1
|
Meng JH, Huang YB, Long J, Cai QC, Qiao X, Zhang QL, Zhang LD, Yan X, Jing R, Liu XS, Zhou SJ, Yuan YS, Yin-Chen Ma, Zhou LX, Peng NN, Li XC, Cai CH, Tang HM, Martins AF, Jiang JX, Kai-Jun Luo. Innexin hemichannel activation by Microplitis bicoloratus ecSOD monopolymer reduces ROS. iScience 2024; 27:109469. [PMID: 38577101 PMCID: PMC10993139 DOI: 10.1016/j.isci.2024.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.
Collapse
Affiliation(s)
- Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yong-Biao Huang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Qiu-Chen Cai
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tübingen, Germany
| | - Xin Qiao
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Qiong-Li Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Li-Dan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Rui Jing
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Xing-Shan Liu
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Sai-Jun Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yong-Sheng Yuan
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Yin-Chen Ma
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Li-Xiang Zhou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Cheng-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| | - André F. Martins
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tübingen, Germany
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, P.R. China
- Yunnan International Joint Laboratory of Virology & Immunology, Kunming, Yunnan 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
2
|
Passchier EMJ, Bisseling Q, Helman G, van Spaendonk RML, Simons C, Olsthoorn RCL, van der Veen H, Abbink TEM, van der Knaap MS, Min R. Megalencephalic leukoencephalopathy with subcortical cysts: a variant update and review of the literature. Front Genet 2024; 15:1352947. [PMID: 38487253 PMCID: PMC10938252 DOI: 10.3389/fgene.2024.1352947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
The leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC) is characterized by infantile-onset macrocephaly and chronic edema of the brain white matter. With delayed onset, patients typically experience motor problems, epilepsy and slow cognitive decline. No treatment is available. Classic MLC is caused by bi-allelic recessive pathogenic variants in MLC1 or GLIALCAM (also called HEPACAM). Heterozygous dominant pathogenic variants in GLIALCAM lead to remitting MLC, where patients show a similar phenotype in early life, followed by normalization of white matter edema and no clinical regression. Rare patients with heterozygous dominant variants in GPRC5B and classic MLC were recently described. In addition, two siblings with bi-allelic recessive variants in AQP4 and remitting MLC have been identified. The last systematic overview of variants linked to MLC dates back to 2006. We provide an updated overview of published and novel variants. We report on genetic variants from 508 patients with MLC as confirmed by MRI diagnosis (258 from our database and 250 extracted from 64 published reports). We describe 151 unique MLC1 variants, 29 GLIALCAM variants, 2 GPRC5B variants and 1 AQP4 variant observed in these MLC patients. We include experiments confirming pathogenicity for some variants, discuss particularly notable variants, and provide an overview of recent scientific and clinical insight in the pathophysiology of MLC.
Collapse
Affiliation(s)
- Emma M. J. Passchier
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Quinty Bisseling
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Guy Helman
- Translational Bioinformatics, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
| | | | - Cas Simons
- Translational Bioinformatics, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Hieke van der Veen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Truus E. M. Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
3
|
Pelz L, Dossou L, Kompier N, Jüttner R, Siemonsmeier G, Meyer N, Lowenstein ED, Lahmann I, Kettenmann H, Birchmeier C, Rathjen FG. The IgCAM BT-IgSF (IgSF11) is essential for connexin43-mediated astrocyte-astrocyte coupling in mice. eNeuro 2024; 11:ENEURO.0283-23.2024. [PMID: 38388443 PMCID: PMC10957231 DOI: 10.1523/eneuro.0283-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The type I transmembrane protein BT-IgSF is predominantly localized in the brain and testes. It belongs to the CAR subgroup of Ig cell adhesion proteins, that are hypothesized to regulate connexin expression or localization. Here, we studied the putative link between BT-IgSF and connexins in astrocytes, ependymal cells and neurons of the mouse. Global knockout of BT-IgSF caused an increase in the clustering of connexin43 (Gja1), but not of connexin30 (Gjb6), on astrocytes and ependymal cells. Additionally, knockout animals displayed reduced expression levels of connexin43 protein in the cortex and hippocampus. Importantly, analysis of biocytin spread in hippocampal or cortical slices from mature mice of either sex revealed a decrease in astrocytic cell-cell coupling in the absence of BT-IgSF. Blocking either protein biosynthesis or proteolysis showed that the lysosomal pathway increased connexin43 degradation in astrocytes. Localization of connexin43 in subcellular compartments was not impaired in astrocytes of BT-IgSF mutants. In contrast to connexin43 the localization and expression of connexin36 (Gjd2) on neurons was not affected by the absence of BT-IgSF. Overall, our data indicate that the IgCAM BT-IgSF is essential for correct gap junction-mediated astrocyte-to-astrocyte cell communication.Significance Statement Astrocytes regulate a variety of physiological processes in the developing and adult brain that are essential for proper brain function. Astrocytes form extensive networks in the brain and communicate via gap junctions. Disruptions of gap junction coupling are found in several diseases such as neurodegeneration or epilepsy. Here, we demonstrate that the cell adhesion protein BT-IgSF is essential for gap junction mediated coupling between astrocytes in the cortex and hippocampus.
Collapse
Affiliation(s)
- Laura Pelz
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Laura Dossou
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Nine Kompier
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | | | - Niklas Meyer
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | | | - Ines Lahmann
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| |
Collapse
|
4
|
Stogsdill JA, Harwell CC, Goldman SA. Astrocytes as master modulators of neural networks: Synaptic functions and disease-associated dysfunction of astrocytes. Ann N Y Acad Sci 2023; 1525:41-60. [PMID: 37219367 DOI: 10.1111/nyas.15004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system and are essential to the development, plasticity, and maintenance of neural circuits. Astrocytes are heterogeneous, with their diversity rooted in developmental programs modulated by the local brain environment. Astrocytes play integral roles in regulating and coordinating neural activity extending far beyond their metabolic support of neurons and other brain cell phenotypes. Both gray and white matter astrocytes occupy critical functional niches capable of modulating brain physiology on time scales slower than synaptic activity but faster than those adaptive responses requiring a structural change or adaptive myelination. Given their many associations and functional roles, it is not surprising that astrocytic dysfunction has been causally implicated in a broad set of neurodegenerative and neuropsychiatric disorders. In this review, we focus on recent discoveries concerning the contributions of astrocytes to the function of neural networks, with a dual focus on the contribution of astrocytes to synaptic development and maturation, and on their role in supporting myelin integrity, and hence conduction and its regulation. We then address the emerging roles of astrocytic dysfunction in disease pathogenesis and on potential strategies for targeting these cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Steven A Goldman
- Sana Biotechnology Inc., Cambridge, Massachusetts, USA
- Center for Translational Neuromedicine, University of Rochester, Rochester, New York, USA
- University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
5
|
Meng JH, Chen CX, Ahmadian MR, Zan H, Luo KJ, Jiang JX. Cross-Activation of Hemichannels/Gap Junctions and Immunoglobulin-Like Domains in Innate–Adaptive Immune Responses. Front Immunol 2022; 13:882706. [PMID: 35911693 PMCID: PMC9334851 DOI: 10.3389/fimmu.2022.882706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hemichannels (HCs)/gap junctions (GJs) and immunoglobulin (Ig)-like domain-containing proteins (IGLDCPs) are involved in the innate–adaptive immune response independently. Despite of available evidence demonstrating the importance of HCs/GJs and IGLDCPs in initiating, implementing, and terminating the entire immune response, our understanding of their mutual interactions in immunological function remains rudimentary. IGLDCPs include immune checkpoint molecules of the immunoglobulin family expressed in T and B lymphocytes, most of which are cluster of differentiation (CD) antigens. They also constitute the principal components of the immunological synapse (IS), which is formed on the cell surface, including the phagocytic synapse, T cell synapse, B cell synapse, and astrocytes–neuronal synapse. During the three stages of the immune response, namely innate immunity, innate–adaptive immunity, and adaptive immunity, HCs/GJs and IGLDCPs are cross-activated during the entire process. The present review summarizes the current understanding of HC-released immune signaling factors that influence IGLDCPs in regulating innate–adaptive immunity. ATP-induced “eat me” signals released by HCs, as well as CD31, CD47, and CD46 “don’t eat me” signaling molecules, trigger initiation of innate immunity, which serves to regulate phagocytosis. Additionally, HC-mediated trogocytosis promotes antigen presentation and amplification. Importantly, HC-mediated CD4+ T lymphocyte activation is critical in the transition of the innate immune response to adaptive immunity. HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes, for instance, IgA transcytosis in ovarian cancer cells, which triggers innate immunity. Further understanding of the interplay between HCs/GJs and IGLDCPs would aid in identifying therapeutic targets that regulate the HC–Ig-like domain immune response, thereby providing a viable treatment strategy for immunological diseases. The present review delineates the clinical immunology-related applications of HC–Ig-like domain cross-activation, which would greatly benefit medical professionals and immunological researchers alike. HCs/GJs and IGLDCPs mediate phagocytosis via ATP; “eat me and don’t eat me” signals trigger innate immunity; HC-mediated trogocytosis promotes antigen presentation and amplification in innate–adaptive immunity; HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes in adaptive immunity.
Collapse
Affiliation(s)
- Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, United States
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
- *Correspondence: Kai-Jun Luo, ; Jean X. Jiang,
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- *Correspondence: Kai-Jun Luo, ; Jean X. Jiang,
| |
Collapse
|
6
|
GPR37 Receptors and Megalencephalic Leukoencephalopathy with Subcortical Cysts. Int J Mol Sci 2022; 23:ijms23105528. [PMID: 35628339 PMCID: PMC9144339 DOI: 10.3390/ijms23105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of vacuolating leukodystrophy (white matter disorder), which is mainly caused by defects in MLC1 or glial cell adhesion molecule (GlialCAM) proteins. In addition, autoantibodies to GlialCAM are involved in the pathology of multiple sclerosis. MLC1 and GLIALCAM genes encode for membrane proteins of unknown function, which has been linked to the regulation of different ion channels and transporters, such as the chloride channel VRAC (volume regulated anion channel), ClC-2 (chloride channel 2), and connexin 43 or the Na+/K+-ATPase pump. However, the mechanisms by which MLC proteins regulate these ion channels and transporters, as well as the exact function of MLC proteins remain obscure. It has been suggested that MLC proteins might regulate signalling pathways, but the mechanisms involved are, at present, unknown. With the aim of answering these questions, we have recently described the brain GlialCAM interactome. Within the identified proteins, we could validate the interaction with several G protein-coupled receptors (GPCRs), including the orphan GPRC5B and the proposed prosaposin receptors GPR37L1 and GPR37. In this review, we summarize new aspects of the pathophysiology of MLC disease and key aspects of the interaction between GPR37 receptors and MLC proteins.
Collapse
|
7
|
Lanciotti A, Brignone MS, Macioce P, Visentin S, Ambrosini E. Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. Int J Mol Sci 2021; 23:ijms23010274. [PMID: 35008700 PMCID: PMC8745131 DOI: 10.3390/ijms23010274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.
Collapse
Affiliation(s)
- Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
- Correspondence: ; Tel.: +39-064-990-2037
| |
Collapse
|
8
|
Sofroniew MV. HepaCAM shapes astrocyte territories, stabilizes gap-junction coupling, and influences neuronal excitability. Neuron 2021; 109:2365-2367. [PMID: 34352210 DOI: 10.1016/j.neuron.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
How astrocytes form non-overlapping territories within synaptic neuropil is not understood. In this issue of Neuron, Baldwin et al. (2021) report that the cell adhesion molecule hepaCAM shapes murine astrocyte territories and that hepaCAM loss impairs gap-junction cell coupling and the balance between synaptic excitation and inhibition.
Collapse
Affiliation(s)
- Michael V Sofroniew
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
9
|
Baldwin KT, Tan CX, Strader ST, Jiang C, Savage JT, Elorza-Vidal X, Contreras X, Rülicke T, Hippenmeyer S, Estévez R, Ji RR, Eroglu C. HepaCAM controls astrocyte self-organization and coupling. Neuron 2021; 109:2427-2442.e10. [PMID: 34171291 PMCID: PMC8547372 DOI: 10.1016/j.neuron.2021.05.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 04/19/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Astrocytes extensively infiltrate the neuropil to regulate critical aspects of synaptic development and function. This process is regulated by transcellular interactions between astrocytes and neurons via cell adhesion molecules. How astrocytes coordinate developmental processes among one another to parse out the synaptic neuropil and form non-overlapping territories is unknown. Here we identify a molecular mechanism regulating astrocyte-astrocyte interactions during development to coordinate astrocyte morphogenesis and gap junction coupling. We show that hepaCAM, a disease-linked, astrocyte-enriched cell adhesion molecule, regulates astrocyte competition for territory and morphological complexity in the developing mouse cortex. Furthermore, conditional deletion of Hepacam from developing astrocytes significantly impairs gap junction coupling between astrocytes and disrupts the balance between synaptic excitation and inhibition. Mutations in HEPACAM cause megalencephalic leukoencephalopathy with subcortical cysts in humans. Therefore, our findings suggest that disruption of astrocyte self-organization mechanisms could be an underlying cause of neural pathology.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Samuel T Strader
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Changyu Jiang
- Department of Anesthesiology and Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Justin T Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xabier Elorza-Vidal
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Ximena Contreras
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Raúl Estévez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Ru-Rong Ji
- Department of Anesthesiology and Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, USA; Duke University Regeneration Next Initiative, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Tan B, Chen X, Fan Y, Yang Y, Yang J, Tan L. STAT3 phosphorylation is required for the HepaCAM-mediated inhibition of castration-resistant prostate cancer cell viability and metastasis. Prostate 2021; 81:603-611. [PMID: 33909312 DOI: 10.1002/pros.24141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is an advanced disease that is difficult to treat, the mechanism of it is unclear. This study illustrated the function of hepatocyte cell adhesion molecule (HepaCAM) on CRPC cell viability and metastasis. METHODS The expression of HepaCAM and p-STAT3 in CRPC tissues were determined by immunohistochemistry and western blot analysis. Cell Counting Kit-8 and colony formation assays were deployed to analyze the growth ability of CRPC cells following the adenovirus-mediated re-expression of HepaCAM. CRPC cell migration and invasion capacity were investigated by wound healing and Matrigel-coated transwell assays, respectively. The messenger RNA or protein levels of p-STAT3, CyclinD1, cMyc, MMP2, MMP9, and VEGF were determined by reverse transcription (RT) followed by quantitative real-time polymerase chain reaction (RT-qPCR), and western blot analysis after either HepaCAM re-expression alone or in combination with IL-22 treatment. A CRPC orthotopic xenograft mouse model was applied to investigate the functional effect of HepaCAM on the metastasis of CRPC cells to the lungs. RESULTS The expression levels of HepaCAM were decreased while those of p-STAT3 were elevated in CRPC cells compare with surrounding benign tissues (p < .001). The overexpression of HepaCAM in CRPC cells notably reduced proliferation, migration, and invasion by inhibiting the expression of p-STAT3, CyclinD1, cMyc, MMP2, MMP9, and VEGF (p < .05). In addition, the expression of HepaCAM significantly inhibited the IL-22/p-STAT3 axis and the metastasis of CRPC cells to the lungs. CONCLUSIONS Our data suggested that HepaCAM suppressed the viability of CRPC cells via the IL-22/p-STAT3 axis and inhibited the metastasis of CRPC cells from the prostate to the lungs (p < .05).
Collapse
Affiliation(s)
- Bing Tan
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing, China
- Department of Urology, Chenjiaqiao Hospital/The Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaoming Chen
- Department of Pathology, Chenjiaqiao Hospital/The Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yanru Fan
- The Key Laboratory of Diagnostics Medicine Designated by the National Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuanjuan Yang
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing, China
| | - Junjie Yang
- Department of Urology, Chenjiaqiao Hospital/The Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Li Tan
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing, China
| |
Collapse
|
11
|
Bosch A, Estévez R. Megalencephalic Leukoencephalopathy: Insights Into Pathophysiology and Perspectives for Therapy. Front Cell Neurosci 2021; 14:627887. [PMID: 33551753 PMCID: PMC7862579 DOI: 10.3389/fncel.2020.627887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 01/13/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. It is mainly caused by recessive mutations in MLC1 and HEPACAM (also called GLIALCAM) genes. These disease variants are called MLC1 and MLC2A with both types of patients sharing the same clinical phenotype. Besides, dominant mutations in HEPACAM were also identified in a subtype of MLC patients (MLC2B) with a remitting phenotype. MLC1 and GlialCAM proteins form a complex mainly expressed in brain astrocytes at the gliovascular interface and in Bergmann glia at the cerebellum. Both proteins regulate several ion channels and transporters involved in the control of ion and water fluxes in glial cells, either directly influencing their location and function, or indirectly regulating associated signal transduction pathways. However, the MLC1/GLIALCAM complex function and the related pathological mechanisms leading to MLC are still unknown. It has been hypothesized that, in MLC, the role of glial cells in brain ion homeostasis is altered in both physiological and inflammatory conditions. There is no therapy for MLC patients, only supportive treatment. As MLC2B patients show an MLC reversible phenotype, we speculated that the phenotype of MLC1 and MLC2A patients could also be mitigated by the re-introduction of the correct gene even at later stages. To prove this hypothesis, we injected in the cerebellar subarachnoid space of Mlc1 knockout mice an adeno-associated virus (AAV) coding for human MLC1 under the control of the glial-fibrillary acidic protein promoter. MLC1 expression in the cerebellum extremely reduced myelin vacuolation at all ages in a dose-dependent manner. This study could be considered as the first preclinical approach for MLC. We also suggest other potential therapeutic strategies in this review.
Collapse
Affiliation(s)
- Assumpció Bosch
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Univ. Autònoma de Barcelona, Barcelona, Spain.,Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Estévez
- Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
de Waard DM, Bugiani M. Astrocyte-Oligodendrocyte-Microglia Crosstalk in Astrocytopathies. Front Cell Neurosci 2020; 14:608073. [PMID: 33328899 PMCID: PMC7710860 DOI: 10.3389/fncel.2020.608073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Defective astrocyte function due to a genetic mutation can have major consequences for microglia and oligodendrocyte physiology, which in turn affects the white matter integrity of the brain. This review addresses the current knowledge on shared and unique pathophysiological mechanisms of astrocytopathies, including vanishing white matter, Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts, Aicardi-Goutières syndrome, and oculodentodigital dysplasia. The mechanisms of disease include protein accumulation, unbalanced secretion of extracellular matrix proteins, pro- and anti-inflammatory molecules, cytokines and chemokines by astrocytes, as well as an altered gap junctional network and a changed ionic and nutrient homeostasis. Interestingly, the extent to which astrogliosis and microgliosis are present in these astrocytopathies is highly variable. An improved understanding of astrocyte-microglia-oligodendrocyte crosstalk might ultimately lead to the identification of druggable targets for these, currently untreatable, severe conditions.
Collapse
Affiliation(s)
| | - Marianna Bugiani
- Department of Pathology, VU Medical center, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
13
|
Rathjen FG. The CAR group of Ig cell adhesion proteins–Regulators of gap junctions? Bioessays 2020; 42:e2000031. [DOI: 10.1002/bies.202000031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/01/2020] [Indexed: 12/29/2022]
|
14
|
Wang MX, Ray L, Tanaka KF, Iliff JJ, Heys J. Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle. Glia 2020; 69:715-728. [PMID: 33075175 DOI: 10.1002/glia.23923] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
The glymphatic system is a recently defined brain-wide network of perivascular spaces along which cerebrospinal fluid (CSF) and interstitial solutes exchange. Astrocyte endfeet encircling the perivascular space form a physical barrier in between these two compartments, and fluid and solutes that are not taken up by astrocytes move out of the perivascular space through the junctions in between astrocyte endfeet. However, little is known about the anatomical structure and the physiological roles of the astrocyte endfeet in regulating the local perivascular exchange. Here, visualizing astrocyte endfoot-endfoot junctions with immunofluorescent labeling against the protein megalencephalic leukoencephalopathy with subcortical cysts-1 (MLC1), we characterized endfoot dimensions along the mouse cerebrovascular tree. We observed marked heterogeneity in endfoot dimensions along vessels of different sizes, and of different types. Specifically, endfoot size was positively correlated with the vessel diameters, with large vessel segments surrounded by large endfeet and small vessel segments surrounded by small endfeet. This association was most pronounced along arterial, rather than venous segments. Computational modeling simulating vascular trees with uniform or varying endfeet dimensions demonstrates that varying endfoot dimensions maintain near constant perivascular-interstitial flux despite correspondingly declining perivascular pressures along the cerebrovascular tree through the cortical depth. These results describe a novel anatomical feature of perivascular astroglial endfeet and suggest that endfoot heterogeneity may be an evolutionary adaptation to maintain perivascular CSF-interstitial fluid exchange through deep brain structures.
Collapse
Affiliation(s)
- Marie Xun Wang
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lori Ray
- Department of Chemical and Biological Engineering, Montana State University-Bozeman, Bozeman, Montana, USA
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Jeffrey J Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeffrey Heys
- Department of Chemical and Biological Engineering, Montana State University-Bozeman, Bozeman, Montana, USA
| |
Collapse
|
15
|
Megalencephalic Leukoencephalopathy with Subcortical Cysts Disease-Linked MLC1 Protein Favors Gap-Junction Intercellular Communication by Regulating Connexin 43 Trafficking in Astrocytes. Cells 2020; 9:cells9061425. [PMID: 32521795 PMCID: PMC7348769 DOI: 10.3390/cells9061425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023] Open
Abstract
Astrocytes, the most numerous cells of the central nervous system, exert critical functions for brain homeostasis. To this purpose, astrocytes generate a highly interconnected intercellular network allowing rapid exchange of ions and metabolites through gap junctions, adjoined channels composed of hexamers of connexin (Cx) proteins, mainly Cx43. Functional alterations of Cxs and gap junctions have been observed in several neuroinflammatory/neurodegenerative diseases. In the rare leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC), astrocytes show defective control of ion/fluid exchanges causing brain edema, fluid cysts, and astrocyte/myelin vacuolation. MLC is caused by mutations in MLC1, an astrocyte-specific protein of elusive function, and in GlialCAM, a MLC1 chaperon. Both proteins are highly expressed at perivascular astrocyte end-feet and astrocyte-astrocyte contacts where they interact with zonula occludens-1 (ZO-1) and Cx43 junctional proteins. To investigate the possible role of Cx43 in MLC pathogenesis, we studied Cx43 properties in astrocytoma cells overexpressing wild type (WT) MLC1 or MLC1 carrying pathological mutations. Using biochemical and electrophysiological techniques, we found that WT, but not mutated, MLC1 expression favors intercellular communication by inhibiting extracellular-signal-regulated kinase 1/2 (ERK1/2)-mediated Cx43 phosphorylation and increasing Cx43 gap-junction stability. These data indicate MLC1 regulation of Cx43 in astrocytes and Cx43 involvement in MLC pathogenesis, suggesting potential target pathways for therapeutic interventions.
Collapse
|
16
|
Granados-Soler JL, Bornemann-Kolatzki K, Beck J, Brenig B, Schütz E, Betz D, Junginger J, Hewicker-Trautwein M, Murua Escobar H, Nolte I. Analysis of Copy-Number Variations and Feline Mammary Carcinoma Survival. Sci Rep 2020; 10:1003. [PMID: 31969654 PMCID: PMC6976565 DOI: 10.1038/s41598-020-57942-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Feline mammary carcinomas (FMCs) are highly malignant. As the disease-free survival (DFS) and overall survival (OS) are short, prognostication is crucial. Copy-number variations (CNVs) analysis by next-generation sequencing serves to identify critical cancer-related genomic regions. Thirty-three female cats with FMCs were followed during two years after surgery. Tumours represented tubulopapillary and solid carcinomas encompassing six molecular subtypes. Regardless of the histopathological diagnosis, molecular subtypes showed important differences in survival. Luminal A tumours exhibited the highest DFS (p = 0.002) and cancer-specific OS (p = 0.001), and the lowest amount of CNVs (p = 0.0001). In contrast, basal-like triple-negative FMCs had the worst outcome (DFS, p < 0.0001; and OS, p < 0.00001) and were the most aberrant (p = 0.05). In the multivariate analysis, copy-number losses (CNLs) in chromosome B1 (1-23 Mb) harbouring several tumour-repressors (e.g. CSMD1, MTUS1, MSR1, DBC2, and TUSC3) negatively influenced DFS. Whereas, copy-number gains (CNGs) in B4 (1-29 Mb) and F2 (64-82.3 Mb) comprising epithelial to mesenchymal transition genes and metastasis-promoting transcription factors (e.g. GATA3, VIM, ZEB1, and MYC) negatively influenced DFS and cancer-specific OS. These data evidence an association between specific CNVs in chromosomes B1, B4 and F2, and poor prognosis in FMCs.
Collapse
Affiliation(s)
- José Luis Granados-Soler
- Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Haematology, Oncology and Palliative Medicine, Clinic III, University of Rostock, Rostock, Germany
| | | | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | | | - Daniela Betz
- Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | | | - Hugo Murua Escobar
- Haematology, Oncology and Palliative Medicine, Clinic III, University of Rostock, Rostock, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Hannover, Germany.
| |
Collapse
|
17
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
19
|
Gilbert A, Vidal XE, Estevez R, Cohen-Salmon M, Boulay AC. Postnatal development of the astrocyte perivascular MLC1/GlialCAM complex defines a temporal window for the gliovascular unit maturation. Brain Struct Funct 2019; 224:1267-1278. [PMID: 30684007 DOI: 10.1007/s00429-019-01832-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Astrocytes, the most abundant glial cells of the central nervous system are morphologically complex. They display numerous processes interacting with synapses and blood vessels. At the vascular interface, astrocyte endfeet-terminated processes almost entirely cover the blood vessel surface and participate to the gliovascular unit where important vascular properties of the brain are set such as the blood-brain barrier (BBB) integrity. How specific morphological and functional interactions between astrocytes and the vascular compartment develop has not been fully investigated. Here, we elaborated an original experimental strategy to study the postnatal development of astrocyte perivascular endfeet. Using purified gliovascular units, we focused on the postnatal expression of MLC1 and GlialCAM, two transmembrane proteins forming a complex enriched at the junction between mature astrocyte perivascular endfeet. We showed that MLC1 and GlialCAM were enriched and assembled into mature complexes in astrocyte perivascular endfeet between postnatal days 10 and 15, after the formation of astrocyte perivascular Aquaporin 4 water channels. These events correlated with the increased expression of Claudin-5 and P-gP, two endothelial-specific BBB components. These results illustrate for the first time that astrocyte perivascular endfeet differentiation is a complex and progressive process which correlates with BBB maturation. Moreover, our results suggest that maturation of the astrocyte endfeet MLC1/GlialCAM complex between postnatal days 10 and 15 might be a key event in the gliovascular unit maturation.
Collapse
Affiliation(s)
- Alice Gilbert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France
- Paris Science Lettre Research University, Paris, 75005, France
| | - Xabier Elorza Vidal
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Raul Estevez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France.
- Paris Science Lettre Research University, Paris, 75005, France.
| | - Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale INSERM, U1050, 11 place Marcelin Berthelot Paris, Paris Cedex 05, 75005, France
- Paris Science Lettre Research University, Paris, 75005, France
| |
Collapse
|
20
|
Min R, van der Knaap MS. Genetic defects disrupting glial ion and water homeostasis in the brain. Brain Pathol 2019; 28:372-387. [PMID: 29740942 PMCID: PMC8028498 DOI: 10.1111/bpa.12602] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Electrical activity of neurons in the brain, caused by the movement of ions between intracellular and extracellular compartments, is the basis of all our thoughts and actions. Maintaining the correct ionic concentration gradients is therefore crucial for brain functioning. Ion fluxes are accompanied by the displacement of osmotically obliged water. Since even minor brain swelling leads to severe brain damage and even death, brain ion and water movement has to be tightly regulated. Glial cells, in particular astrocytes, play a key role in ion and water homeostasis. They are endowed with specific channels, pumps and carriers to regulate ion and water flow. Glial cells form a large panglial syncytium to aid the uptake and dispersal of ions and water, and make extensive contacts with brain fluid barriers for disposal of excess ions and water. Genetic defects in glial proteins involved in ion and water homeostasis disrupt brain functioning, thereby leading to neurological diseases. Since white matter edema is often a hallmark disease feature, many of these diseases are characterized as leukodystrophies. In this review we summarize our current understanding of inherited glial diseases characterized by disturbed brain ion and water homeostasis by integrating findings from MRI, genetics, neuropathology and animal models for disease. We discuss how mutations in different glial proteins lead to disease, and highlight the similarities and differences between these diseases. To come to effective therapies for this group of diseases, a better mechanistic understanding of how glial cells shape ion and water movement in the brain is crucial.
Collapse
Affiliation(s)
- Rogier Min
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Elorza-Vidal X, Sirisi S, Gaitán-Peñas H, Pérez-Rius C, Alonso-Gardón M, Armand-Ugón M, Lanciotti A, Brignone MS, Prat E, Nunes V, Ambrosini E, Gasull X, Estévez R. GlialCAM/MLC1 modulates LRRC8/VRAC currents in an indirect manner: Implications for megalencephalic leukoencephalopathy. Neurobiol Dis 2018; 119:88-99. [DOI: 10.1016/j.nbd.2018.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 01/09/2023] Open
|
22
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
23
|
Du Z, Li L, Sun W, Wang X, Zhang Y, Chen Z, Yuan M, Quan Z, Liu N, Hao Y, Li T, Wang J, Luo C, Wu X. HepaCAM inhibits the malignant behavior of castration-resistant prostate cancer cells by downregulating Notch signaling and PF-3084014 (a γ-secretase inhibitor) partly reverses the resistance of refractory prostate cancer to docetaxel and enzalutamide in vitro. Int J Oncol 2018; 53:99-112. [PMID: 29658567 PMCID: PMC5958706 DOI: 10.3892/ijo.2018.4370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 01/25/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) continues to be a major challenge in the treatment of prostate cancer (PCa). The expression of hepatocyte cell adhesion molecule (HepaCAM), a novel tumor suppressor, is frequently downregulated or lost in PCa. Overactivated Notch signaling is involved in the development and progression of PCa, including CRPC. In this study, we found that the activities of Notch signaling were elevated, while HepaCAM expression was decreased in CRPC tissues compared with matched primary prostate cancer (PPC) tissues. In addition, HepaCAM negativity was found to be associated with a worse progression-free survival (PFS). Furthermore, the overexpression of HepaCAM induced by transfection with a HepaCAM overexpression vector (Ad-HepaCAM) exerted antitumor effects by decreasing the proliferation, and suppressing the invasion and migration of bicalutamide-resistant (Bica-R) cells and enzalutamide-resistant (Enza-R) cells. Importantly, we found that the antitumor effects of HepaCAM on the resistant cells were associated with the downregulation of Notch signaling. Moreover, we revealed that PF-3084014 (a γ-secretase inhibitor) re-sensitized Enza-R cells to enzalutamide, and sequential dual-resistant (E+D-R) cells to docetaxel. Additionally, the findings of this study demonstrated that the use of PF-3084014 alone exerted potent antitumor effect on the resistant cells in vitro. On the whole, this study indicates that HepaCAM potentially represents a therapeutic target and PF-3084014 may prove to a promising agent for use in the treatment of refractory PCa.
Collapse
Affiliation(s)
- Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Luo Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhixiong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nanjing Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yanni Hao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinhua Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
24
|
Hamilton EMC, Tekturk P, Cialdella F, van Rappard DF, Wolf NI, Yalcinkaya C, Çetinçelik Ü, Rajaee A, Kariminejad A, Paprocka J, Yapici Z, Bošnjak VM, van der Knaap MS. Megalencephalic leukoencephalopathy with subcortical cysts: Characterization of disease variants. Neurology 2018; 90:e1395-e1403. [PMID: 29661901 PMCID: PMC5902784 DOI: 10.1212/wnl.0000000000005334] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/16/2018] [Indexed: 01/08/2023] Open
Abstract
Objective To provide an overview of clinical and MRI characteristics of the different variants of the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC) and identify possible differentiating features. Methods We performed an international multi-institutional, cross-sectional observational study of the clinical and MRI characteristics in patients with genetically confirmed MLC. Clinical information was obtained by questionnaires for physicians and retrospective chart review. Results We included 204 patients with classic MLC, 187 of whom had recessive mutations in MLC1 (MLC1 variant) and 17 in GLIALCAM (MLC2A variant) and 38 patients with remitting MLC caused by dominant GLIALCAM mutations (MLC2B variant). We observed a relatively wide variability in neurologic disability among patients with classic MLC. No clinical differences could be identified between patients with MLC1 and MLC2A. Patients with MLC2B invariably had a milder phenotype with preservation of motor function, while intellectual disability and autism were relatively frequent. Systematic MRI review revealed no MRI features that distinguish between MLC1 and MLC2A. Radiologic improvement was observed in all patients with MLC2B and also in 2 patients with MLC1. In MRIs obtained in the early disease stage, absence of signal abnormalities of the posterior limb of the internal capsule and cerebellar white matter and presence of only rarefied subcortical white matter instead of true subcortical cysts were suggestive of MLC2B. Conclusion Clinical and MRI features did not distinguish between classic MLC with MLC1 or GLIALCAM mutations. Absence of signal abnormalities of the internal capsule and cerebellar white matter are MRI findings that point to the remitting phenotype.
Collapse
Affiliation(s)
- Eline M C Hamilton
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Pinar Tekturk
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Fia Cialdella
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Diane F van Rappard
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Nicole I Wolf
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Cengiz Yalcinkaya
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Ümran Çetinçelik
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Ahmad Rajaee
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Ariana Kariminejad
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Justyna Paprocka
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Zuhal Yapici
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Vlatka Mejaški Bošnjak
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- From the Department of Child Neurology and Amsterdam Neuroscience (E.M.C.H., F.C., D.F.v.R., N.I.W., M.S.v.d.K.), VU University Medical Center, Amsterdam, the Netherlands; Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine (P.T., Z.Y.), and Division of Child Neurology, Department of Neurology, Cerrahpasa Medical School (C.Y.), Istanbul University; clinical geneticist in private practice (Ü.Ç.), Merkez Mahallesi, İstanbul, Turkey; Kariminejad-Najmabadi Pathology & Genetics Center (A.R., A.K.), Tehran, Iran; Department of Pediatric Neurology (J.P.), School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Department of Neuropediatrics (V.M.B.), Children's Hospital Zagreb, School of Medicine, University of Zagreb, Croatia; and Department of Functional Genomics (M.S.v.d.K.), Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands.
| | | |
Collapse
|
25
|
Dubey M, Brouwers E, Hamilton EM, Stiedl O, Bugiani M, Koch H, Kole MH, Boschert U, Wykes RC, Mansvelder HD, van der Knaap MS, Min R. Seizures and disturbed brain potassium dynamics in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts. Ann Neurol 2018; 83:636-649. [PMID: 29466841 PMCID: PMC5900999 DOI: 10.1002/ana.25190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/12/2018] [Accepted: 02/18/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Loss of function of the astrocyte-specific protein MLC1 leads to the childhood-onset leukodystrophy "megalencephalic leukoencephalopathy with subcortical cysts" (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. METHODS We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole-cell patch-clamp recordings and K+ -sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. RESULTS An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+ dynamics and neuronal network activity are abnormal in MLC mice. INTERPRETATION Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636-649.
Collapse
Affiliation(s)
- Mohit Dubey
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
- Present address:
Current address for Mohit Dubey: Department of Axonal SignalingNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eelke Brouwers
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Eline M.C. Hamilton
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Marianna Bugiani
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of PathologyVU University Medical CenterAmsterdamThe Netherlands
| | - Henner Koch
- Department of NeurologyUniversity of Tübingen, Hertie Institute for Clinical Brain ResearchTübingenGermany
| | - Maarten H.P. Kole
- Department of Axonal SignalingNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
- Cell Biology, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Ursula Boschert
- Translational Innovation Platform Immunology/Neurology, EMD Serono Research & Development InstituteBillericaMA
| | - Robert C. Wykes
- Department of Clinical & Experimental Epilepsy, UCL Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| |
Collapse
|
26
|
Estévez R, Elorza-Vidal X, Gaitán-Peñas H, Pérez-Rius C, Armand-Ugón M, Alonso-Gardón M, Xicoy-Espaulella E, Sirisi S, Arnedo T, Capdevila-Nortes X, López-Hernández T, Montolio M, Duarri A, Teijido O, Barrallo-Gimeno A, Palacín M, Nunes V. Megalencephalic leukoencephalopathy with subcortical cysts: A personal biochemical retrospective. Eur J Med Genet 2018; 61:50-60. [DOI: 10.1016/j.ejmg.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
27
|
Zhang XF, Cui X. Connexin 43: Key roles in the skin. Biomed Rep 2017; 6:605-611. [PMID: 28584630 DOI: 10.3892/br.2017.903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/17/2017] [Indexed: 12/26/2022] Open
Abstract
Gap junctions are tightly packed intercellular channels that serve a common purpose of allowing the intercellular exchange of small metabolites, second messengers and electrical signals. Connexins (Cxs) are gap junction proteins. Currently, 20 and 21 members of Cxs have been characterized in mice and humans, respectively. Connexin 43 (Cx43) is the most ubiquitously expressed type of Cx in the skin. It is produced by various different types of skin cell, such as keratinocytes, fibroblasts, endothelial and basal cells, melanocytes and dermal papilla cells. At present, more evidence indicates that Cx43 has an important role in skin repair and skin tumor development, as well as in skin cell invasion and metastasis. In this review, current knowledge regarding the regulation and function of Cx43 is summarized and the therapeutic potential of regulating Cx43 activity is discussed.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- Department of Biological Sciences and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, P.R. China
| | - Xiaofeng Cui
- Department of Biological Sciences and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|