMCID: PMC6121650 DOI: 10.3390/ijms19082343] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
During bone modeling, remodeling, and bone fracture repair, mesenchymal stem cells (MSCs) differentiate into chondrocyte or osteoblast to comply bone formation and regeneration. As multipotent stem cells, MSCs were used to treat bone diseases during the past several decades. However, most of these implications just focused on promoting MSC differentiation. Furthermore, cell migration is also a key issue for bone formation and bone diseases treatment. Abnormal MSC migration could cause different kinds of bone diseases, including osteoporosis. Additionally, for bone disease treatment, the migration of endogenous or exogenous MSCs to bone injury sites is required. Recently, researchers have paid more and more attention to two critical points. One is how to apply MSC migration to bone disease therapy. The other is how to enhance MSC migration to improve the therapeutic efficacy of bone diseases. Some considerable outcomes showed that enhancing MSC migration might be a novel trick for reversing bone loss and other bone diseases, such as osteoporosis, fracture, and osteoarthritis (OA). Although plenty of challenges need to be conquered, application of endogenous and exogenous MSC migration and developing different strategies to improve therapeutic efficacy through enhancing MSC migration to target tissue might be the trend in the future for bone disease treatment.
Collapse
Affiliation(s)
- Peihong Su
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Chaofei Yang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaoli Ma
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xue Wang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jiawei Pei
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
22
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
23
|
Najar M, Fayyad-Kazan M, Raicevic G, Fayyad-Kazan H, Meuleman N, Bron D, Lagneaux L. Advanced Glycation End-Products-, C-Type Lectin- and Cysteinyl/ Leukotriene-Receptors in Distinct Mesenchymal Stromal Cell Populations: Differential Transcriptional Profiles in Response to Inflammation. CELL JOURNAL 2018; 20:250-258. [PMID: 29633603 PMCID: PMC5893297 DOI: 10.22074/cellj.2018.5104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We aimed at characterizing the transcription profiles of immunological receptors associated with the biology of mesenchymal stromal cells (MSCs). MATERIALS AND METHODS In this experimental study, quantitative real time-polymerase chain reaction (qRTPCR) was performed to establish the transcription profiles of advanced glycation end-products (RAGE) receptor, C-type lectin receptors (CLRs, including DECTIN-1, DECTIN-2 and MINCLE), leukotriene B4 (LTB4) receptors (BLT1 and BLT2) and cysteinyl leukotrienes (CysLTs) receptors (CYSLTR1 and CYSLTR2) in distinct populations of MSCs grown under basic or inflammatory conditions. RESULTS MSCs derived from adipose tissue (AT), foreskin (FSK), Wharton's jelly (WJ) and bone marrow (BM) exhibited significantly different transcription levels for these genes. Interestingly, these transcription profiles substantially changed following exposure of MSCs to inflammatory signals. CONCLUSIONS Collectively, for the first time, our data highlights that MSCs depending on their tissue-source, present several relevant receptors potentially involved in the regulation of inflammatory and immunological responses. Understanding the roles of these receptors within MSCs immunobiology will incontestably improve the efficiency of utilization of MSCs during cell-based therapies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium
| | - Mohammad Fayyad-Kazan
- Institute of Molecular Biology and Medicine, Free University of Brussels, Gosselies, Belgium
| | - Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium.,Experimental Hematology, Institute of Jules Bordet, Free University of Brussels, Waterloo Street, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institute of Jules Bordet, Brussels, Free University of Brussels (ULB), Belgium.,Experimental Hematology, Institute of Jules Bordet, Free University of Brussels, Waterloo Street, Brussels, Belgium
| | - Laurence Lagneaux
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Methylglyoxal: A Relevant Marker of Disease Activity in Patients with Rheumatoid Arthritis. DISEASE MARKERS 2018; 2018:8735926. [PMID: 29606988 PMCID: PMC5828101 DOI: 10.1155/2018/8735926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/01/2018] [Indexed: 12/29/2022]
Abstract
Background The contribution of methylglyoxal (MGO) and soluble receptor for advanced glycation end products (sRAGE) in the presence of rheumatoid arthritis (RA) is still unknown. We investigated whether serum MGO and sRAGE were related to the presence of disease activity in RA. Methods 80 patients with RA and 30 control subjects were included in a cross-sectional study. The severity of RA was assessed using the disease activity score for 28 joints (DAS28). Serum MGO and sRAGE were measured by ELISA. Results Serum MGO levels were significantly higher in patients with RA versus control subjects (P < 0.001) and were increased in RA patients with higher disease activity versus RA patients with moderate disease activity (P = 0.019). Serum sRAGE concentrations were significantly decreased in RA patients with higher disease activity versus RA patients with moderate disease activity and versus control subjects (P = 0.004; P = 0.002, resp.). A multiple logistic regression analysis demonstrated that MGO was independently associated with the presence of activity disease in RA (OR = 1.17, 95% CI: 1.02–1.31, P = 0.01). Conclusion Serum MGO and sRAGE levels are inversely related to the activity of RA, and MGO is independently associated with a higher disease activity of RA.
Collapse
|
25
|
Lee SY, Lee SH, Jhun J, Seo HB, Jung KA, Yang CW, Park SH, Cho ML. A Combination with Probiotic Complex, Zinc, and Coenzyme Q10 Attenuates Autoimmune Arthritis by Regulation of Th17/Treg Balance. J Med Food 2018; 21:39-46. [DOI: 10.1089/jmf.2017.3952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Seon-Young Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Impact Biotech, Seoul, Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Impact Biotech, Seoul, Korea
| | - Hyeon-Beom Seo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | | | - Chul Woo Yang
- Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Impact Biotech, Seoul, Korea
| |
Collapse
|
26
|
Are We Right to Consider Mesenchymal Stem Cells to Be a New Perspective for Patients with Juvenile Idiopathic Arthritis? Arch Immunol Ther Exp (Warsz) 2017; 66:267-271. [PMID: 29027570 DOI: 10.1007/s00005-017-0493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Juvenile idiopathic arthritis (JIA) is the most common cause of chronic arthritis in childhood. Up to 50% of patients are resistant to standard therapy, which includes non-steroid anti-inflammatory drugs, corticosteroids, disease-modifying anti-rheumatic drugs and biologic therapies. Intra-articular injection of mesenchymal stem cells (MSCs) is proposed as a new approach to JIA treatment. MSCs can modulate inflammation via mechanisms of both adaptive and innate immune response. They are able to inhibit T and B cell proliferation, promote regulatory T cells, suppress the maturation of dendritic cells, stimulate macrophage differentiation into M2 phenotype and reduce effectiveness of natural killer cells. They also secrete plethora of soluble factors which influence joint inflammation. Recent clinical studies reviewed in the article provide promising results which may suggest including intra-articular injection of MSCs in therapy of patients with oligoarticular JIA.
Collapse
|
27
|
Lee SH, Kwon JY, Kim SY, Jung K, Cho ML. Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci Rep 2017; 7:10133. [PMID: 28860618 PMCID: PMC5579272 DOI: 10.1038/s41598-017-09767-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023] Open
Abstract
Interferon γ (IFN-γ) induces an inflammatory response and apoptotic cell death. Rheumatoid arthritis (RA) is a systemic inflammatory disease associated with increased levels of inflammatory mediators, including tumour necrosis factor α (TNF-α) and T helper (Th) 17 cells, and downregulation of apoptosis of inflammatory cells. We hypothesized that IFN-γ would reduce inflammatory cell death in vitro and that loss of IFN-γ would aggravate inflammation in vivo. IFN-γ downregulated necroptosis and the expression of cellular FLICE-like inhibitory protein (cFLIPL) and mixed lineage kinase domain-like (MLKL). However, loss of IFN-γ promoted the production of cFLIPL and MLKL, and necroptosis. IFN-γ deficiency increased Th17 cell number and upregulated the expression of IL-17 and TNF-α. Expression of MLKL, receptor interacting protein kinase (RIPK)1, and RIPK3 was increased in the joints of mice with collagen-induced arthritis (CIA). Compared with wild-type mice with CIA, IFN-γ−/− CIA mice showed exacerbation of cartilage damage and joint inflammation, and acceleration of MLKL, RIPK1, and RIPK3 production in the joints. IFN-γ deficiency induced the activation of signal transducer and activator of transcription 3. These results suggest that IFN-γ regulates inflammatory cell death and may have potential for use in the treatment of RA.
Collapse
Affiliation(s)
- Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,Laboratory of Immune Network, Conversant Research Consortium in Immunologic disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
28
|
Franceschetti T, De Bari C. The potential role of adult stem cells in the management of the rheumatic diseases. Ther Adv Musculoskelet Dis 2017; 9:165-179. [PMID: 28717403 PMCID: PMC5502944 DOI: 10.1177/1759720x17704639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/28/2017] [Indexed: 12/27/2022] Open
Abstract
Adult stem cells are considered as appealing therapeutic candidates for inflammatory and degenerative musculoskeletal diseases. A large body of preclinical research has contributed to describing their immune-modulating properties and regenerative potential. Additionally, increasing evidence suggests that stem cell differentiation and function are disrupted in the pathogenesis of rheumatic diseases. Clinical studies have been limited, for the most part, to the application of adult stem cell-based treatments on small numbers of patients or as a 'salvage' therapy in life-threatening disease cases. Nevertheless, these preliminary studies indicate that adult stem cells are promising tools for the long-term treatment of rheumatic diseases. This review highlights recent knowledge acquired in the fields of hematopoietic and mesenchymal stem cell therapy for the management of systemic sclerosis (SSc), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and osteoarthritis (OA) and the potential mechanisms mediating their function.
Collapse
Affiliation(s)
- Tiziana Franceschetti
- Arthritis & Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Arthritis & Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|