1
|
Lyons PJ. Inactive metallopeptidase homologs: the secret lives of pseudopeptidases. Front Mol Biosci 2024; 11:1436917. [PMID: 39050735 PMCID: PMC11266112 DOI: 10.3389/fmolb.2024.1436917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inactive enzyme homologs, or pseudoenzymes, are proteins, found within most enzyme families, that are incapable of performing catalysis. Rather than catalysis, they are involved in protein-protein interactions, sometimes regulating the activity of their active enzyme cousins, or scaffolding protein complexes. Pseudoenzymes found within metallopeptidase families likewise perform these functions. Pseudoenzymes within the M14 carboxypeptidase family interact with collagens within the extracellular space, while pseudopeptidase members of the M12 "a disintegrin and metalloprotease" (ADAM) family either discard their pseudopeptidase domains as unnecessary for their roles in sperm maturation or utilize surface loops to enable assembly of key complexes at neuronal synapses. Other metallopeptidase families contain pseudopeptidases involved in protein synthesis at the ribosome and protein import into organelles, sometimes using their pseudo-active sites for these interactions. Although the functions of these pseudopeptidases have been challenging to study, ongoing work is teasing out the secret lives of these proteins.
Collapse
Affiliation(s)
- Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, United States
| |
Collapse
|
2
|
Lin PY, Chang YT, Huang YC, Chen PY. Estimating genome-wide DNA methylation heterogeneity with methylation patterns. Epigenetics Chromatin 2023; 16:44. [PMID: 37941029 PMCID: PMC10634068 DOI: 10.1186/s13072-023-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND In a heterogeneous population of cells, individual cells can behave differently and respond variably to the environment. This cellular diversity can be assessed by measuring DNA methylation patterns. The loci with variable methylation patterns are informative of cellular heterogeneity and may serve as biomarkers of diseases and developmental progression. Cell-to-cell methylation heterogeneity can be evaluated through single-cell methylomes or computational techniques for pooled cells. However, the feasibility and performance of these approaches to precisely estimate methylation heterogeneity require further assessment. RESULTS Here, we proposed model-based methods adopted from a mathematical framework originally from biodiversity, to estimate genome-wide DNA methylation heterogeneity. We evaluated the performance of our models and the existing methods with feature comparison, and tested on both synthetic datasets and real data. Overall, our methods have demonstrated advantages over others because of their better correlation with the actual heterogeneity. We also demonstrated that methylation heterogeneity offers an additional layer of biological information distinct from the conventional methylation level. In the case studies, we showed that distinct profiles of methylation heterogeneity in CG and non-CG methylation can predict the regulatory roles between genomic elements in Arabidopsis. This opens up a new direction for plant epigenomics. Finally, we demonstrated that our score might be able to identify loci in human cancer samples as putative biomarkers for early cancer detection. CONCLUSIONS We adopted the mathematical framework from biodiversity into three model-based methods for analyzing genome-wide DNA methylation heterogeneity to monitor cellular heterogeneity. Our methods, namely MeH, have been implemented, evaluated with existing methods, and are open to the research community.
Collapse
Affiliation(s)
- Pei-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Ya-Ting Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, 115, Taiwan
- Bioinformatics Program, Institute of Statistical Science, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan.
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, 115, Taiwan.
| |
Collapse
|
3
|
An Alzheimer’s Disease Patient-Derived Olfactory Stem Cell Model Identifies Gene Expression Changes Associated with Cognition. Cells 2022; 11:cells11203258. [PMID: 36291125 PMCID: PMC9601087 DOI: 10.3390/cells11203258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
An early symptom of Alzheimer’s disease (AD) is an impaired sense of smell, for which the molecular basis remains elusive. Here, we generated human olfactory neurosphere-derived (ONS) cells from people with AD and mild cognitive impairment (MCI), and performed global RNA sequencing to determine gene expression changes. ONS cells expressed markers of neuroglial differentiation, providing a unique cellular model to explore changes of early AD-associated pathways. Our transcriptomics data from ONS cells revealed differentially expressed genes (DEGs) associated with cognitive processes in AD cells compared to MCI, or matched healthy controls (HC). A-Kinase Anchoring Protein 6 (AKAP6) was the most significantly altered gene in AD compared to both MCI and HC, and has been linked to cognitive function. The greatest change in gene expression of all DEGs occurred between AD and MCI. Gene pathway analysis revealed defects in multiple cellular processes with aging, intellectual deficiency and alternative splicing being the most significantly dysregulated in AD ONS cells. Our results demonstrate that ONS cells can provide a cellular model for AD that recapitulates disease-associated differences. We have revealed potential novel genes, including AKAP6 that may have a role in AD, particularly MCI to AD transition, and should be further examined.
Collapse
|
4
|
Shah JA, Warr AJ, Graustein AD, Saha A, Dunstan SJ, Thuong NTT, Thwaites GE, Caws M, Thai PVK, Bang ND, Chau TTH, Khor CC, Li Z, Hibberd M, Chang X, Nguyen FK, Hernandez CA, Jones MA, Sassetti CM, Fitzgerald KA, Musvosvi M, Gela A, Hanekom WA, Hatherill M, Scriba TJ, Hawn TR. REL and BHLHE40 Variants Are Associated with IL-12 and IL-10 Responses and Tuberculosis Risk. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1352-1361. [PMID: 35217585 PMCID: PMC8917052 DOI: 10.4049/jimmunol.2100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
The major human genes regulating Mycobacterium tuberculosis-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression in humans are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling. We hypothesized that common variants in CNBP, REL, and BHLHE40 were associated with IL-12 and IL-10 production from dendritic cells, and that these variants also influence adaptive immune responses to bacillus Calmette-Guérin (BCG) vaccination and TB susceptibility. We characterized the association between common variants in CNBP, REL, and BHLHE40, innate immune responses in dendritic cells and monocyte-derived macrophages, BCG-specific T cell responses, and susceptibility to pediatric and adult TB in human populations. BHLHE40 single-nucleotide polymorphism (SNP) rs4496464 was associated with increased BHLHE40 expression in monocyte-derived macrophages and increased IL-10 from peripheral blood dendritic cells and monocyte-derived macrophages after LPS and TB whole-cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL-2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and rs842618 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618 was associated with increased risk for TB meningitis. In summary, we found that genetic variations in REL and BHLHE40 are associated with IL-12 and IL-10 cytokine responses and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.
Collapse
Affiliation(s)
- Javeed A Shah
- University of Washington, Seattle, WA;
- VA Puget Sound Health Care System, Seattle, WA
| | | | - Andrew D Graustein
- University of Washington, Seattle, WA
- VA Puget Sound Health Care System, Seattle, WA
| | | | | | - Nguyen T T Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maxine Caws
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | | | | | - Zheng Li
- Genome Institute of Singapore, A-STAR, Singapore
| | - Martin Hibberd
- London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - Xuling Chang
- University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | | |
Collapse
|
5
|
Kondo T, Hara N, Koyama S, Yada Y, Tsukita K, Nagahashi A, Ikeuchi T, Ishii K, Asada T, Arai T, Yamada R, Inoue H. Dissection of the polygenic architecture of neuronal Aβ production using a large sample of individual iPSC lines derived from Alzheimer's disease patients. NATURE AGING 2022; 2:125-139. [PMID: 37117761 DOI: 10.1038/s43587-021-00158-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/23/2021] [Indexed: 04/30/2023]
Abstract
Genome-wide association studies have demonstrated that polygenic risks shape Alzheimer's disease (AD). To elucidate the polygenic architecture of AD phenotypes at a cellular level, we established induced pluripotent stem cells from 102 patients with AD, differentiated them into cortical neurons and conducted a genome-wide analysis of the neuronal production of amyloid β (Aβ). Using such a cellular dissection of polygenicity (CDiP) approach, we identified 24 significant genome-wide loci associated with alterations in Aβ production, including some loci not previously associated with AD, and confirmed the influence of some of the corresponding genes on Aβ levels by the use of small interfering RNA. CDiP genotype sets improved the predictions of amyloid positivity in the brains and cerebrospinal fluid of patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Secondary analyses of exome sequencing data from the Japanese ADNI and the ADNI cohorts focused on the 24 CDiP-derived loci associated with alterations in Aβ led to the identification of rare AD variants in KCNMA1.
Collapse
Affiliation(s)
- Takayuki Kondo
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Koyama
- Unit of Statistical Genetics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichiro Yada
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Ayako Nagahashi
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takashi Asada
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryo Yamada
- Unit of Statistical Genetics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhisa Inoue
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|
6
|
Ye Y, An Y, Wang M, Liu H, Guan L, Wang Z, Li W. Expression of Carboxypeptidase X M14 Family Member 2 Accelerates the Progression of Hepatocellular Carcinoma via Regulation of the gp130/JAK2/Stat1 Pathway. Cancer Manag Res 2020; 12:2353-2364. [PMID: 32280274 PMCID: PMC7127851 DOI: 10.2147/cmar.s228984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Carboxypeptidase X, M14 family member 2 (CPXM2) has been reported to be involved with several human malignancies. However, the impact of CPXM2 on human hepatocellular carcinoma (HCC) tumorigenesis has not been studied. MATERIALS AND METHODS Using immunohistochemistry, the detailed CPXM2 expression patterns were examined in HCC cell lines and tissues. Additionally, a hepatic stellate cell line overexpressing CPXM2 and an HCC CPXM2-knockdown cell line were established by lipofection of an expression plasmid or short hairpin RNA, respectively. The transfection efficiencies were confirmed by reverse transcription-quantitative PCR, Western blotting and immunofluorescence. Moreover, Western blotting was conducted to determine the phosphorylation levels of the tyrosine kinase 2 (JAK2)/signal transducer and activator of transcription 3 (Stat1) pathway. Furthermore, gp130-specific hairpin RNA was used to knockdown gp130 expression in hepatic stellate cells overexpressing CPXM2. The malignant phenotype of cultured HCC cells was assessed by a Cell Counting Kit-8 (CCK8) assay, plate cloning assay, Matrigel invasion assay and wound-healing assay in vitro. RESULTS It was demonstrated that CPXM2 was upregulated in HCC, and its upregulation predicted a poor prognosis. Besides, the upregulation of CPXM2 markedly enhanced the metastatic potential of HCC via the gp130/JAK2/Stat1 signaling pathway in vitro. CONCLUSION In summary, this evidence suggests a positive role for CPXM2 in HCC progression via modulation of the gp130/JAK2/Stat1 signaling pathway in HCC.
Collapse
Affiliation(s)
- Yanshuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuan An
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Min Wang
- Department of Pathology, Jilin Provincial Cancer Hospital, Changchun130012, People’s Republic of China
| | - Hongyu Liu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhanpeng Wang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
7
|
Cui M, Zhou X, Chen X, Zheng W, Bian L, Li Z, Zheng B. Rapid and room temperature detection of single nucleotide variation with enhanced discrimination by crowding assisted allele specific extension. Chem Commun (Camb) 2019; 55:12052-12055. [PMID: 31535680 DOI: 10.1039/c9cc06229g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this paper we report the kinetics based detection of single nucleotide variation (SNV) at room temperature by allele specific extension with different concentrations and types of crowding agents. In general, the crowding conditions enhanced the specificity in the detection of SNV.
Collapse
Affiliation(s)
- Miao Cui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China. and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaoyu Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiaoyu Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Weihao Zheng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
8
|
Tian X, He Y, Han Z, Su H, Chu C. The Cytoplasmic Expression Of CLDN12 Predicts An Unfavorable Prognosis And Promotes Proliferation And Migration Of Osteosarcoma. Cancer Manag Res 2019; 11:9339-9351. [PMID: 31807064 PMCID: PMC6830360 DOI: 10.2147/cmar.s229441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background To date, the impact and potential molecular mechanisms of CLDN12 and its association with malignancy in osteosarcoma have not been determined. Materials and methods In the present study, the expression profiles of CLDN12 in osteosarcoma cell lines and tissues were explored by immunohistochemistry. A fetal osteoblast cell line was transfected with a eukaryotic expression plasmid, and endogenous CLDN12 in osteosarcoma cells were silenced through an RNA interference (RNAi) method. These transfections were verified, and the activation state of Thr308 site in protein kinase B (Akt) was explored by Western blotting. Moreover, the malignant phenotype of osteosarcoma cells was evaluated by cell counting kit-8 (CCK-8), colony formation, Transwell, and wound-healing assays. Furthermore, osteoblast cells were treated with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 to determine the impact of the PI3K/Akt signaling pathway on cell migration ability. Results The results revealed that CLDN12 was overexpressed and localized in the cytoplasm of osteosarcoma cells, and its overexpression was associated with an unfavorable prognosis, irrespective of tumor node metastasis stage. In addition, the knockdown of CLDN12 in cultured osteosarcoma cells markedly attenuated cell proliferation and migration, as indicated by the Cell Counting Kit-8 assay, colony formation assay, scratch wound healing assay and Transwell migration assay. The results also demonstrated that the overexpression of CLDN12 increased the activation of Thr308 site in Akt in fetal osteoblast cells, and the PI3K inhibitor LY294002 partially decreased CLDN12-promoted proliferation and metastasis. Conclusion In conclusion, the results of the present study indicated that CLDN12 promoted cell proliferation and migration through the PI3K/Akt signaling pathway in osteosarcoma cells, suggesting that CLDN12 may be a potential agent in the treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Xiaoqing Tian
- Department of Orthopeadic Surgery, Heze Mudan People's Hospital, Heze City, Shandong 274000, People's Republic of China
| | - YinFeng He
- Department of Joint Surgery, Heze Municipal Hospital, Heze City, Shandong 274000, People's Republic of China
| | - Zhe Han
- Department of Traumatic Surgery, Heze Municipal Hospital, Heze City, Shandong 274000, People's Republic of China
| | - HongMin Su
- Department of Spinal Surgery, Heze Municipal Hospital, Heze City, Shandong 274000, People's Republic of China
| | - Chao Chu
- Department of Spinal Surgery, Heze Municipal Hospital, Heze City, Shandong 274000, People's Republic of China
| |
Collapse
|
9
|
Zhao X, Li R, Wang Q, Wu M, Wang Y. Overexpression of carboxypeptidase X M14 family member 2 predicts an unfavorable prognosis and promotes proliferation and migration of osteosarcoma. Diagn Pathol 2019; 14:118. [PMID: 31651348 PMCID: PMC6813969 DOI: 10.1186/s13000-019-0887-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/09/2019] [Indexed: 11/23/2022] Open
Abstract
Background Carboxypeptidase X, M14 family member 2 (CPXM2), has been associated with several human developmental disorders. However, whether CPXM2 is involved in oncogenesis or tumor progression remains unclear. Currently, the clinical relevance and function of CPXM2 in human osteosarcoma were investigated. Materials and methods The expression of CPXM2 in osteosarcoma cell lines and tissues were explored by immunohistochemistry and western blotting assays. A eukaryotic expression plasmid was transfected into fetal osteoblast cells to overexpress CPXM2 and the endogenous CPXM2 in osteosarcoma cells was silenced through an RNA interference (RNAi) method transfection. These transfections were validated via western blotting, and the expression levels of several key molecules involved in the epithelial mesenchymal transition was also determined via western blotting. The expression levels of CPXM2 in a fetal osteoblast cell line with CPXM2 overexpressing and an osteosarcoma CPXM2-knockout cell line was confirmed via reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunofluorescence. The malignant phenotype of osteosarcoma cells was indicated by the cholecystokinin octapeptide, colony formation assay, scratch wound healing assay, and Transwell® migration assay. Results We found that CPXM2 was overexpressed in osteosarcoma and that the overexpression was associated with an unfavorable prognosis and tumor node metastasis staging. The knockdown of CPXM2 in cultured osteosarcoma cells significantly impeded cell proliferation and migration. In addition, the upregulation of CPXM2 in fetal osteoblast cells significantly promoted cell proliferation and migration. Besides, western blotting results revealed that several key molecules involved in the epithelial mesenchymal transition (EMT) were regulated by CPXM2. Conclusion Taken together, these results imply an active role for CPXM2 in promoting tumor aggressiveness via epithelial to mesenchymal transition (EMT) modulation in osteosarcoma.
Collapse
Affiliation(s)
- Xin Zhao
- Orthopedic Department, The Second Hospital of Jilin University, No. 128 Ziqiang Road, Changchun, 130041, China
| | - Ronghang Li
- Department of Joint Surgery and Sports Medicine, The Second Hospital of Jilin University, No. 128 Ziqiang Road, Changchun, 130041, China
| | - Qian Wang
- Otolaryngology Head and Neck Surgery, First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Minfei Wu
- Orthopedic Department, The Second Hospital of Jilin University, No. 128 Ziqiang Road, Changchun, 130041, China.
| | - Yanbing Wang
- Orthopedic Department, The Second Hospital of Jilin University, No. 128 Ziqiang Road, Changchun, 130041, China.
| |
Collapse
|
10
|
Wu F, Lin Q, Wang L, Zou Y, Chen M, Xia Y, Lan J, Chen J. A DNA electrochemical biosensor based on triplex DNA-templated Ag/Pt nanoclusters for the detection of single-nucleotide variant. Talanta 2019; 207:120257. [PMID: 31594620 DOI: 10.1016/j.talanta.2019.120257] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/24/2023]
Abstract
A label-free electrochemical biosensor based on the triplex DNA-templated Ag/Pt bimetallic nanoclusters (triplex-Ag/PtNCs) and locked nucleic acid (LNA) modified X-shaped DNA probe was developed for the detection of single-nucleotide variant (SNV) related to β-thalassemia. Firstly, using triplex DNA as template, a site-specific and homogeneous Ag/PtNCs was prepared, which can effectively catalyze the 3,3,5,5-tetramethylbenzidine-H2O2 system and thus be employed as a signal reporter in the field of electrochemical biosensor. Secondly, the LNA modified X-shaped probes were assembled on gold electrode surface, which can only be dissociated in the presence of target, leading to the hybridization with triplex-Ag/PtNCs and significant increase of current signal. In this way, the detection limit for SNV of β-thalassemia was 0.8 fM with variant allele frequency (VAF) as low as 0.0001%.
Collapse
Affiliation(s)
- Fang Wu
- Department of Basic Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Qian Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Liangliang Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Yulian Zou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Mei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Yaokun Xia
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Jianming Lan
- Department of Basic Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350108, China.
| |
Collapse
|
11
|
Niu G, Yang Y, Ren J, Song T, Hu Z, Chen L, Hong R, Xia J, Ke C, Wang X. Overexpression of CPXM2 predicts an unfavorable prognosis and promotes the proliferation and migration of gastric cancer. Oncol Rep 2019; 42:1283-1294. [PMID: 31364750 PMCID: PMC6718098 DOI: 10.3892/or.2019.7254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/24/2019] [Indexed: 12/24/2022] Open
Abstract
Carboxypeptidase X, M14 family member 2 (CPXM2), has been associated with several human disorders such as developmental diseases. However, whether CPXM2 is involved in oncogenesis or tumor progression remains unclear. In the present study, we used clinical samples from gastric cancer (GC) patients to investigate potential roles of CPXM2 in GC. We also analyzed datasets from the Oncomine database, The Cancer Genome Atlas (TCGA), and the Kaplan‑Meier Plotter to validate these results. We found that CPXM2 was overexpressed in GC and that the overexpression was associated with an unfavorable prognosis, regardless of the Lauren classification and tumor node metastasis staging. In addition, knockdown of CPXM2 in cultured GC cells significantly impeded cell proliferation and migration, as indicated by the cholecystokinin octapeptide, colony formation assay, scratch wound healing assay, and Transwell® migration assay. Furthermore, gene set enrichment analysis using RNA‑seq data from TCGA indicated that high CPXM2 expression in GC patients was positively correlated with the HALLMARK_APICAL_JUNCTION and HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION gene sets. Finally, western blotting results revealed that several key molecules involved in the epithelial mesenchymal transition were regulated by CPXM2. Taken together, these results imply an active role for CPXM2 in promoting tumor aggressiveness via epithelial to mesenchymal transition (EMT) modulation in GCs.
Collapse
Affiliation(s)
- Gengming Niu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Yazhe Yang
- Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Ren
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Tao Song
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Zhiqing Hu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Liang Chen
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Runqi Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Jie Xia
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Xin Wang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
12
|
Kim WS, He Y, Phan K, Ahmed RM, Rye KA, Piguet O, Hodges JR, Halliday GM. Altered High Density Lipoprotein Composition in Behavioral Variant Frontotemporal Dementia. Front Neurosci 2018; 12:847. [PMID: 30487733 PMCID: PMC6246632 DOI: 10.3389/fnins.2018.00847] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of early onset dementia with behavioral variant FTD (bvFTD) being the most common form. bvFTD is characterized clinically by behavioral and personality changes, eating abnormalities, and pathologically, by systemic lipid dysregulation that impacts on survival. As lipoprotein metabolism is at the core of lipid dysregulation, here, we analyzed the composition, both proteins and lipids, of the two major lipoprotein classes in blood – high density lipoproteins (HDLs) and low density lipoproteins (LDLs). Fasted plasmas from bvFTD and Alzheimer’s disease (AD) patients and controls were fractionated using fast protein liquid chromatography (FPLC) and samples analyzed by lipid assays, ELISA and western blotting. We found that apolipoprotein A-I (apoA-I) and apolipoprotein A-II (apoA-II) levels in HDLs were decreased in bvFTD compared to controls, whereas apolipoprotein B (apoB) levels in LDLs were unaltered. We also found that cholesterol and triglyceride levels in FPLC fractions were altered in bvFTD compared to controls. The apoB:apoA-I ratio and the standard lipid ratios were significantly increased in bvFTD compared to AD and controls. Furthermore, we found that plasma apolipoprotein C-I and paraoxonase 1 levels were significantly altered in bvFTD and AD, respectively, compared controls. This study represents the first apolipoprotein analysis of bvFTD, and our results suggest altered HDL function and elevated cardiovascular disease risk in bvFTD.
Collapse
Affiliation(s)
- Woojin Scott Kim
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Ying He
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Phan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Rebekah M Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia.,School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
13
|
Prendecki M, Florczak-Wyspianska J, Kowalska M, Ilkowski J, Grzelak T, Bialas K, Wiszniewska M, Kozubski W, Dorszewska J. Biothiols and oxidative stress markers and polymorphisms of TOMM40 and APOC1 genes in Alzheimer's disease patients. Oncotarget 2018; 9:35207-35225. [PMID: 30443289 PMCID: PMC6219666 DOI: 10.18632/oncotarget.26184] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/01/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive disease, with frequently observed improper biothiols turnover, homocysteine (Hcy) and glutathione (GSH). GSH protects cells from oxidative stress and may be determined by 8-oxo-2’-deoxyguanosine (8-oxo2dG) level and its repair enzyme 8-oxoguanine DNA glycosylase (OGG1). The presence of unfavorable alleles, e.g., in APOE cluster, TOMM40 or APOC1 is known to facilitate the dementia onset under oxidative stress. The aim of the study was to analyze rs1052452, rs2075650 TOMM40 polymorphisms, rs4420638 APOC1, and their correlation with Hcy, GSH, 8-oxo2dG, OGG1 levels in plasma of AD patients and controls. We recruited 230 individuals: 88 AD, 80 controls without (UC), 62 controls with (RC) positive family history of AD. The TOMM40 genotype was determined by HRM and capillary electrophoresis, while APOC1 by HRM. The concentrations of OGG1, 8-oxo2dG were determined by ELISA, whereas Hcy, GSH by HPLC/EC. We showed that over 60% of AD patients had increased Hcy levels (p<0.01 vs. UC, p<0.001 vs. RC), while GSH (p<0.01 vs. UC), 8-oxo2dG (p<0.01 vs. UC, p<0.001 vs. RC) were reduced. Minor variants: rs10524523-L, rs4420638-G, rs2075650-G were significantly overrepresented in AD. For rs4420638-G, rs2075650-G variants, the association remained significant in APOE E4 non-carriers. The misbalance of analyzed biothiols, and 8-oxo2dG, OGG1 were more pronounced in carriers of major variants: rs10524523-S/VL, rs4420638-A, rs2075650-A. We showed, for the first time, that APOC1 and TOMM40 rs2075650 polymorphisms may be independent risk factors of developing AD, whose major variants are accompanied by disruption of biothiols metabolism and inefficient removal of DNA oxidation.
Collapse
Affiliation(s)
- Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan Ilkowski
- Department of Emergency Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Teresa Grzelak
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Bialas
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Malgorzata Wiszniewska
- Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland.,Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
Gil-Varea E, Urcelay E, Vilariño-Güell C, Costa C, Midaglia L, Matesanz F, Rodríguez-Antigüedad A, Oksenberg J, Espino-Paisan L, Dessa Sadovnick A, Saiz A, Villar LM, García-Merino JA, Ramió-Torrentà L, Triviño JC, Quintana E, Robles R, Sánchez-López A, Arroyo R, Alvarez-Cermeño JC, Vidal-Jordana A, Malhotra S, Fissolo N, Montalban X, Comabella M. Exome sequencing study in patients with multiple sclerosis reveals variants associated with disease course. J Neuroinflammation 2018; 15:265. [PMID: 30217166 PMCID: PMC6138928 DOI: 10.1186/s12974-018-1307-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
Background It remains unclear whether disease course in multiple sclerosis (MS) is influenced by genetic polymorphisms. Here, we aimed to identify genetic variants associated with benign and aggressive disease courses in MS patients. Methods MS patients were classified into benign and aggressive phenotypes according to clinical criteria. We performed exome sequencing in a discovery cohort, which included 20 MS patients, 10 with benign and 10 with aggressive disease course, and genotyping in 2 independent validation cohorts. The first validation cohort encompassed 194 MS patients, 107 with benign and 87 with aggressive phenotypes. The second validation cohort comprised 257 patients, of whom 224 patients had benign phenotypes and 33 aggressive disease courses. Brain immunohistochemistries were performed using disease course associated genes antibodies. Results By means of single-nucleotide polymorphism (SNP) detection and comparison of allele frequencies between patients with benign and aggressive phenotypes, a total of 16 SNPs were selected for validation from the exome sequencing data in the discovery cohort. Meta-analysis of genotyping results in two validation cohorts revealed two polymorphisms, rs28469012 and rs10894768, significantly associated with disease course. SNP rs28469012 is located in CPXM2 (carboxypeptidase X, M14 family, member 2) and was associated with aggressive disease course (uncorrected p value < 0.05). SNP rs10894768, which is positioned in IGSF9B (immunoglobulin superfamily member 9B) was associated with benign phenotype (uncorrected p value < 0.05). In addition, a trend for association with benign phenotype was observed for a third SNP, rs10423927, in NLRP9 (NLR family pyrin domain containing 9). Brain immunohistochemistries in chronic active lesions from MS patients revealed expression of IGSF9B in astrocytes and macrophages/microglial cells, and expression of CPXM2 and NLRP9 restricted to brain macrophages/microglia. Conclusions Genetic variants located in CPXM2, IGSF9B, and NLRP9 have the potential to modulate disease course in MS patients and may be used as disease activity biomarkers to identify patients with divergent disease courses. Altogether, the reported results from this study support the influence of genetic factors in MS disease course and may help to better understand the complex molecular mechanisms underlying disease pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12974-018-1307-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elia Gil-Varea
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Urcelay
- Immunology Department, Hospital Clinico San Carlos, Instituto de Investigacion Sanitaria San Carlos (IdISSC), Madrid, Spain
| | | | - Carme Costa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luciana Midaglia
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | | | - Jorge Oksenberg
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Laura Espino-Paisan
- Immunology Department, Hospital Clinico San Carlos, Instituto de Investigacion Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - A Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Albert Saiz
- Neurology Service, Hospital Clinic and Institut d'Investigació Biomèdica Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luisa M Villar
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Juan Antonio García-Merino
- Neuroimmunology Unit, Puerta de Hierro University Hospital and Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Dr Josep Trueta, IDIBGI, University of Girona, Girona, Spain
| | | | - Ester Quintana
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Dr Josep Trueta, IDIBGI, University of Girona, Girona, Spain
| | - René Robles
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Dr Josep Trueta, IDIBGI, University of Girona, Girona, Spain
| | - Antonio Sánchez-López
- Neuroimmunology Unit, Puerta de Hierro University Hospital and Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Arroyo
- Servicio de Neurología, Hospital Universitario Quirón Salud, Madrid, Spain
| | - Jose C Alvarez-Cermeño
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Angela Vidal-Jordana
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sunny Malhotra
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nicolas Fissolo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Winick-Ng W, Rylett RJ. Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer's Disease. Front Mol Neurosci 2018. [PMID: 29541020 PMCID: PMC5835833 DOI: 10.3389/fnmol.2018.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|