1
|
Adame Brooks D, Piétrement O, Dardillac E, Castro Smirnov FA, Aranda P, Ruiz-Hitzky E, Lopez BS. Competition Between Protein and DNA for Binding to Natural Sepiolite Nanofibers. Int J Nanomedicine 2025; 20:2711-2726. [PMID: 40061882 PMCID: PMC11890309 DOI: 10.2147/ijn.s488353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/28/2024] [Indexed: 05/13/2025] Open
Abstract
Introduction Sepiolite nanofibers, which are natural silicates belonging to the clay mineral family, could be promising potential nanocarriers for the nonviral transfer of biomolecules. The physicochemical characteristics of sepiolite make it capable of binding various types of biological molecules, including polysaccharides, lipids, proteins and viruses. Sepiolite nanofibers have also been shown to bind effectively to various types of DNA molecules through electrostatic interactions, hydrogen bonds, cationic bridges and van der Waals forces. In this study, we analyzed the adsorption of DNA and proteins to sepiolite by analyzing the competition among these biomolecules during the adsorption process. Methods To determine the binding of sepiolite to proteins, we used BSA and a monoclonal antibody (mAb) against the CD4 membrane antigen as a model. The binding efficiency was measured by adsorption isotherms. Zeta potential measurements of the suspensions were performed using a Brookhaven NanoBrook 90 Plus PALS instrument. Results We show here that the adsorption of proteins to sepiolite is increased in the presence of CaCl2 and is charge-dependent and that sepiolite can adsorb proteins even when their net charges are equal to those on its surface. Coating of sepiolite with DNA (Sep/DNA bionanocomposites) reduces the absorption efficiency of both BSA and mAb, and this can be rescued by CaCl2. Conversely, preincubation of sepiolite with BSA or the mAb decreased the efficiency of DNA binding; Ca2+ restored the binding efficiency for BSA but not for the mAb. Changes in pH result in changes in the net charge of proteins, influencing the amount of protein adsorbed. Conclusion Although various types of protein interactions with mineral clays have been described, our results confirm that electrostatic forces are among the primary interactions in the adsorption process. These results pave the way for the use of biohybrids as a new class of nanoplatform for gene transfer with potential clinical applications.
Collapse
Affiliation(s)
- David Adame Brooks
- Université de Paris Cité, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Paris, France
- Centro de Biofísica Médica (Cbiomed), Universidad de Oriente, Santiago de Cuba, Cuba
| | - Olivier Piétrement
- Université Bourgogne Europe, CNRS, Laboratoire interdiciplinaire Carnot de Bourgogne ICB UMR 630, Dijon, F-21000, France
| | - Elodie Dardillac
- Université de Paris Cité, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Paris, France
| | - Fidel Antonio Castro Smirnov
- Instituto Superior de Tecnologías Ciencias Aplicadas, Universidad de la Habana (Instec-UH), Quinta de Los Molinos, Ave. Salvador Allende Luaces, Habana, 6163, Cuba
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Bernard S Lopez
- Université de Paris Cité, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Paris, France
| |
Collapse
|
2
|
Vu VT, Vu CA, Huang CJ, Cheng CM, Pan SC, Chen WY. Intermittent lysis on a single paper-based device to extract exosomal nucleic acid biomarkers from biological samples for downstream analysis. Mikrochim Acta 2024; 191:501. [PMID: 39093424 DOI: 10.1007/s00604-024-06566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
As the role of exosomes in physiological and pathological processes has been properly perceived, harvesting them and their internal components is critical for subsequent applications. This study is a debut of intermittent lysis, which has been integrated into a simple and easy-to-operate procedure on a single paper-based device to extract exosomal nucleic acid biomarkers for downstream analysis. Exosomes from biological samples were captured by anti-CD63-modified papers before being intermittently lysed by high-temperature, short-time treatment with double-distilled water to release their internal components. Exosomal nucleic acids were finally adsorbed by sol-gel silica for downstream analysis. Empirical trials not only revealed that sporadically dropping 95 °C ddH2O onto the anti-CD63-modified papers every 5 min for 6 times optimized the exosomal nucleic acids extracted by the anti-CD63 paper but also verified that the whole deployed procedure is applicable for point-of-care testing (POCT) in low-resource areas and for both in vitro (culture media) and in vivo (plasma and chronic lesion) samples. Importantly, downstream analysis of exosomal miR-21 extracted by the paper-based procedure integrated with this novel technique discovered that the content of exosomal miR-21 in chronic lesions related to their stages and the levels of exosomal carcinoembryonic antigen originated from colorectal cancer cells correlated to their exosomal miR-21.
Collapse
Affiliation(s)
- Van-Truc Vu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan
| | - Cao-An Vu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 704, Taiwan.
- College of Medicine, International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Wen-Yih Chen
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 320317, Taiwan.
| |
Collapse
|
3
|
Encinas-Gimenez M, Martin-Duque P, Martín-Pardillos A. Cellular Alterations Due to Direct and Indirect Interaction of Nanomaterials with Nucleic Acids. Int J Mol Sci 2024; 25:1983. [PMID: 38396662 PMCID: PMC10889090 DOI: 10.3390/ijms25041983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Deoxyribonucleic acid (DNA) represents the main reservoir of genetic information in the cells, which is why it is protected in the nucleus. Entry into the nucleus is, in general, difficult, as the nuclear membrane is a selective barrier to molecules longer than 40 kDa. However, in some cases, the size of certain nanoparticles (NPs) allows their internalization into the nucleus, thus causing a direct effect on the DNA structure. NPs can also induce indirect effects on DNA through reactive oxygen species (ROS) generation. In this context, nanomaterials are emerging as a disruptive tool for the development of novel therapies in a broad range of biomedical fields; although their effect on cell viability is commonly studied, further interactions with DNA or indirect alterations triggered by the internalization of these materials are not always clarified, since the small size of these materials makes them perfectly suitable for interaction with subcellular structures, such as the nucleus. In this context, and using as a reference the predicted interactions presented in a computational model, we describe and discuss the observed direct and indirect effects of the implicated nanomaterials on DNA.
Collapse
Affiliation(s)
- Miguel Encinas-Gimenez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.E.-G.); (A.M.-P.)
- Department of Chemical Engineering and Environmental Technology (IQTMA), University of Zaragoza, 50018 Zaragoza, Spain
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Martin-Duque
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Desarrollo de Medicamentos de Terapias Avanzadas (DDMTA), Centro de Terapias Avanzadas, Instituto de Salud Carlos lll, 28222 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Ana Martín-Pardillos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.E.-G.); (A.M.-P.)
- Department of Chemical Engineering and Environmental Technology (IQTMA), University of Zaragoza, 50018 Zaragoza, Spain
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Ruiz-Hitzky E, Ruiz-Garcia C. MXenes vs. clays: emerging and traditional 2D layered nanoarchitectonics. NANOSCALE 2023; 15:18959-18979. [PMID: 37937945 DOI: 10.1039/d3nr03037g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Although MXene materials are considered an emerging research topic, they are receiving considerable interest because, like metals and graphene, they are good electronic conductors but with the particularity that they have a marked hydrophilic character. Having a structural organization and properties close to those of clay minerals (natural silicates typically with a lamellar morphology), they are sometimes referred to as "conducting clays" and exhibit colloidal, surface and intercalation properties also similar to those of clay minerals. The present contribution aims to inform and discuss the nature of MXenes in comparison with clay phyllosilicates, taking into account their structural analogies, outstanding surface properties and advanced applications. The current in-depth understanding of clay minerals may represent a basis for the future development of MXene-derived nanoarchitectures. Comparative examples of the preparation, and studies on the properties and applications of various nanoarchitectures based on clays and MXenes have been included in the present work.
Collapse
Affiliation(s)
- Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Cristina Ruiz-Garcia
- Chemical Engineering Department, Faculty of Science, c/Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Mascarenhas-Melo F, Peixoto D, Aleixo C, S Gonçalves MB, Raza F, Pawar KD, Veiga F, Liu M, Paiva-Santos AC. Nanoclays for wound management applications. Drug Deliv Transl Res 2023; 13:924-945. [PMID: 36542259 DOI: 10.1007/s13346-022-01279-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Nanotechnology has been comprehensively applied as a new approach to managing wound healing. Particularly, nanoclays are being used to improve traditional wound healing approaches or new therapies. Nanoclays are nanoscale aluminosilicates with remarkable intrinsic properties, including the capacity to promote hemostatic response, anti-inflammatory effects, angiogenesis, and re-epithelization. The main purpose of the present review is focusing on skin lesions, post-surgical wounds, burn wounds, and chronic ulcer skin wounds that can be treated using nanoclays, not only as vehicles for therapeutic molecules' efficacy improvement but also alone due to their native beneficial features. A systematic search of the PubMed, ScienceDirect, Scopus, Web of Science, and Google Scholar databases revealed several studies satisfying the purpose of our study. In addition, the selected keywords were used to refine the information. Non-planar hydrous phyllosilicates have been compared with other nanoclays considering their acute specific surface area and loading capacity are strongly influenced by their structure. Nanocomposites in the powder form may be directly incorporated in polymers to form gels, biofilms, and scaffolds that may be adjustable to wound sites. Also, nanoclays can be directly incorporated into polymer mats. Regarding hydrogels/films and mats, nanoclays can improve their mechanical strength, thermal stability, viscosity, and cohesive strength. Additionally, nanoclays are able to control drug release, as well as their skin bioavailability, and seem to be promising candidates to overcome cytotoxicity problems; further in vivo toxicity studies are required.
Collapse
Affiliation(s)
- Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Carolina Aleixo
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Maria Beatriz S Gonçalves
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal
| | - Mingxian Liu
- Department of Materials Science & Engineering, Jinan University, Huangpu Ave. W. 601, Tianhe, Guangzhou, 510632, China.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
6
|
Halloysite Nanotubes and Sepiolite for Health Applications. Int J Mol Sci 2023; 24:ijms24054801. [PMID: 36902232 PMCID: PMC10003602 DOI: 10.3390/ijms24054801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The need for safe, therapeutically effective, and patient-compliant drug delivery systems continuously leads researchers to design novel tools and strategies. Clay minerals are widely used in drug products both as excipients and active agents but, in recent years, there has been a growing interest in research aimed at the development of new organic or inorganic nanocomposites. The attention of the scientific community has been drawn by nanoclays, thanks to their natural origin, worldwide abundance, availability, sustainability, and biocompatibility. In this review, we focused our attention on the studies inherent to the pharmaceutical and biomedical applications of halloysite and sepiolite, and their semi-synthetic or synthetic derivatives, as drug delivery systems. After having described the structure of both materials and their biocompatibility, we delineate the use of the nanoclays to enhance the stability, the controlled release, the bioavailability, and the adsorption properties of drugs. Several types of surface functionalization have been discussed, showing that these materials could be used for the development of an innovative therapeutic approach.
Collapse
|
7
|
Brooks D, Piétrement O, Dardillac E, Jayantha A, Lores Guevara MA, Castro-Smirnov FA, Aranda P, Ruiz-Hitzky E, Lopez BS. Impact of Increased Sonication-Induced Dispersion of Sepiolite on Its Interaction with Biological Macromolecules and Toxicity/Proliferation in Human Cells. ACS OMEGA 2023; 8:1026-1036. [PMID: 36643441 PMCID: PMC9835666 DOI: 10.1021/acsomega.2c06391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Sepiolite is a natural clay silicate that is widely used, including biomedical applications; notably sepiolite shows promising features for the transfer of biological macromolecules into mammalian cells. However, before its use, such an approach should address the efficiency of binding to biological macromolecules and cell toxicity. Because sepiolite spontaneously forms aggregates, its disaggregation can represent an important challenge for improving the suspension performance and the assembly with biological species. However, this can also influence the toxicity of sepiolite in mammalian cells. Here, a very pure commercial sepiolite (Pangel S9), which is present as a partially defibrillated clay mineral, is used to study the consequences of additional deagglomeration/dispersion through sonication. We analyzed the impact of extra sonication on the dispersion of sepiolite aggregates. Factors such as sonication time, sonicator power, and temperature are taken into account. With increasing sonication time, a decrease in aggregation is observed, as well as a decrease in the length of the nanofibers monitored by atomic force microscopy. Changes in the temperature and pH of the solution are also observed during the sonication process. Moreover, although the adsorption capacity of bovine serum albumin (BSA) protein on sepiolite is increased with sonication time, the DNA adsorption efficiency remains unaffected. Finally, sonication of sepiolite decreases the hemolytic activity in blood cells and the toxicity in two different human cell lines. These data show that extra sonication of deagglomerated sepiolite can further favor its interaction with some biomacromolecules (e.g., BSA), and, in parallel, decrease sepiolite toxicity in mammalian cells. Therefore, sonication represents an alluring procedure for future biomedical applications of sepiolite, even when using commercial defibrillated particles.
Collapse
Affiliation(s)
- David
Adame Brooks
- Université
de Paris Cité, INSERM U1016, UMR 8104 CNRS, Institut Cochin,
Equipe Labellisée Ligue Contre le Cancer, 24 Rue Du Faubourg St. Jacques, Paris75014, France
- Centro
de Biofísica Médica, Universidad de Oriente, Patricio Lumumba S/NSantiago de Cuba, CP 90500, Cuba
| | - Olivier Piétrement
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université
de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, Dijon Cedex21078, France
| | - Elodie Dardillac
- Université
de Paris Cité, INSERM U1016, UMR 8104 CNRS, Institut Cochin,
Equipe Labellisée Ligue Contre le Cancer, 24 Rue Du Faubourg St. Jacques, Paris75014, France
| | - Ayesha Jayantha
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université
de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, Dijon Cedex21078, France
| | - Manuel A. Lores Guevara
- Centro
de Biofísica Médica, Universidad de Oriente, Patricio Lumumba S/NSantiago de Cuba, CP 90500, Cuba
| | | | - Pilar Aranda
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, Madrid28049, Spain
| | - Eduardo Ruiz-Hitzky
- Instituto
de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, Madrid28049, Spain
| | - Bernard S. Lopez
- Université
de Paris Cité, INSERM U1016, UMR 8104 CNRS, Institut Cochin,
Equipe Labellisée Ligue Contre le Cancer, 24 Rue Du Faubourg St. Jacques, Paris75014, France
| |
Collapse
|
8
|
Theoretical Studies on the Degradation mechanism of Organochlorine Pesticides in the Presence of Si-OH in Sepiolite. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Khepar V, Sidhu A, Sharma AB. Nanomaterized zinc sulfide-meerschaum biomatrix efficiently suppressed Fusarium verticilloides with augmented rice seed quality benefits during storage. PEST MANAGEMENT SCIENCE 2023; 79:244-256. [PMID: 36131552 DOI: 10.1002/ps.7194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The seed-borne mycopathogen Fusarium verticilliodes is a serious and deleterious pathogen causing substantial losses of rice seeds and grains. Rice seeds are prone to infestation at all points of the production chain and the fungal pathogen continues dormant devastation even during storage, adversely affecting the seed parameters. Its control is compromised due to the nonavailability of recommended fungicides during storage. Nanotechnological interventions can provide effective and ecofriendly alternative against mycopathogens during resting periods. Herein, the zinc sulfide-meerschaum nano bio-matrix (nZnS-MR) is presented to show this strategy, which worked well against F. verticilliodes when applied on freshly harvested rice seeds during 6 months of storage. RESULTS The healthy, smooth and rounded girths of F. verticilloides mycelium were reduced with loss of turgidity, disrupting the hyphal exterior architecture, during in vitro treatment with nZnS-MR, endorsed by staining methodology, crystal violet and intracellular soluble protein leakage assays. In vivo application on rice seeds optimized 750 μg g-1 of nano zinc sulfide (nZnS) for 6 months of application during storage with maximum reduction of disease parameters [seedling blight (1.19%) and seed rot (5.43%)] and most augmented quality parameters [maximum germination (94.14%), seedling length (22.50 cm), dry weight (0.121 g) and vigor index (11.37)]. nZnS-MR acted as a slow release nanoformulation of nZnS for long-term antifungal activity. CONCLUSION nZnS-MR is presented as an ecofriendly, biocompatible, bio-efficient, profertilization, cost-effective green material for the control of F. verticilliodes with rice seed invigorating effect, describing it as new a nano-generation material for efficient storage application.
Collapse
Affiliation(s)
- Varinder Khepar
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Anjali Sidhu
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Anju Bala Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
10
|
Martín-Morales C, Fernández-Méndez J, Aranda P, Ruiz-Hitzky E. Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk-shell and sepiolite nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:522-534. [PMID: 37152474 PMCID: PMC10155620 DOI: 10.3762/bjnano.14.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 05/09/2023]
Abstract
In the present work, the bottom-up fabrication of biohybrid materials using a nanoarchitectonics approach has been applied to entrap living cells. Unicellular microorganisms, that is, cyanobacteria and yeast cells, have been immobilized in silica and silicate-based substrates organized as nanostructured materials. In a first attempt, matrices based on bionanocomposites of chitosan and alginate incorporating sepiolite clay mineral and shaped as films, beads, or foams have been explored for the immobilization of cyanobacteria. It has been observed that this type of biohybrid substrates leads to serious problems regarding the long-time survival of the encapsulated microorganisms. Alternative procedures using silica-based matrices with low sodium content, generated by sol-gel methods, as well as pre-synthesised yolk-shell bionanohybrids have been studied subsequently. Optical microscopy and SEM confirm that the silica shell microstructures provide a reduced contact between cells. The inorganic matrix increases the survival of the cells and maintains their bioactivity. Thus, the encapsulation efficiency is improved compared to the approach using a direct contact of cells in a silica matrix. Encapsulated yeast produced ethanol over a period of several days, pointing out the useful biocatalytic potential of the approach and suggesting further optimization of the present protocols.
Collapse
Affiliation(s)
- Celia Martín-Morales
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
- Faculty of Science, Autonomous University of Madrid (UAM), C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Jorge Fernández-Méndez
- Faculty of Biological Sciences, Complutense University of Madrid (UCM), C/ José Antonio Novais 12, 28040 Madrid, Spain
| | - Pilar Aranda
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
11
|
Karki S, Gohain MB, Yadav D, Ingole PG. Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. Int J Biol Macromol 2021; 193:2121-2139. [PMID: 34780890 DOI: 10.1016/j.ijbiomac.2021.11.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/13/2023]
Abstract
Nanocomposite and bio-nanocomposite polymer materials/membranes have fascinated prominent attention in the energy as well as the medical sector. Their composites make them appropriate choices for various applications in the medical, energy and industrial sectors. Composite materials are subject of interest in the polymer industry. Different kinds of fillers, such as cellulose-based fillers, carbon black, clay nanomaterials, glass fibers, ceramic nanomaterial, carbon quantum dots, talc and many others have been incorporated into polymers to improve the quality of the final product. These results are dependent on a variety of factors; however, nanoparticle dispersion and distribution are major obstacles to fully using nanocomposites/bio-nanocomposites materials/membranes in various applications. This review examines the various nanocomposite and bio-nanocomposite materials applications in the energy and medical sector. The review also covers the variety of ways for increasing nanocomposite and bio-nanocomposite materials features, each with its own set of applications. Recent researches on composite materials have shown that polymeric nanocomposites and bio-nanocomposites are promising materials that have been intensively explored for many applications that include electronics, environmental remediation, energy, sensing (biosensor) and energy storage devices among other applications. In this review, we studied various nanocomposite and bio-nanocomposite materials, their controlling parameters to develop the product and examine their features and applications in the fields of energy and the medical sector.
Collapse
Affiliation(s)
- Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
12
|
Ruiz-Hitzky E, Ruiz-García C, Fernandes FM, Lo Dico G, Lisuzzo L, Prevot V, Darder M, Aranda P. Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials. Front Chem 2021; 9:733105. [PMID: 34485248 PMCID: PMC8414812 DOI: 10.3389/fchem.2021.733105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Sepiolite and palygorskite fibrous clay minerals are 1D silicates featuring unique textural and structural characteristics useful in diverse applications, and in particular as rheological additives. Here we report on the ability of grinded sepiolite to generate highly viscous and stable hydrogels by sonomechanical irradiation (ultrasounds). Adequate drying of such hydrogels leads to low-density xerogels that show extensive fiber disaggregation compared to the starting sepiolite—whose fibers are agglomerated as bundles. Upon re-dispersion in water under high-speed shear, these xerogels show comparable rheological properties to commercially available defibrillated sepiolite products, resulting in high viscosity hydrogels that minimize syneresis. These colloidal systems are thus very interesting as they can be used to stabilize many diverse compounds as well as nano-/micro-particles, leading to the production of a large variety of composites and nano/micro-architectured solids. In this context, we report here various examples showing how colloidal routes based on sepiolite hydrogels can be used to obtain new heterostructured functional materials, based on their assembly to solids of diverse topology and composition such as 2D and 1D kaolinite and halloysite aluminosilicates, as well as to the 2D synthetic Mg,Al-layered double hydroxides (LDH).
Collapse
Affiliation(s)
| | - Cristina Ruiz-García
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Francisco M Fernandes
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Laboratoire de Chimie de la Matière Condensée de Paris, Faculté de Sciences, Sorbonne Université, Paris, France
| | - Giulia Lo Dico
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,IMDEA Materials Institute, Getafe, Spain
| | - Lorenzo Lisuzzo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Dipartimento di Fisica e Chimica - Emilio Segrè, Università degli Studi di Palermo, Palermo, Italy
| | - Vanessa Prevot
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Université Clermont Auvergne, CNRS, ICCF, Clermont-Ferrand, France
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| |
Collapse
|
13
|
Nam JY, Kim HK, Song YS. Fabrication and Analysis of Sepiolite/Glass Microcapsules/Liquid Crystal Polymer Composites. Molecules 2021; 26:molecules26092522. [PMID: 33925934 PMCID: PMC8123445 DOI: 10.3390/molecules26092522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Liquid crystal polymer (LCP) composites filled with sepiolite and glass microcapsules were prepared by melt compounding. The composites were extruded using a twin-screw extruder and injection-molded. The objective of this study is to check a possibility of producing a polymeric composite with a low dielectric constant. Physical characteristics of the composites, such as morphological, rheological, mechanical, and electrical properties were analyzed. In particular, the glass microcapsule-reinforced LCP composites showed a significant improvement in lowering the dielectric constant due to its high air content. Additionally, sepiolite could act as an effective filler to improve the mechanical properties of the composites.
Collapse
Affiliation(s)
- Ji-Yun Nam
- Department of Fiber System Engineering, Dankook University, Yongin 16890, Korea;
| | | | - Young-Seok Song
- Department of Fiber System Engineering, Dankook University, Yongin 16890, Korea;
- Correspondence: ; Tel.: +82-31-8005-3567; Fax: +82-31-8005-3561
| |
Collapse
|
14
|
Park S, Nguyen DV, Kang L. Immobilized nanoneedle-like structures for intracellular delivery, biosensing and cellular surgery. Nanomedicine (Lond) 2021; 16:335-349. [PMID: 33533658 DOI: 10.2217/nnm-2020-0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid advancements of nanotechnology over the recent years have reformed the methods used for treating human diseases. Nanostructures including nanoneedles, nanorods, nanowires, nanofibers and nanotubes have exhibited their potential roles in drug delivery, biosensing, cancer therapy, regenerative medicine and intracellular surgery. These high aspect ratio structures enhance targeted drug delivery with spatiotemporal control while also demonstrating their role as an efficient intracellular biosensor with minimal invasiveness. This review discusses the history and emergence of these nanostructures and their fabrication methods. This review also provides an overview of the different applications of nanoneedle systems, further highlighting the importance of greater investigation into these nanostructures for future medicine.
Collapse
Affiliation(s)
- Sol Park
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| | - Duc-Viet Nguyen
- Nusmetics Pte. Ltd, i4 building, 3 Research Link, Singapore 117602, Republic of Singapore
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Tardani F, Casciardi S, Ruzicka B, Sennato S. Salt enhanced sedimentation of halloysite nanotubes for precise determination of DNA adsorption isotherm. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Facile Fabrication of Natural Polyelectrolyte-Nanoclay Composites: Halloysite Nanotubes, Nucleotides and DNA Study. Molecules 2020; 25:molecules25153557. [PMID: 32759785 PMCID: PMC7436255 DOI: 10.3390/molecules25153557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022] Open
Abstract
Complexation of biopolymers with halloysite nanotubes (HNTs) can greatly affect their applicability as materials building blocks. Here we have performed a systematic investigation of fabrication of halloysite nanotubes complexes with nucleotides and genomic DNA. The binding of DNA and various nucleotide species (polyAU, UMP Na2, ADP Na3, dATP Na, AMP, uridine, ATP Mg) by halloysite nanotubes was tested using UV-spectroscopy. The study revealed that binding of different nucleotides to the nanoclay varied but was low both in the presence and absence of MgCl2, while MgCl2 facilitated significantly the binding of longer molecules such as DNA and polyAU. Modification of the nanotubes with DNA and nucleotide species was further confirmed by measurements of ζ-potentials. DNA-Mg-modified nanotubes were characterized using transmission electron (TEM), atomic force (AFM) and hyperspectral microscopies. Thermogravimetric analysis corroborated the sorption of DNA by the nanotubes, and the presence of DNA on the nanotube surface was indicated by changes in the surface adhesion force measured by AFM. DNA bound by halloysite in the presence of MgCl2 could be partially released after addition of phosphate buffered saline. DNA binding and release from halloysite nanotubes was tested in the range of MgCl2 concentrations (10–100 mM). Even low MgCl2 concentrations significantly increased DNA sorption to halloysite, and the binding was leveled off at about 60 mM. DNA-Mg-modified halloysite nanotubes were used for obtaining a regular pattern on a glass surface by evaporation induced self-assembly process. The obtained spiral-like pattern was highly stable and resisted dissolution after water addition. Our results encompassing modification of non-toxic clay nanotubes with a natural polyanion DNA will find applications for construction of gene delivery vehicles and for halloysite self-assembly on various surfaces (such as skin or hair).
Collapse
|
17
|
Perez-Carvajal J, Aranda P, Ruiz-Hitzky E. Titanosilicate-sepiolite hybrid nanoarchitectures for hydrogen technologies applications. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Massaro M, Colletti CG, Lazzara G, Riela S. The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications. J Funct Biomater 2018; 9:E58. [PMID: 30347697 PMCID: PMC6306778 DOI: 10.3390/jfb9040058] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023] Open
Abstract
The goal of modern research is to use environmentally preferable materials. In this context, clay minerals are emerging candidates for their bio- and ecocompatibility, low cost and natural availability. Clay minerals present different morphologies according to their layer arrangements. The use of clay minerals, especially in biomedical applications is known from ancient times and they are regaining attention in recent years. The most representative clay minerals are kaolinit, montmorillonite, sepiolites and halloysite. This review summarizes some clay minerals and their derivatives for application as nanocontainer for biologically active species.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Carmelo Giuseppe Colletti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica (DiFC), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | - Serena Riela
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| |
Collapse
|
19
|
Carazo E, Borrego-Sánchez A, García-Villén F, Sánchez-Espejo R, Cerezo P, Aguzzi C, Viseras C. Advanced Inorganic Nanosystems for Skin Drug Delivery. CHEM REC 2018; 18:891-899. [DOI: 10.1002/tcr.201700061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/22/2017] [Indexed: 01/01/2023]
Affiliation(s)
- E. Carazo
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - A. Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| | - F. García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - R. Sánchez-Espejo
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| | - P. Cerezo
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - C. Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - C. Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| |
Collapse
|
20
|
Alcântara ACS, Darder M. Building Up Functional Bionanocomposites from the Assembly of Clays and Biopolymers. CHEM REC 2018; 18:696-712. [DOI: 10.1002/tcr.201700076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Ana C. S. Alcântara
- Departamento de Química - PPGQuim; LIM-Bionanos; Universidade Federal do Maranhão; 65080-805 São Luís, MA Brazil
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid; CSIC; C/Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| |
Collapse
|
21
|
Piétrement O, Castro-Smirnov FA, Le Cam E, Aranda P, Ruiz-Hitzky E, Lopez BS. Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. CHEM REC 2017; 18:849-857. [DOI: 10.1002/tcr.201700078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Olivier Piétrement
- CNRS UMR 8126; Université Paris-Sud, Université Paris-Saclay; Gustave Roussy, 114 Rue Edouard Vaillant 94805 Villejuif France
| | - Fidel Antonio Castro-Smirnov
- CNRS UMR 8200, team labeled “Ligue 2014”; Université Paris-Sud, Université Paris-Saclay; Gustave Roussy, 114 rue Edouard Vaillant 94805 Villejuif France
- Universidad de las Ciencias Informáticas; Carretera a San Antonio de los Baños, km 2 1/2 La Habana 19370 Cuba
| | - Eric Le Cam
- CNRS UMR 8126; Université Paris-Sud, Université Paris-Saclay; Gustave Roussy, 114 Rue Edouard Vaillant 94805 Villejuif France
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid, CSIC; c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid, CSIC; c/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
| | - Bernard S. Lopez
- CNRS UMR 8200, team labeled “Ligue 2014”; Université Paris-Sud, Université Paris-Saclay; Gustave Roussy, 114 rue Edouard Vaillant 94805 Villejuif France
| |
Collapse
|
22
|
Castro-Smirnov FA, Ayache J, Bertrand JR, Dardillac E, Le Cam E, Piétrement O, Aranda P, Ruiz-Hitzky E, Lopez BS. Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. Sci Rep 2017; 7:5586. [PMID: 28717157 PMCID: PMC5514060 DOI: 10.1038/s41598-017-05839-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/05/2017] [Indexed: 11/09/2022] Open
Abstract
Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier because it can be naturally internalized into mammalian cells, due to its nano-size dimension. Therefore, deciphering the mechanisms of sepiolite cell internalization constitutes a question interesting biotechnology, for the use of sepiolite as nanocarrier, as well as environmental and public health concerns. Though it is low, the perfectly stable and natural intrinsic fluorescence of sepiolite nanofibers allows to follow their fate into cells by specifically sensitive technics. By combining fluorescence microscopy (including confocal analysis), time-lapse video microscopy, fluorescence activated cell sorting and transmission electron microscopy, we show that sepiolite can be spontaneously internalized into mammalian cells through both non-endocytic and endocytic pathways, macropinocytosis being one of the main pathways. Interestingly, exposure of the cells to endocytosis inhibitors, such as chloroquine, two-fold increase the efficiency of sepiolite-mediated gene transfer, in addition to the 100-fold increased resulting from sepiolite sonomechanical treatment. As sepiolite is able to bind various biological molecules, this nanoparticulate silicate could be a good candidate as a nanocarrier for simultaneous vectorization of diverse biological molecules.
Collapse
Affiliation(s)
- Fidel Antonio Castro-Smirnov
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, team labeled "Ligue 2014", 114 rue Edouard Vaillant, 94805, Villejuif, France.,Universidad de las Ciencias Informáticas, Carretera a San Antonio de los Baños, km 2 1⁄2, La Habana, 19370, Cuba
| | - Jeanne Ayache
- CNRS UMR 8126, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Jean-Rémi Bertrand
- Vectorology and Anticancer therapies, CNRS UMR 8203, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Elodie Dardillac
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, team labeled "Ligue 2014", 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Eric Le Cam
- CNRS UMR 8126, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Olivier Piétrement
- CNRS UMR 8126, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/ Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Bernard S Lopez
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, team labeled "Ligue 2014", 114 rue Edouard Vaillant, 94805, Villejuif, France.
| |
Collapse
|