1
|
Wen YH, Zhao HL, Wu SY, Jiang JX, Gao Y, Wang ZF, Liu XY, Yu F, Ou T, Zhao AZ, Chen LW, Fang JH, Wu HY, Zhu JN, Ma N, Sun JF, Fang XH, Shan ZX. CircSARS-CV2-N1368 from SARS-CoV-2 impairs endothelial cell function through the upregulation of ATF7 to activate TLR4/NF-κB/ROS signaling. Acta Pharmacol Sin 2025:10.1038/s41401-025-01516-8. [PMID: 40069492 DOI: 10.1038/s41401-025-01516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/16/2025] [Indexed: 03/15/2025]
Abstract
SARS-CoV-2 can encode circular RNAs (circRNAs); however, the potential effects of exogenous SARS-CoV-2 circRNAs on cardiovascular sequelae remain unknown. Three circRNAs derived from the nucleocapsid (N) gene of SARS-CoV-2, namely, circSARS-CV2-Ns, were identified for functional studies. In particular, circSARS-CV2-N1368 was shown to enhance platelet adhesiveness to endothelial cells (ECs) and inhibit EC-dependent vascular relaxation. Moreover, exogenous expression of circSARS-CV2-N1368 suppressed EC proliferation and migration and decreased angiogenesis and cardiac organoid beating. Mechanistically, we elucidated that circSARS-CV2-N1368 sponged the microRNA miR-103a-3p, which could reverse circSARS-CV2-N1368-induced EC damage. Additionally, activating transcription factor 7 (ATF7) was identified as a target gene of miR-103a-3p, and Toll-like receptor 4 (TLR4) was verified as a downstream gene of ATF7 that mediates circARS-CV2-N1368-induced activation of nuclear factor kappa B (NF-κB) signaling and ROS production in ECs. Importantly, the reactive oxygen species (ROS) scavenger NAC mitigated the circSARS-CV2-N1368-promoted EC impairment. Our findings reveal that the TLR4/NF-κB/ROS signal pathway is critical for mediating circSARS-CV2-N1368-promoted oxidative damage in ECs, providing insights into the endothelial impairment caused by circSARS-CV2-Ns.
Collapse
Affiliation(s)
- Yi-Hong Wen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Heng-Li Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Shao-Yu Wu
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Jia-Xue Jiang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Zi-Fan Wang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Xiao-Yao Liu
- School of Basic Medical Sciences, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, 510005, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Tao Ou
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - An-Zhi Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Li-Wen Chen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Jin-Hua Fang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Hua-Yan Wu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Ning Ma
- School of Basic Medical Sciences, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, 510005, China
| | - Jiu-Feng Sun
- Guangdong provincial Institute of public health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xian-Hong Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
| | - Zhi-Xin Shan
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Wu Y, Chen S, Huang G, Zhang L, Zhong L, Feng Y, Wen P, Liu J. Transcriptome analysis reveals EBF1 ablation-induced injuries in cardiac system. Theranostics 2024; 14:4894-4915. [PMID: 39239522 PMCID: PMC11373621 DOI: 10.7150/thno.92060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Regulatory processes of transcription factors (TFs) shape heart development and influence the adult heart's response to stress, contributing to cardiac disorders. Despite their significance, the precise mechanisms underpinning TF-mediated regulation remain elusive. Here, we identify that EBF1, as a TF, is highly expressed in human heart tissues. EBF1 is reported to be associated with human cardiovascular disease, but its roles are unclear in heart. In this study, we investigated EBF1 function in cardiac system. Methods: RNA-seq was utilized to profile EBF1 expression patterns. CRISPR/Cas9 was utilized to knock out EBF1 to investigate its effects. Human pluripotent stem cells (hPSCs) differentiated into cardiac lineages were used to mimic cardiac development. Cardiac function was evaluated on mouse model with Ebf1 knockout by using techniques such as echocardiography. RNA-seq was conducted to analyze transcriptional perturbations. ChIP-seq was employed to elucidate EBF1-bound genes and the underlying regulatory mechanisms. Results: EBF1 was expressed in some human and mouse cardiomyocyte. Knockout of EBF1 inhibited cardiac development. ChIP-seq indicated EBF1's binding on promoters of cardiogenic TFs pivotal to cardiac development, facilitating their transcriptional expression and promoting cardiac development. In mouse, Ebf1 depletion triggered transcriptional perturbations of genes, resulting in cardiac remodeling. Mechanistically, we found that EBF1 directly bound to upstream chromatin regions of cardiac hypertrophy-inducing genes, contributing to cardiac hypertrophy. Conclusions: We uncover the mechanisms underlying EBF1-mediated regulatory processes, shedding light on cardiac development, and the pathogenesis of cardiac remodeling. These findings emphasize EBF1's critical role in orchestrating diverse aspects of cardiac processes and provide a promising therapeutic intervention for cardiomyopathy.
Collapse
Affiliation(s)
- Yueheng Wu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China, 510080
| | - Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China, 510080
| | - Guiping Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Medical Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China, 510530
| | - Liying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
| | - Yi Feng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
| | - Pengju Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
| | - Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China, 510080
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, Guangdong, China, 510080
| |
Collapse
|
3
|
He K, Wang X, Li T, Li Y, Ma L. Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules 2024; 29:760. [PMID: 38398512 PMCID: PMC10892528 DOI: 10.3390/molecules29040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3β (GSK-3β) while concurrently attenuating the expression of the core protein β-catenin in the Wnt/β-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/β-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Linlin Ma
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| |
Collapse
|
4
|
Cechinel LR, Batabyal RA, Blume Corssac G, Goldberg M, Harmon B, Vallejos VMR, Bruch GE, Massensini AR, Belló-Klein A, Araujo ASDR, Freishtat RJ, Siqueira IR. Circulating Total Extracellular Vesicles Cargo Are Associated with Age-Related Oxidative Stress and Susceptibility to Cardiovascular Diseases: Exploratory Results from Microarray Data. Biomedicines 2023; 11:2920. [PMID: 38001921 PMCID: PMC10669226 DOI: 10.3390/biomedicines11112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a risk factor for many non-communicable diseases such as cardiovascular and neurodegenerative diseases. Extracellular vesicles and particles (EVP) carry microRNAs that may play a role in age-related diseases and may induce oxidative stress. We hypothesized that aging could impact EVP miRNA and impair redox homeostasis, contributing to chronic age-related diseases. Our aims were to investigate the microRNA profiles of circulating total EVPs from aged and young adult animals and to evaluate the pro- and antioxidant machinery in circulating total EVPs. Plasma from 3- and 21-month-old male Wistar rats were collected, and total EVPs were isolated. MicroRNA isolation and microarray expression analysis were performed on EVPs to determine the predicted regulation of targeted mRNAs. Thirty-one mature microRNAs in circulating EVPs were impacted by age and were predicted to target molecules in canonical pathways directly related to cardiovascular diseases and oxidative status. Circulating total EVPs from aged rats had significantly higher NADPH oxidase levels and myeloperoxidase activity, whereas catalase activity was significantly reduced in EVPs from aged animals. Our data shows that circulating total EVP cargo-specifically microRNAs and oxidative enzymes-are involved in redox imbalance in the aging process and can potentially drive cardiovascular aging and, consequently, cardiac disease.
Collapse
Affiliation(s)
- Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
| | - Rachael Ann Batabyal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
- Division of Emergency Medicine, Children’s National Hospital, Washington, DC 20010, USA
- School of Medicine and Health Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Giana Blume Corssac
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas do Oxigênio, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Madeleine Goldberg
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
| | - Virgínia Mendes Russo Vallejos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gisele E. Bruch
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - André Ricardo Massensini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Adriane Belló-Klein
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas do Oxigênio, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas do Oxigênio, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Robert J. Freishtat
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC 20012, USA
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (L.R.C.)
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
5
|
Zhao W, Shan X, Li X, Lu S, Xia L, Chen H, Zhang C, Guo W, Xu M, Lu R, Zhao P. Icariin inhibits hypertrophy by regulation of GPER1 and CaMKII/HDAC4/MEF2C signaling crosstalk in ovariectomized mice. Chem Biol Interact 2023; 384:110728. [PMID: 37739049 DOI: 10.1016/j.cbi.2023.110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Icariin (ICA), a flavonoid phytoestrogen, was isolated from traditional Chinese medicine Yin Yang Huo (Epimedium brevicornu Maxim.). Previous studies reporting the cardioprotective effects of ICA are available; however, little is known about the impact of ICA on cardioprotection under conditions of reduced estrogen levels. This study aimed to provide detailed information regarding the antihypertrophic effects of ICA in ovariectomized female mice. Female mice were subjected to ovariectomy (OVX) and transverse aortic constriction and then orally treated with ICA at doses of 30, 60 or 120 mg/kg/day for 4 weeks. Morphological assessments, echocardiographic parameters, histological analyses, and immunofluorescence were performed to evaluate cardiac hypertrophy. Cardiomyocytes from mice or rats were stimulated using phenylephrine, and cell surface and hypertrophy markers were tested using immunofluorescence and qPCR. Western blotting, qPCR, and luciferase reporter gene assays were used to assess the expression of proteins and mRNA and further investigate the proteins related to the G-protein coupled estrogen receptor (GPER1) and CaMKII/HDAC4/MEF2C signaling pathways in vivo and in vitro. ICA blocks cardiac hypertrophy induced by pressure overload in OVX mice. Additionally, we demonstrated that ICA activated GPER1 and inhibited the nuclear export or promoted the nuclear import of histone deacetylase 4 (HDAC4) through regulation of phosphorylation of calmodulin-dependent protein kinase II (CaMKII) and further improved the repression of myocyte enhancer factor-2C (MEF2C). ICA ameliorated cardiac hypertrophy in OVX mice by activating GPER1 and inhibiting the CaMKII/HDAC4/MEF2 signaling pathway.
Collapse
Affiliation(s)
- Wenxia Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueqin Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Xia
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Li X, Jin X, Wang J, Li X, Zhang H. Dexamethasone attenuates dry eye-induced pyroptosis by regulating the KCNQ1OT1/miR-214 cascade. Steroids 2022; 186:109073. [PMID: 35779698 DOI: 10.1016/j.steroids.2022.109073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Dry eye disease (DED) is an inflammatory disorder of the ocular surface seriously affecting the quality of life of patients. Topical dexamethasone (Dex) administration protects the cornea from the hyperosmotic stress (HS) induced by tears. Pyroptosis participates in the activation of epithelial inflammation during DED. However, it remains unclear whether Dex attenuates the progression of DED through pyroptosis. In this study, we aimed to investigate the effect of Dex on DED using both cell and animal models and its underlying mechanism. The inflammatory factors contained in tears were detected using a cytokine assay. The pyroptosis in DED mice and human corneal epithelial cells (HCECs) treated with hyperosmotic medium under various treatments was evaluated by immunohistochemical assays (IHC) or western blotting (WB). RNA expression was manipulated with siRNA or agomir microRNAs and measured using a polymerase chain reaction. The scratch assay was used to assess the migration rate of HCECs. Remaining corneal defects were evaluated using fluorescein staining and photographed using a digital camera. Dex could suppress the release of inflammatory factors and notably attenuate pyroptosis, KCNQ1OT1 expression, and NF-κB activation induced by HS injury in vivo and in vitro. KCNQ1OT1 upregulation could activate pyroptosis by sponging miR-214. Furthermore, KCNQ1OT1 knockdown and miR-214 overexpression reversed the effect of HS, promoted the migration of HCECs, and accelerated corneal wound healing. Dex effectively suppressed HS-induced pyroptosis through the KCNQ1OT1/miR-214/caspase-1 signaling axis by inhibiting the NF-κB activation. Our results provide a novel understanding of the mechanism of Dex as an anti-inflammatory drug in DED.
Collapse
Affiliation(s)
- Xuran Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Jingrao Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Xinyue Li
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, China.
| |
Collapse
|
7
|
Guo J, Chen LW, Huang ZQ, Guo JS, Li H, Shan Y, Chen ZR, Yan YM, Zhu JN, Guo HM, Fang XH, Shan ZX. Suppression of the Inhibitory Effect of circ_0036176-Translated Myo9a-208 on Cardiac Fibroblast Proliferation by miR-218-5p. J Cardiovasc Transl Res 2022; 15:548-559. [PMID: 35288823 DOI: 10.1007/s12265-022-10228-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Increasing evidence has shown that circular RNAs (circRNAs) participate in the process of cardiac remodeling. CircRNA circ_0036176 originating from the back-splicing of exon 2 to exon4 of myosin IXA (Myo9a) gene was shown to be increased in the myocardium of patients with heart failure (HF) and riched in exosomes from human AC16 cardiomyocytes with overexpression of circ_0036176. Proliferation activity was inhibited in mCFs subjected to exosomal circ_0036176 treatment and in mCFs with overexpression of circ_0036176. Interestingly, circ_0036176 contains an IRES element and an ORF of 627 nt encoding a 208-amino acid protein (termed as Myo9a-208). Myo9a-208 was shown to mediate the inhibitory effect of circ_0036176 on CFs proliferation, and miR-218-5p could inhibit Myo9a-208 expression by binding to circ_0036176, resulting in abolishing the effect of circ_0036176 on inactivating cyclin/Rb signal and suppressing CFs proliferation. Our findings suggest that circ_0036176 inhibits mCFs proliferation by translating Myo9a-208 protein to suppress cyclin/Rb pathway.
Collapse
Affiliation(s)
- Jing Guo
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.,School of Medicine, South China University of Technology, Guangzhou, 510632, China
| | - Li-Wen Chen
- Guangdong Cardiovascular Institute, Guangzhou, 510080, China
| | - Zhi-Qi Huang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510632, China
| | - Ji-Shen Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Hui Li
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yue Shan
- Guangzhou Foreign Language School, Guangzhou, 511455, China
| | - Ze-Run Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Yu-Min Yan
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hui-Ming Guo
- Guangdong Cardiovascular Institute, Guangzhou, 510080, China
| | - Xian-Hong Fang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Zhi-Xin Shan
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China. .,Guangdong Cardiovascular Institute, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
9
|
Rabinovich-Nikitin I, Kirshenbaum LA. Mef2 Regulated Cardiac Hypertrophy and Heart Failure in Hypertension. Trends Cardiovasc Med 2022; 33:213-214. [PMID: 35092849 DOI: 10.1016/j.tcm.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
10
|
Zeng N, Huang YQ, Yan YM, Hu ZQ, Zhang Z, Feng JX, Guo JS, Zhu JN, Fu YH, Wang XP, Zhang MZ, Duan JZ, Zheng XL, Xu JD, Shan ZX. Diverging targets mediate the pathological roleof miR-199a-5p and miR-199a-3p by promoting cardiac hypertrophy and fibrosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1035-1050. [PMID: 34786209 PMCID: PMC8571541 DOI: 10.1016/j.omtn.2021.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 01/29/2023]
Abstract
MicroRNA-199a-5p (miR-199a-5p) and -3p are enriched in the myocardium, but it is unknown whether miR-199a-5p and -3p are co-expressed in cardiac remodeling and what roles they have in cardiac hypertrophy and fibrosis. We show that miR-199a-5p and -3p are co-upregulated in the mouse and human myocardium with cardiac remodeling and in Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs) and cardiac fibroblasts (CFs). miR-199a-5p and -3p could aggravate cardiac hypertrophy and fibrosis in vivo and in vitro. PPAR gamma coactivator 1 alpha (Ppargc1a) and sirtuin 1 (Sirt1) were identified as target genes to mediate miR-199a-5p in promoting both cardiac hypertrophy and fibrosis. However, miR-199a-3p aggravated cardiac hypertrophy and fibrosis through targeting RB transcriptional corepressor 1 (Rb1) and Smad1, respectively. Serum response factor and nuclear factor κB p65 participated in the upregulation of miR-199a-5p and -3p in Ang-II-treated NMVCs and mouse CFs, and could be conversely elevated by miR-199a-5p and -3p. Together, Ppargc1a and Sirt1, Rb1 and Smad1 mediated the pathological effect of miR-199a-5p and -3p by promoting cardiac hypertrophy and fibrosis, respectively. This study suggests a possible new strategy for cardiac remodeling therapy by inhibiting miR-199a-5p and -3p.
Collapse
Affiliation(s)
- Ni Zeng
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yu-Qing Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Yu-Min Yan
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Qin Hu
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China
| | - Zhuo Zhang
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Jia-Xin Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Ji-Shen Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Yong-Heng Fu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Xi-Pei Wang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Meng-Zhen Zhang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jin-Zhu Duan
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jin-Dong Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhi-Xin Shan
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| |
Collapse
|
11
|
Sayed-Pathan NI, Kumar P, Paknikar KM, Gajbhiye V. MicroRNAs: A Neoteric Approach to Understand Pathogenesis, Diagnose, and Treat Myocardial Infarction. J Cardiovasc Pharmacol 2021; 78:773-781. [PMID: 34882110 DOI: 10.1097/fjc.0000000000001141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Myocardial infarction is a substantial contributor to ischemic heart diseases, affecting a large number of people leading to fatal conditions worldwide. MicroRNAs (miRNAs) are explicitly emerging as excellent modulators of pathways involved in maintaining cardiomyocyte survival, repair, and regeneration. Altered expression of genes in cardiomyocytes postinfarction can lead to the disordered state of the myocardium, such as cardiac hypertrophy, ischemia-reperfusion injury, left ventricular remodeling, and cardiac fibrosis. Therapeutic targeting of miRNAs in cardiomyocytes can potentially reverse the adverse effects in the heart postinfarction. This review aims to understand the role of several miRNAs involved in the regeneration and repair of cardiomyocytes postmyocardial infarction and presents comprehensive information on the subject.
Collapse
Affiliation(s)
- Nida Irfan Sayed-Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Pramod Kumar
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| |
Collapse
|
12
|
Ding YQ, Zhang YH, Lu J, Li B, Yu WJ, Yue ZB, Hu YH, Wang PX, Li JY, Cai SD, Ye JT, Liu PQ. MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction. Acta Pharmacol Sin 2021; 42:1422-1436. [PMID: 33247214 PMCID: PMC8379271 DOI: 10.1038/s41401-020-00563-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
Reduction of expression and activity of sirtuin 3 (SIRT3) contributes to the pathogenesis of cardiomyopathy via inducing mitochondrial injury and energy metabolism disorder. However, development of effective ways and agents to modulate SIRT3 remains a big challenge. In this study we explored the upstream suppressor of SIRT3 in angiotensin II (Ang II)-induced cardiac hypertrophy in mice. We first found that SIRT3 deficiency exacerbated Ang II-induced cardiac hypertrophy, and resulted in the development of spontaneous heart failure. Since miRNAs play crucial roles in the pathogenesis of cardiac hypertrophy, we performed miRNA sequencing on myocardium tissues from Ang II-infused Sirt3-/- and wild type mice, and identified microRNA-214 (miR-214) was significantly up-regulated in Ang II-infused mice. Similar results were also obtained in Ang II-treated neonatal mouse cardiomyocytes (NMCMs). Using dual-luciferase reporter assay we demonstrated that SIRT3 was a direct target of miR-214. Overexpression of miR-214 in vitro and in vivo decreased the expression of SIRT3, which resulted in extensive mitochondrial damages, thereby facilitating the onset of hypertrophy. In contrast, knockdown of miR-214 counteracted Ang II-induced detrimental effects via restoring SIRT3, and ameliorated mitochondrial morphology and respiratory activity. Collectively, these results demonstrate that miR-214 participates in Ang II-induced cardiac hypertrophy by directly suppressing SIRT3, and subsequently leading to mitochondrial malfunction, suggesting the potential of miR-214 as a promising intervention target for antihypertrophic therapy.
Collapse
Affiliation(s)
- Yan-Qing Ding
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu-Hong Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bai Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wen-Jing Yu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhong-Bao Yue
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue-Huai Hu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pan-Xia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Si-Dong Cai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Tao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Pei-Qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Zhang CY, Yang CQ, Chen Q, Liu J, Zhang G, Dong C, Liu XL, Farooq HMU, Zhao SQ, Luo LH, Jiang SF, Niu YB, Yin DC. miR-194-Loaded Gelatin Nanospheres Target MEF2C to Suppress Muscle Atrophy in a Mechanical Unloading Model. Mol Pharm 2021; 18:2959-2973. [PMID: 34189919 DOI: 10.1021/acs.molpharmaceut.1c00121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Muscle atrophy usually occurs under mechanical unloading, which increases the risk of injury to reduce the functionality of the moving system, while there is still no effective therapy until now. It was found that miR-194 was significantly downregulated in a muscle atrophy model, and its target protein was the myocyte enhancer factor 2C (MEF2C). miR-194 could promote muscle differentiation and also inhibit ubiquitin ligases, thus miR-194 could be used as a nucleic acid drug to treat muscle atrophy, whereas miRNA was unstable in vivo, limiting its application as a therapeutic drug. A gelatin nanosphere (GN) delivery system was applied for the first time to load exogenous miRNA here. Exogenous miR-194 was loaded in GNs and injected into the muscle atrophy model. It demonstrated that the muscle fiber cross-sectional area, in situ muscle contractile properties, and myogenic markers were increased significantly after treatment. It proposed miR-194 loaded in GNs as an effective treatment for muscle atrophy by promoting muscle differentiation and inhibiting ubiquitin ligase activity. Moreover, the developed miRNA delivery system, taking advantage of its tunable composition, degradation rate, and capacity to load various drug molecules with high dosage, is considered a promising platform to achieve precise treatment of muscle atrophy-related diseases.
Collapse
Affiliation(s)
- Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Chen Dong
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Xin-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Hafiz Muhammad Umer Farooq
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Shi-Qi Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Shan-Feng Jiang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Yin-Bo Niu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| |
Collapse
|
14
|
Jozefczuk E, Szczepaniak P, Guzik TJ, Siedlinski M. Silencing of Sphingosine kinase 1 Affects Maturation Pathways in Mouse Neonatal Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22073616. [PMID: 33807180 PMCID: PMC8037404 DOI: 10.3390/ijms22073616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Sphingosine kinase-1 (Sphk1) and its product, sphingosine-1-phosphate (S1P) are important regulators of cardiac growth and function. Numerous studies have reported that Sphk1/S1P signaling is essential for embryonic cardiac development and promotes pathological cardiac hypertrophy in adulthood. However, no studies have addressed the role of Sphk1 in postnatal cardiomyocyte (CM) development so far. The present study aimed to assess the molecular mechanism(s) by which Sphk1 silencing might influence CMs development and hypertrophy in vitro. Neonatal mouse CMs were transfected with siRNA against Sphk1 or negative control, and subsequently treated with 1 µM angiotensin II (AngII) or a control buffer for 24 h. The results of RNASeq analysis revealed that diminished expression of Sphk1 significantly accelerated neonatal CM maturation by inhibiting cell proliferation and inducing developmental pathways in the stress (AngII-induced) conditions. Importantly, similar effects were observed in the control conditions. Enhanced maturation of Sphk1-lacking CMs was further confirmed by the upregulation of the physiological hypertrophy-related signaling pathway involving Akt and downstream glycogen synthase kinase 3 beta (Gsk3β) downregulation. In summary, we demonstrated that the Sphk1 silencing in neonatal mouse CMs facilitated their postnatal maturation in both physiological and stress conditions.
Collapse
Affiliation(s)
- Ewelina Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland; (E.J.); (P.S.); (T.J.G.)
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland; (E.J.); (P.S.); (T.J.G.)
| | - Tomasz Jan Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland; (E.J.); (P.S.); (T.J.G.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland; (E.J.); (P.S.); (T.J.G.)
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
- Correspondence:
| |
Collapse
|
15
|
Zhang G, Ni X. Knockdown of TUG1 rescues cardiomyocyte hypertrophy through targeting the miR-497/MEF2C axis. Open Life Sci 2021; 16:242-251. [PMID: 33817315 PMCID: PMC7968548 DOI: 10.1515/biol-2021-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to investigate the detailed role and molecular mechanism of long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in cardiac hypertrophy. Cardiac hypertrophy was established by transverse abdominal aortic constriction (TAC) in vivo or angiotensin II (Ang II) treatment in vitro. Levels of lncRNA TUG1, miR-497 and myocyte enhancer factor 2C (MEF2C) mRNA were assessed by quantitative reverse transcriptase PCR (qRT-PCR). Western blot assay was performed to determine the expression of MEF2C protein. The endogenous interactions among TUG1, miR-497 and MEF2C were confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. Our data indicated that TUG1 was upregulated and miR-497 was downregulated in the TAC rat model and Ang II-induced cardiomyocytes. TUG1 knockdown or miR-497 overexpression alleviated the hypertrophy induced by Ang II in cardiomyocytes. Moreover, TUG1 acted as a sponge of miR-497, and MEF2C was directly targeted and repressed by miR-497. miR-497 overexpression mediated the protective role of TUG1 knockdown in Ang II-induced cardiomyocyte hypertrophy. MEF2C was a functional target of miR-497 in regulating Ang II-induced cardiomyocyte hypertrophy. In addition, TUG1 regulated MEF2C expression through sponging miR-497. Knockdown of TUG1 rescued Ang II-induced hypertrophy in cardiomyocytes at least partly through targeting the miR-497/MEF2C axis, highlighting a novel promising therapeutic target for cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Guorong Zhang
- Department of Internal Medicine-Cardiovascular, The Fourth Affiliated Hospital of Nanchang University, No. 133 The South Guangchang Road, Nanchang 330003, Jiangxi, China
| | - Xinghua Ni
- Department of the Seventh Medical Center, PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Yu ZY, Gong H, Wu J, Dai Y, Kesteven SH, Fatkin D, Martinac B, Graham RM, Feneley MP. Cardiac Gq Receptors and Calcineurin Activation Are Not Required for the Hypertrophic Response to Mechanical Left Ventricular Pressure Overload. Front Cell Dev Biol 2021; 9:639509. [PMID: 33659256 PMCID: PMC7917224 DOI: 10.3389/fcell.2021.639509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/26/2021] [Indexed: 01/19/2023] Open
Abstract
Rationale Gq-coupled receptors are thought to play a critical role in the induction of left ventricular hypertrophy (LVH) secondary to pressure overload, although mechano-sensitive channel activation by a variety of mechanisms has also been proposed, and the relative importance of calcineurin- and calmodulin kinase II (CaMKII)-dependent hypertrophic pathways remains controversial. Objective To determine the mechanisms regulating the induction of LVH in response to mechanical pressure overload. Methods and Results Transgenic mice with cardiac-targeted inhibition of Gq-coupled receptors (GqI mice) and their non-transgenic littermates (NTL) were subjected to neurohumoral stimulation (continuous, subcutaneous angiotensin II (AngII) infusion for 14 days) or mechanical pressure overload (transverse aortic arch constriction (TAC) for 21 days) to induce LVH. Candidate signaling pathway activation was examined. As expected, LVH observed in NTL mice with AngII infusion was attenuated in heterozygous (GqI+/-) mice and absent in homozygous (GqI-/-) mice. In contrast, LVH due to TAC was unaltered by either heterozygous or homozygous Gq inhibition. Gene expression of atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and α-skeletal actin (α-SA) was increased 48 h after AngII infusion or TAC in NTL mice; in GqI mice, the increases in ANP, BNP and α-SA in response to AngII were completely absent, as expected, but all three increased after TAC. Increased nuclear translocation of nuclear factor of activated T-cells c4 (NFATc4), indicating calcineurin pathway activation, occurred in NTL mice with AngII infusion but not TAC, and was prevented in GqI mice infused with AngII. Nuclear and cytoplasmic CaMKIIδ levels increased in both NTL and GqI mice after TAC but not AngII infusion, with increased cytoplasmic phospho- and total histone deacetylase 4 (HDAC4) and increased nuclear myocyte enhancer factor 2 (MEF2) levels. Conclusion Cardiac Gq receptors and calcineurin activation are required for neurohumorally mediated LVH but not for LVH induced by mechanical pressure overload (TAC). Rather, TAC-induced LVH is associated with activation of the CaMKII-HDAC4-MEF2 pathway.
Collapse
Affiliation(s)
- Ze-Yan Yu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Hutao Gong
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Jianxin Wu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Yun Dai
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Scott H Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Michael P Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Li H, Xu JD, Fang XH, Zhu JN, Yang J, Pan R, Yuan SJ, Zeng N, Yang ZZ, Yang H, Wang XP, Duan JZ, Wang S, Luo JF, Wu SL, Shan ZX. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res 2021; 116:1323-1334. [PMID: 31397837 PMCID: PMC7243276 DOI: 10.1093/cvr/cvz215] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/01/2019] [Accepted: 08/08/2019] [Indexed: 01/05/2023] Open
Abstract
Aims Circular RNAs (circRNAs) are involved in gene regulation in a variety of physiological and pathological processes. The present study aimed to investigate the effect of circRNA_000203 on cardiac hypertrophy and the potential mechanisms involved. Methods and results CircRNA_000203 was found to be up-regulated in the myocardium of Ang-II-infused mice and in the cytoplasma of Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Enforced expression of circRNA_000203 enhances cell size and expression of atrial natriuretic peptide and β-myosin heavy chain in NMVCs. In vivo, heart function was impaired and cardiac hypertrophy was aggravated in Ang-II-infused myocardium-specific circRNA_000203 transgenic mice (Tg-circ203). Mechanistically, we found that circRNA_000203 could specifically sponge miR-26b-5p, -140-3p in NMVCs. Further, dual-luciferase reporter assay showed that miR-26b-5p, -140-3p could interact with 3′-UTRs of Gata4 gene, and circRNA_000203 could block the above interactions. In addition, Gata4 expression is transcriptionally inhibited by miR-26b-5p, -140-3p mimic in NMVCs but enhanced by over-expression of circRNA_000203 in vitro and in vivo. Functionally, miR-26b-5p, -140-3p, and Gata4 siRNA, could reverse the hypertrophic growth in Ang-II-induced NMVCs, as well as eliminate the pro-hypertrophic effect of circRNA_000203 in NMVCs. Furthermore, we demonstrated that NF-κB signalling mediates the up-regulation of circRNA_000203 in NMVCs exposed to Ang-II treatment. Conclusions Our data demonstrated that circRNA_000203 exacerbates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p leading to enhanced Gata4 levels.
Collapse
Affiliation(s)
- Hui Li
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jin-Dong Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Xian-Hong Fang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jie-Ning Zhu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jing Yang
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Rong Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510632, China
| | - Shu-Jing Yuan
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Ni Zeng
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Zhen-Zhen Yang
- School of Medicine, South China University of Technology, Guangzhou 510632, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xi-Pei Wang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jin-Zhu Duan
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Jian-Fang Luo
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Shu-Lin Wu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zhi-Xin Shan
- School of Pharmacy, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Cardiovascular Institute, Guangzhou 510080, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
18
|
Qi YF, Yang Y, Zhang Y, Liu S, Luo B, Liu W. Down regulation of lactotransferrin enhanced radio-sensitivity of nasopharyngeal carcinoma. Comput Biol Chem 2020; 90:107426. [PMID: 33352501 DOI: 10.1016/j.compbiolchem.2020.107426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION It is reported that LTF had a radiation resistance effect, and its expression in nasopharyngeal carcinoma (NPC) was significantly down-regulated. However, the mechanism of down-regulated LTF affecting the sensitivity of radiotherapy has remained elusive. METHODS We re-analyzed the microarray data GSE36972 and GSE48503 to find differentially expressed genes (DEGs) in NPC cell line 5-8 F transfected with LTF or vector control, and the DEGs between radio-resistant and radio-sensitive NPC cell lines. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and protein-protein interaction network (PPI) analysis of DEGs were performed to obtain the node genes. The target genes of miR-214 were also predicted to complement the mechanism associated with radiotherapy resistance because it could directly target LTF. RESULTS This study identified 1190 and 1279 DEGs, respectively. GO and KEGG analysis showed that apoptotic process and proliferation, PI3K-Akt signaling pathway were significantly enriched pathways. Four nodes (DUSP1, PPARGC1A, FOS and SMARCA1) associated with LTF were screened. And 42 target genes of miR-214 were cross-linked to radiotherapy sensitivity. CONCLUSIONS The present study demonstrates the possible molecular mechanism that the down-regulated LTF enhances the radiosensitivity of NPC cells through interaction with DUSP1, PPARGC1A, FOS and SMARCA1, and miR-214 as its superior negative regulator may play a role in regulating the radiotherapy effect.
Collapse
Affiliation(s)
- Yi-Fan Qi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China; Qingdao Shinan District Center for Disease Control and Prevention, 90 Xuzhou Road, Qingdao, 266021, China.
| | - Yang Yang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China.
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China.
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 19 Jiangsu Road, Qingdao, 266021, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China.
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China.
| |
Collapse
|
19
|
Shirazi-Tehrani E, Firouzabadi N, Tamaddon G, Bahramali E, Vafadar A. Carvedilol Alters Circulating MiR-1 and MiR-214 in Heart Failure. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:375-383. [PMID: 32943906 PMCID: PMC7481348 DOI: 10.2147/pgpm.s263740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/11/2020] [Indexed: 02/01/2023]
Abstract
Introduction MicroRNAs (miRNAs) are recognized as major contributors in various cardiovascular diseases, such as heart failure (HF). These small noncoding RNAs that posttranscriptionally control target genes are involved in regulating different pathophysiological processes including cardiac proliferation, ifferentiation, hypertrophy, and fibrosis. Although carvedilol, a β-adrenergic blocker, and a drug of choice in HF produce cytoprotective actions against cardiomyocyte hypertrophy, the mechanisms are poorly understood. Here we proposed that the expression of hypertrophic-specific miRNAs (miR-1, miR-133, miR-208, and miR-214) might be linked to beneficial effects of carvedilol. Methods The levels of four hypertrophic-specific miRNAs were measured in the sera of 35 patients with systolic HF receiving carvedilol (treated) and 20 HF patients not receiving any β-blockers (untreated) as well as 17 nonHF individuals (healthy) using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Systolic HF was defined as left ventricular ejection fraction <50% by transthoracic echocardiography. Results We demonstrated that miR-1 and miR-214 were significantly upregulated in the treated group compared to the untreated group (P=0.014 and 5.3-fold, 0.033 and 4.2-fold, respectively). However, miR-133 and miR-208 did not show significant difference in expression between these two study groups. MiR-1 was significantly downregulated in the untreated group compared with healthy individuals (P=0.019 and 0.14-fold). Conclusion In conclusion, it might be postulated that one of the mechanisms by which carvedilol may exert its cardioprotective effects can be through increasing miR-1 and miR-214 expressions which may also serve as a potential therapeutic target in patients with systolic HF in future.
Collapse
Affiliation(s)
- Elham Shirazi-Tehrani
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholamhossein Tamaddon
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Bahramali
- Digestive Disease Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Kmecova Z, Veteskova J, Lelkova-Zirova K, Bies Pivackova L, Doka G, Malikova E, Paulis L, Krenek P, Klimas J. Disease severity-related alterations of cardiac microRNAs in experimental pulmonary hypertension. J Cell Mol Med 2020; 24:6943-6951. [PMID: 32395887 PMCID: PMC7299706 DOI: 10.1111/jcmm.15352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH). We hypothesized that heart‐relevant microRNAs, that is myomiRs (miR‐1, miR‐133a, miR‐208, miR‐499) and miR‐214, can have a role in the right ventricle in the development of PAH. To mimic PAH, male Wistar rats were injected with monocrotaline (MCT, 60 mg/kg, s.c.); control group received vehicle. MCT rats were divided into two groups, based on the clinical presentation: MCT group terminated 4 weeks after MCT administration and prematurely terminated group (ptMCT) displaying signs of terminal disease. Myocardial damage genes and candidate microRNAs expressions were determined by RT‐qPCR. Reduced blood oxygen saturation, breathing disturbances, RV enlargement as well as elevated levels of markers of myocardial damage confirmed PH in MCT animals and were more pronounced in ptMCT. MyomiRs (miR‐1/miR‐133a/miR‐208a/miR‐499) were decreased and the expression of miR‐214 was increased only in ptMCT group (P < 0.05). The myomiRs negatively correlated with Fulton index as a measure of RV hypertrophy in MCT group (P < 0.05), whereas miR‐214 showed a positive correlation (P < 0.05). We conclude that the expression of determined microRNAs mirrored the disease severity and targeting their pathways might represent potential future therapeutic approach in PAH.
Collapse
Affiliation(s)
- Zuzana Kmecova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jana Veteskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Katarina Lelkova-Zirova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Lenka Bies Pivackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Eva Malikova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
21
|
Zhong Z, Zhong W, Zhang Q, Zhang Q, Yu Z, Wu H. Circulating microRNA expression profiling and bioinformatics analysis of patients with coronary artery disease by RNA sequencing. J Clin Lab Anal 2020; 34:e23020. [PMID: 31489700 PMCID: PMC6977390 DOI: 10.1002/jcla.23020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs play a vital role in coronary artery disease. Abnormal expression of microRNAs has been found to be associated with the occurrence of CAD. METHODS We identified significantly differentially expressed microRNAs in plasma between 40 patients with CAD and 10 controls with NCA using RNA sequencing. The differentially expressed microRNAs were analyzed for Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. RESULTS Fifty cDNA libraries were constructed and sequenced, and a total of 1871.82 M raw reads were obtained, and 2135 microRNAs were found. Compared to the expressed microRNAs of NCA controls, 159 microRNAs were differentially expressed in CAD patients, including 119 upregulated microRNAs and 40 downregulated microRNAs. The top 10 upregulated miRNAs were miR-144-3p, miR-34a-5p, miR-15b-3p, miR-22-3p, miR-29b-3p, miR-1270, miR-6891-5p, miR-106a-5p, miR-15b-5p, and hsa-miR-499b-3p. The top ten downregulated miRNAs were miR-4437, miR-6842-3p, miR-4664-3p, miR-671-3p, miR-219a-1-3p, miR-7848-3p, miR-664a-3p, miR-1284, miR-361-3p, and miR-6780a-5p. The target genes of differentially expressed microRNAs were related to many basic biological terms, such as biological process, cellular component, and molecular function. According to the KEGG pathway analysis, the most enriched pathways of the differentially expressed microRNAs were endocytosis, focal adhesion, axon guidance, and so on. Furthermore, six upregulated and two downregulated microRNAs were detected by qRT-PCR (Quantitative Real-time PCR) and ROC analysis for diagnosing CAD. CONCLUSION The results suggest that the expression levels of some microRNAs may play a vital role in the physiological and pathological course of CAD. Our study may provide useful information for the diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Cardiovascular DiseasesMeizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‐sen UniversityMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine, Clinical and Translational Research in Hakka PopulationMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
| | - Wei Zhong
- Center for Cardiovascular DiseasesMeizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‐sen UniversityMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine, Clinical and Translational Research in Hakka PopulationMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
| | - Qifeng Zhang
- Center for Cardiovascular DiseasesMeizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‐sen UniversityMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine, Clinical and Translational Research in Hakka PopulationMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
| | - Qunji Zhang
- Guangdong Provincial Key Laboratory of Precision Medicine, Clinical and Translational Research in Hakka PopulationMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic DisordersMeizhouChina
- Center for Precision MedicineMeizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‐sen UniversityMeizhouChina
| | - Zhikang Yu
- Guangdong Provincial Key Laboratory of Precision Medicine, Clinical and Translational Research in Hakka PopulationMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic DisordersMeizhouChina
- Center for Precision MedicineMeizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‐sen UniversityMeizhouChina
| | - Heming Wu
- Guangdong Provincial Key Laboratory of Precision Medicine, Clinical and Translational Research in Hakka PopulationMeizhouChina
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular DiseasesMeizhouChina
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic DisordersMeizhouChina
- Center for Precision MedicineMeizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‐sen UniversityMeizhouChina
| |
Collapse
|
22
|
MicroRNA-92b-3p suppresses angiotensin II-induced cardiomyocyte hypertrophy via targeting HAND2. Life Sci 2019; 232:116635. [PMID: 31283925 DOI: 10.1016/j.lfs.2019.116635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/29/2019] [Accepted: 07/04/2019] [Indexed: 11/22/2022]
Abstract
AIMS The pathological cardiac hypertrophy will develop into heart failure, which has no effective treatment currently. Previous studies have proved that microRNAs (miRNAs) participate in the development of cardiac hypertrophy and regulate the pathological progress. In this study, we want to investigate the role of microRNA-92b-3p (miR-92b-3p) in cardiomyocyte hypertrophy and the mechanisms involved. MATERIALS AND METHODS Neonatal mouse ventricular cells (NMVCs) were isolated from the hearts of 1-3-d-old newborn C57BL6 mice. The isolated NMVCs were induced hypertrophic phenotype by Angiotensin-II (Ang-II) and the cell size was examined by FITC-phalloidin staining assay. The expression of miR-92b-3p was determined by quantitative real-time PCR (qRT-qPCR). MRNA and protein level of β-MHC, ACTA1 and HAND2 in NMVCs transfected with miR-92b-3p mimic and inhibition were assessed by RT-qPCR assay and western blot assay, respectively. Dual luciferase assay was used to verify the interaction between miR-92b-3p and the 3'-untranslated region (UTR) of HAND2 gene. KEY FINDINGS MiR-92b-3p and HAND2 were significantly increased in Ang-II-induced NMVCs. Overexpression of miR-92b-3p can ameliorate Ang-II-induced cardiomyocyte hypertrophy. MiR-92b-3p negatively regulated HAND2 expression at the transcriptional level. Both miR-92b-3p mimic and HAND2 siRNA could efficiently inhibit Ang-II-induced hypertrophy in mouse cardiomyocytes. SIGNIFICANCE MiR-92b-3p inhibits Ang-II-induced cardiomyocyte hypertrophy via targeting HAND2.
Collapse
|
23
|
The Smad3-miR-29b/miR-29c axis mediates the protective effect of macrophage migration inhibitory factor against cardiac fibrosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2441-2450. [PMID: 31175931 DOI: 10.1016/j.bbadis.2019.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Although macrophage migration inhibitory factor (MIF) is known to have antioxidant property, the role of MIF in cardiac fibrosis has not been well understood. We found that MIF was markedly increased in angiotension II (Ang-II)-infused mouse myocardium. Myocardial function was impaired and cardiac fibrosis was aggravated in Mif-knockout (Mif-KO) mice. Functionally, overexpression of MIF and MIF protein could inhibit the expression of fibrosis-associated collagen (Col) 1a1, COL3A1 and α-SMA, and Smad3 activation in mouse cardiac fibroblasts (CFs). Consistently, MIF deficiency could exacerbate the expression of COL1A1, COL3A1 and α-SMA, and Smad3 activation in Ang-II-treated CFs. Interestingly, microRNA-29b-3p (miR-29b-3p) and microRNA-29c-3p (miR-29c-3p) were down-regulated in the myocardium of Ang-II-infused Mif-KO mice but upregulated in CFs with MIF overexpression or by treatment with MIF protein. MiR-29b-3p and miR-29c-3p could suppress the expression of COL1A1, COL3A1 and α-SMA in CFs through targeting the pro-fibrosis genes of transforming growth factor beta-2 (Tgfb2) and matrix metallopeptidase 2 (Mmp2). We further demonstrated that Mif inhibited reactive oxygen species (ROS) generation and Smad3 activation, and rescued the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Smad3 inhibitors, SIS3 and Naringenin, and Smad3 siRNA could reverse the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Taken together, our data demonstrated that the Smad3-miR-29b/miR-29c axis mediates the inhibitory effect of macrophage migration inhibitory factor on cardiac fibrosis.
Collapse
|
24
|
Clapham KR, Singh I, Capuano IS, Rajagopal S, Chun HJ. MEF2 and the Right Ventricle: From Development to Disease. Front Cardiovasc Med 2019; 6:29. [PMID: 30984767 PMCID: PMC6448530 DOI: 10.3389/fcvm.2019.00029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive and ultimately life-limiting disease in which survival is closely linked to right ventricular function. The right ventricle remains relatively understudied, as it is known to have key developmental and structural differences from the left ventricle. Here, we will highlight what is known about the right ventricle in normal physiology and in the disease state of pulmonary arterial hypertension. Specifically, we will explore the role of the family of MEF2 (myocyte enhancer factor 2) transcription factors in right ventricular development, its response to increased afterload, and in the endothelial dysfunction that characterizes pulmonary arterial hypertension. Finally, we will turn to review potentially novel therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Katharine R Clapham
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Inderjit Singh
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Isabella S Capuano
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States.,Choate Rosemary Hall, Wallingford, CT, United States
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Hyung J Chun
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
MicroRNA-20a participates in the aerobic exercise-based prevention of coronary artery disease by targeting PTEN. Biomed Pharmacother 2017; 95:756-763. [DOI: 10.1016/j.biopha.2017.08.086] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022] Open
|
26
|
Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep 2017; 7:11879. [PMID: 28928469 PMCID: PMC5605522 DOI: 10.1038/s41598-017-12192-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanisms underlying anthracyclines-induced cardiotoxicity have not been well elucidated. MiRNAs were revealed dysregulated in the myocardium and plasma of rats received Dox treatment. MicroRNA-34a-5p (miR-34a-5p) was verified increased in the myocardium and plasma of Dox-treated rats, but was reversed in rats received Dox plus DEX treatments. Human miR-34a-5p was also observed increased in the plasma of patients with diffuse large B-cell lymphoma after 9- and 16-week epirubicin therapy. Up-regulation of miR-34a-5p was observed in Dox-induced rat cardiomyocyte H9c2 cells. MiR-34a-5p could augment Bax expression, but inhibited Bcl-2 expression, along with the increases of the activated caspase-3 and mitochondrial potentials in H9C2 cells. MiR-34a-5p was verified to modulate Sirt1 expression post-transcriptionally. In parallel to Sirt1 siRNA, miR-34a-5p could enhance p66shc expression, accompanied by increases of Bax and the activated caspase-3 and a decrease of Bcl-2 in H9c2 cells. Moreover, enforced expression of Sirt1 alleviated Dox-induced apoptosis of H9c2 cells, with suppressing levels of p66shc, Bax, the activated caspase-3 and miR-34a-5p, and enhancing Bcl-2 expression. Therefore, miR-34a-5p enhances cardiomyocyte apoptosis by targeting Sirt1, activation of miR-34a-5p/Sirt1/p66shc pathway contributes to Dox-induced cardiotoxicity, and blockage of this pathway represents a potential cardioprotective effect against anthracyclines.
Collapse
|
27
|
Hu ZQ, Luo JF, Yu XJ, Zhu JN, Huang L, Yang J, Fu YH, Li T, Xue YM, Feng YQ, Shan ZX. Targeting myocyte-specific enhancer factor 2D contributes to the suppression of cardiac hypertrophic growth by miR-92b-3p in mice. Oncotarget 2017; 8:92079-92089. [PMID: 29190899 PMCID: PMC5696165 DOI: 10.18632/oncotarget.20759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/30/2017] [Indexed: 01/05/2023] Open
Abstract
The role of microRNA-92b-3p (miR-92b-3p) in cardiac hypertrophy was not well illustrated. The present study aimed to investigate the expression and potential target of miR-92b-3p in angiotensin II (Ang-II)-induced mouse cardiac hypertrophy. MiR-92b-3p was markedly decreased in the myocardium of Ang-II-infused mice and of patients with cardiac hypertrophy. However, miR-92b-3p expression was revealed increased in Ang-II-induced neonatal mouse cardiomyocytes. Cardiac hypertrophy was shown attenuated in Ang-II-infused mice received tail vein injection of miR-92b-3p mimic. Moreover, miR-92b-3p inhibited the expression of atrial natriuretic peptide (ANP), skeletal muscle α-actin (ACTA1) and β-myosin heavy chain (MHC) in Ang-II-induced mouse cardiomyocytes in vitro. Myocyte-specific enhancer factor 2D (MEF2D), which was increased in Ang-II-induced mouse hypertrophic myocardium and cardiomyocytes, was identified as a target gene of miR-92b-3p. Functionally, miR-92b-3p mimic, consistent with MEF2D siRNA, inhibited cell size increase and protein expression of ANP, ACTA1 and β-MHC in Ang-II-treated mouse cardiomyocytes. Taken together, we demonstrated that MEF2D is a novel target of miR-92b-3p, and attenuation of miR-92b-3p expression may contribute to the increase of MEF2D in cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhi-Qin Hu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Fang Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Ju Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie-Ning Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lei Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong-Heng Fu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tao Li
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying-Qing Feng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Xin Shan
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
28
|
Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, Wang K, Li P. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol 2017; 816:138-145. [PMID: 28842125 DOI: 10.1016/j.ejphar.2017.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/02/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death throughout the world. The increase in new patients every year leads to a demand for the identification of valid and novel prognostic and diagnostic biomarkers for the prevention and treatment of cardiovascular diseases. MicroRNAs (miRNAs) are critical endogenous small noncoding RNAs that negatively modulate gene expression by regulating its translation. miRNAs are implicated in most physiological processes of the heart and in the pathological progression of cardiovascular diseases. miR-214 is a deregulated miRNA in many pathological conditions, and it contributes to the pathogenesis of multiple human disorders, including cancer and cardiovascular diseases. miR-214 has dual functions in different cardiac pathological circumstances. However, it is considered as a promising marker in the prognosis, diagnosis and treatment of cardiovascular diseases. In this review, we discuss the role of miR-214 in various cardiac disease conditions, including ischaemic heart diseases, cardiac hypertrophy, pulmonary arterial hypertension (PAH), angiogenesis following vascular injury and heart failure.
Collapse
Affiliation(s)
- Yanfang Zhao
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Lei Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Peifeng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
29
|
Verjans R, van Bilsen M, Schroen B. MiRNA Deregulation in Cardiac Aging and Associated Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:207-263. [PMID: 28838539 DOI: 10.1016/bs.ircmb.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of age-related diseases is increasing dramatically, among which cardiac disease represents the leading cause of death. Aging of the heart is characterized by various molecular and cellular hallmarks impairing both cardiomyocytes and noncardiomyocytes, and resulting in functional deteriorations of the cardiac system. The aging process includes desensitization of β-adrenergic receptor (βAR)-signaling and decreased calcium handling, altered growth signaling and cardiac hypertrophy, mitochondrial dysfunction and impaired autophagy, increased programmed cell death, low-grade inflammation of noncanonical inflammatory cells, and increased ECM deposition. MiRNAs play a fundamental role in regulating the processes underlying these detrimental changes in the cardiac system, indicating that MiRNAs are crucially involved in aging. Among others, MiR-34, MiR-146a, and members of the MiR-17-92 cluster, are deregulated during senescence and drive cardiac aging processes. It is therefore suggested that MiRNAs form possible therapeutic targets to stabilize the aged failing myocardium.
Collapse
Affiliation(s)
- Robin Verjans
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|