1
|
Salomon R, Razavi Bazaz S, Mutafopulos K, Gallego-Ortega D, Warkiani M, Weitz D, Jin D. Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist? LAB ON A CHIP 2025; 25:1097-1127. [PMID: 39775440 DOI: 10.1039/d4lc00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
Collapse
Affiliation(s)
- Robert Salomon
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| | - Sajad Razavi Bazaz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| | - Kirk Mutafopulos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David Gallego-Ortega
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Majid Warkiani
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - David Weitz
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| |
Collapse
|
2
|
Ashkani A, Jafari A, Ghomsheh MJ, Dumas N, Funfschilling D. Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes. Sci Rep 2024; 14:2679. [PMID: 38302543 PMCID: PMC10834497 DOI: 10.1038/s41598-024-52839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
Serpentine microchannels are known for their effective particle focusing through Dean flow-induced rotational effects, which are used in compact designs for size-dependent focusing in medical diagnostics. This study explores square serpentine microchannels, a geometry that has recently gained prominence in inertial microfluidics, and presents a modification of square wave microchannels for improved particle separation and focusing. The proposed modification incorporates an additional U-shaped unit to convert the square wave microchannel into a non-axisymmetric structure, which enhances the Dean flow and consequently increases the Dean drag force. Extensive experiments were conducted covering a wide range of Reynolds numbers and particle sizes (2.45 µm to 12 µm). The particle concentration capability and streak position dynamics of the two structures were compared in detail. The results indicate that the modified square-wave microchannel exhibits efficient particle separation in the lower part of the Dean vortex-dominated regime. With increasing Reynolds number, the particles are successively focused into two streaks in the lift force-dominated regime and into a single streak in the Dean vortex-dominated regime, in this modified square wave geometry. These streaks have a low standard deviation around a mean value. In the Dean vortex-dominated regime, the location of the particle stream is highly dependent on the particle size, which allows good particle separation. Particle focusing occurs at lower Reynolds numbers in both the lift-dominated and lift/Dean drag-dominated regions than in the square wave microchannel. The innovative serpentine channel is particularly useful for the Dean drag-dominated regime and introduces a unique asymmetry that affects the particle focusing dynamics. The proposed device offers significant advantages in terms of efficiency, parallelization, footprint, and throughput over existing geometries.
Collapse
Affiliation(s)
- Ali Ashkani
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | - Azadeh Jafari
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
- ICube, UMR 7357-CNRS-Université de Strasbourg, 1, Cours des Cigarières, 67000, Strasbourg, France.
| | - Mehryar Jannesari Ghomsheh
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Norbert Dumas
- ICube, UMR 7357-CNRS-Université de Strasbourg, 1, Cours des Cigarières, 67000, Strasbourg, France
- ICube, UMR 7357-CNRS-Université de Strasbourg, 300 bd Sébastien Brant, 67412, Illkirch, France
| | - Denis Funfschilling
- ICube, UMR 7357-CNRS-Université de Strasbourg, 1, Cours des Cigarières, 67000, Strasbourg, France.
| |
Collapse
|
3
|
Yu T, Jhita N, Shankles P, Fedanov A, Kramer N, Raikar SS, Sulchek T. Development of a microfluidic cell transfection device into gene-edited CAR T cell manufacturing workflow. LAB ON A CHIP 2023; 23:4804-4820. [PMID: 37830228 PMCID: PMC10701762 DOI: 10.1039/d3lc00311f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Genetic reprogramming of immune cells to recognize and target tumor cells offers a possibility of long-term cure. Cell therapies, however, lack simple and affordable manufacturing workflows, especially to genetically edit immune cells to more effectively target cancer cells and avoid immune suppression mechanisms. Microfluidics is a pathway to improve the manufacturing precision of gene modified cells. However, to date, it remains to be demonstrated that microfluidic treatment preserves the functionality of T cell products in a complete workflow. In this study, we used microfluidics to perform CRISPR/Cas9 gene editing of CD5, a negative T-cell regulator, followed by the insertion of a chimeric antigen receptor (CAR) transgene via lentiviral vector transduction to generate CAR T cells targeted against the B cell antigen CD19. As part of the workflow, we have optimized a microfluidic device that relies on convective volume exchange between cells and surrounding fluid to deliver guide RNA and Cas9 ribonucleoprotein to primary T cells. We comprehensively tested critical design features of the device to improve the gene-edited product yield. By combining high-speed video and cell mechanics measurements using the atomic force microscope, we validate a model that relates the device design features to cell properties. Our findings showed enhanced performance was obtained by focusing the cells to counteract the flow resistance caused by the ridge constrictions, providing a ridge layout that allows sufficient cycles of compression and time for volume recovery, and including a gutter to clear aggregates that could reduce cell viability. The optimized device was used in a workflow to generate CD5-knockout CD19 CAR T cells. The microfluidics approach resulted in >60% CD5 editing efficiency, ≥80% cell viability, similar memory phenotype composition as unprocessed cells, and superior cell growth. The microfluidics workflow yielded 4-fold increase of edited T cells compared to an electroporation workflow post-expansion. The transduced CAR T cells showed similar transduction efficiency and cytotoxicity against CD19-positive leukemia cells. Moreover, patient-derived T cells showed the ability to be similarly edited, though their distinct biomechanics resulted in slightly lower outcomes. Microfluidics-based manufacturing is a promising path towards more productive clinical manufacturing of gene edited CAR T cells.
Collapse
Affiliation(s)
- Tong Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Navdeep Jhita
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Peter Shankles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30318, USA.
| | - Andrew Fedanov
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Noah Kramer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Sunil S Raikar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30318, USA.
| |
Collapse
|
4
|
Xiang N, Ni Z. Inertial microfluidics: current status, challenges, and future opportunities. LAB ON A CHIP 2022; 22:4792-4804. [PMID: 36263793 DOI: 10.1039/d2lc00722c] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inertial microfluidics uses the hydrodynamic effects induced at finite Reynolds numbers to achieve passive manipulation of particles, cells, or fluids and offers the advantages of high-throughput processing, simple channel geometry, and label-free and external field-free operation. Since its proposal in 2007, inertial microfluidics has attracted increasing interest and is currently widely employed as an important sample preparation protocol for single-cell detection and analysis. Although great success has been achieved in the inertial microfluidics field, its performance and outcome can be further improved. From this perspective, herein, we reviewed the current status, challenges, and opportunities of inertial microfluidics concerning the underlying physical mechanisms, available simulation tools, channel innovation, multistage, multiplexing, or multifunction integration, rapid prototyping, and commercial instrument development. With an improved understanding of the physical mechanisms and the development of novel channels, integration strategies, and commercial instruments, improved inertial microfluidic platforms may represent a new foundation for advancing biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Abstract
Viscous streaming refers to the rectified, steady flows that emerge when a liquid oscillates around an immersed microfeature. Relevant to microfluidics, the resulting local, strong inertial effects allow manipulation of fluid and particles effectively, within short time scales and compact footprints. Nonetheless, practically, viscous streaming has been stymied by a narrow set of achievable flow topologies, limiting scope and application. Here, by moving away from classically employed microfeatures of uniform curvature, we experimentally show how multicurvature designs, computationally obtained, give rise, instead, to rich flow repertoires. The potential utility of these flows is then illustrated in compact, robust, and tunable devices for enhanced manipulation, filtering, and separation of both synthetic and biological particles. Overall, our mixed computational/experimental approach expands the scope of viscous streaming application, with opportunities in manufacturing, environment, health, and medicine, from particle self-assembly to microplastics removal.
Collapse
|
6
|
Xu X, Huang X, Sun J, Chen J, Wu G, Yao Y, Zhou N, Wang S, Sun L. 3D-Stacked Multistage Inertial Microfluidic Chip for High-Throughput Enrichment of Circulating Tumor Cells. CYBORG AND BIONIC SYSTEMS 2022; 2022:9829287. [PMID: 38645277 PMCID: PMC11030111 DOI: 10.34133/2022/9829287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
Whether for cancer diagnosis or single-cell analysis, it remains a major challenge to isolate the target sample cells from a large background cell for high-efficiency downstream detection and analysis in an integrated chip. Therefore, in this paper, we propose a 3D-stacked multistage inertial microfluidic sorting chip for high-throughput enrichment of circulating tumor cells (CTCs) and convenient downstream analysis. In this chip, the first stage is a spiral channel with a trapezoidal cross-section, which has better separation performance than a spiral channel with a rectangular cross-section. The second and third stages adopt symmetrical square serpentine channels with different rectangular cross-section widths for further separation and enrichment of sample cells reducing the outlet flow rate for easier downstream detection and analysis. The multistage channel can separate 5 μm and 15 μm particles with a separation efficiency of 92.37% and purity of 98.10% at a high inlet flow rate of 1.3 mL/min. Meanwhile, it can separate tumor cells (SW480, A549, and Caki-1) from massive red blood cells (RBCs) with a separation efficiency of >80%, separation purity of >90%, and a concentration fold of ~20. The proposed work is aimed at providing a high-throughput sample processing system that can be easily integrated with flowing sample detection methods for rapid CTC analysis.
Collapse
Affiliation(s)
- X. Xu
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| | - X. Huang
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| | - J. Sun
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| | - J. Chen
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| | - G. Wu
- Institute for Translational Medicine, Zhejiang University, Hangzhou, 310029 Zhejiang, China
| | - Y. Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024 Zhejiang, China
| | - N. Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024 Zhejiang, China
| | - S. Wang
- Institute for Translational Medicine, Zhejiang University, Hangzhou, 310029 Zhejiang, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - L. Sun
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| |
Collapse
|
7
|
Young KM, Shankles PG, Chen T, Ahkee K, Bules S, Sulchek T. Scaling microfluidic throughput with flow-balanced manifolds to simply control devices with multiple inlets and outlets. BIOMICROFLUIDICS 2022; 16:034104. [PMID: 35600502 PMCID: PMC9118023 DOI: 10.1063/5.0080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/02/2022] [Indexed: 05/18/2023]
Abstract
Microfluidics can bring unique functionalities to cell processing, but the small channel dimensions often limit the throughput for cell processing that prevents scaling necessary for key applications. While processing throughput can be improved by increasing cell concentration or flow rate, an excessive number or velocity of cells can result in device failure. Designing parallel channels can linearly increase the throughput by channel number, but for microfluidic devices with multiple inlets and outlets, the design of the channel architecture with parallel channels can result in intractable numbers of inlets and outlets. We demonstrate an approach to use multiple parallel channels for complex microfluidic designs that uses a second manifold layer to connect three inlets and five outlets per channel in a manner that balances flow properties through each channel. The flow balancing in the individual microfluidic channels was accomplished through a combination of analytical and finite element analysis modeling. Volumetric flow and cell flow velocity were measured in each multiplexed channel to validate these models. We demonstrate eight-channel operation of a label-free mechanical separation device that retains the accuracy of a single channel separation. Using the parallelized device and a model biomechanical cell system for sorting of cells based on their viability, we processed over 16 × 106 cells total over three replicates at a rate of 5.3 × 106 cells per hour. Thus, parallelization of complex microfluidics with a flow-balanced manifold system can enable higher throughput processing with the same number of inlet and outlet channels to control.
Collapse
Affiliation(s)
- Katherine M. Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Peter G. Shankles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Theresa Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Kelly Ahkee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Sydney Bules
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Todd Sulchek
- Author to whom correspondence should be addressed:. Phone: (404) 385-1887
| |
Collapse
|
8
|
Jeon H, Cremers C, Le D, Abell J, Han J. Multi-dimensional-double-spiral (MDDS) inertial microfluidic platform for sperm isolation directly from the raw semen sample. Sci Rep 2022; 12:4212. [PMID: 35273303 PMCID: PMC8913683 DOI: 10.1038/s41598-022-08042-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Here, we propose a fully-automated platform using a spiral inertial microfluidic device for standardized semen preparation that can process patient-derived semen samples with diverse fluidic conditions without any pre-washing steps. We utilized the multi-dimensional double spiral (MDDS) device to effectively isolate sperm cells from other non-sperm seminal cells (e.g., leukocytes) in the semen sample. The recirculation platform was employed to minimize sample dependency and achieve highly purified and concentrated (up to tenfold) sperm cells in a rapid and fully-automated manner (~ 10 min processing time for 50 mL of diluted semen sample). The clinical (raw) semen samples obtained from healthy donors were directly used without any pre-washing step to evaluate the developed separation platform, which showed excellent performance with ~ 80% of sperm cell recovery, and > 99.95% and > 98% removal of 10-μm beads (a surrogate for leukocytes) from low-viscosity and high-viscosity semen samples, respectively. We expect that the novel platform will be an efficient and automated tool to achieve purified sperm cells directly from raw semen samples for assisted reproductive technologies (ARTs) as an alternative to density centrifugation or swim-up methods, which often suffer from the low recovery of sperm cells and labor-intensive steps.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Claudia Cremers
- Ohana Biosciences, 20 Acorn Park Dr, Cambridge, MA, 02140, USA
| | - Doris Le
- Ohana Biosciences, 20 Acorn Park Dr, Cambridge, MA, 02140, USA
| | - Justin Abell
- Ohana Biosciences, 20 Acorn Park Dr, Cambridge, MA, 02140, USA
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA. .,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Cha H, Fallahi H, Dai Y, Yuan D, An H, Nguyen NT, Zhang J. Multiphysics microfluidics for cell manipulation and separation: a review. LAB ON A CHIP 2022; 22:423-444. [PMID: 35048916 DOI: 10.1039/d1lc00869b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3216, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
10
|
Xu X, Huang X, Sun J, Wang R, Yao J, Han W, Wei M, Chen J, Guo J, Sun L, Yin M. Recent progress of inertial microfluidic-based cell separation. Analyst 2021; 146:7070-7086. [PMID: 34761757 DOI: 10.1039/d1an01160j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation has consistently been a pivotal technology of sample preparation in biomedical research. Compared with conventional bulky cell separation technologies applied in the clinic, cell separation based on microfluidics can accurately manipulate the displacement of liquid or cells at the microscale, which has great potential in point-of-care testing (POCT) applications due to small device size, low cost, low sample consumption, and high operating accuracy. Among various microfluidic cell separation technologies, inertial microfluidics has attracted great attention due to its simple structure and high throughput. In recent years, many researchers have explored the principles and applications of inertial microfluidics and developed different channel structures, including straight channels, curved channels, and multistage channels. However, the recently developed multistage channels have not been discussed and classified in detail compared with more widely discussed straight and curved channels. Therefore, in this review, a comprehensive and detailed review of recent progress in the multistage channel is presented. According to the channel structure, the inertial microfluidic separation technology is divided into (i) straight channel, (ii) curved channel, (iii) composite channel, and (iv) integrated device. The structural development of straight and curved channels is discussed in detail. And based on straight and curved channels, the multistage cell separation structures are reviewed, with a special focus on a variety of latest structures and related innovations of composite and integrated channels. Finally, the future prospects for the existing challenges in the development of inertial microfluidic cell separation technology are presented.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Xiwei Huang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jingjing Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Renjie Wang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jiangfan Yao
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Wentao Han
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Maoyu Wei
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jin Chen
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jinhong Guo
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lingling Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Ming Yin
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
11
|
Choe SW, Kim B, Kim M. Progress of Microfluidic Continuous Separation Techniques for Micro-/Nanoscale Bioparticles. BIOSENSORS 2021; 11:464. [PMID: 34821680 PMCID: PMC8615634 DOI: 10.3390/bios11110464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 05/03/2023]
Abstract
Separation of micro- and nano-sized biological particles, such as cells, proteins, and nucleotides, is at the heart of most biochemical sensing/analysis, including in vitro biosensing, diagnostics, drug development, proteomics, and genomics. However, most of the conventional particle separation techniques are based on membrane filtration techniques, whose efficiency is limited by membrane characteristics, such as pore size, porosity, surface charge density, or biocompatibility, which results in a reduction in the separation efficiency of bioparticles of various sizes and types. In addition, since other conventional separation methods, such as centrifugation, chromatography, and precipitation, are difficult to perform in a continuous manner, requiring multiple preparation steps with a relatively large minimum sample volume is necessary for stable bioprocessing. Recently, microfluidic engineering enables more efficient separation in a continuous flow with rapid processing of small volumes of rare biological samples, such as DNA, proteins, viruses, exosomes, and even cells. In this paper, we present a comprehensive review of the recent advances in microfluidic separation of micro-/nano-sized bioparticles by summarizing the physical principles behind the separation system and practical examples of biomedical applications.
Collapse
Affiliation(s)
- Se-woon Choe
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea;
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea
| | - Bumjoo Kim
- Department of Mechanical Engineering and Automotive Engineering, Kongju National University, Cheonan 1223-24, Korea;
- Department of Future Convergence Engineering, Kongju National University, Cheonan 1223-24, Korea
| | - Minseok Kim
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| |
Collapse
|
12
|
Tavassoli H, Rorimpandey P, Kang YC, Carnell M, Brownlee C, Pimanda JE, Chan PPY, Chandrakanthan V. Label-Free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006176. [PMID: 33369875 DOI: 10.1002/smll.202006176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To advance the understanding of cardiomyocyte (CM) identity and function, appropriate tools to isolate pure primary CMs are needed. A label-free method to purify viable CMs from mouse neonatal hearts is developed using a simple particle size-based inertial microfluidics biochip achieving purities of over 90%. Purified CMs are viable and retained their identity and function as depicted by the expression of cardiac-specific markers and contractility. The physico-mechanical properties of sorted cells are evaluated using downstream real-time deformability cytometry. CMs exhibited different physico-mechanical properties when compared with non-CMs. Taken together, this CM isolation and phenotyping method could serve as a valuable tool to progress the understanding of CM identity and function, and ultimately benefit cell therapy and diagnostic applications.
Collapse
Affiliation(s)
- Hossein Tavassoli
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prunella Rorimpandey
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Young Chan Kang
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chris Brownlee
- Flow Cytometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John E Pimanda
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, 2052, Australia
| | - Peggy P Y Chan
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Vashe Chandrakanthan
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Lafzi A, Raffiee AH, Dabiri S. Inertial migration of a deformable capsule in an oscillatory flow in a microchannel. Phys Rev E 2020; 102:063110. [PMID: 33466115 DOI: 10.1103/physreve.102.063110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Dynamics of a deformable capsule in an oscillatory flow of a Newtonian fluid in a microchannel has been studied numerically. The effects of oscillation frequency, capsule deformability, and channel flow rate have been explored by simulating the capsule within a microchannel. In addition, the simulation captures the effect of the type of imposed pressure oscillations on the migration pattern of the capsule. An oscillatory channel flow enables the focusing of extremely small biological particles by eliminating the need to design impractically long channels. The presented results show that the equilibrium position of the capsule changes not only by the addition of an oscillatory component to the pressure gradient but it also is influenced by the capsule deformability and channel flow rate. Furthermore, it has been shown that the amplitude of oscillation of capsules decreases as the channel flow rate and the rigidity of the capsule increases.
Collapse
Affiliation(s)
- Ali Lafzi
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Amir Hossein Raffiee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sadegh Dabiri
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
14
|
Tsou PH, Chiang PH, Lin ZT, Yang HC, Song HL, Li BR. Rapid purification of lung cancer cells in pleural effusion through spiral microfluidic channels for diagnosis improvement. LAB ON A CHIP 2020; 20:4007-4015. [PMID: 32966477 DOI: 10.1039/d0lc00663g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lung cancer is one of the leading causes of death worldwide. Fifteen percent of lung cancer patients will present with malignant pleural effusion initially, and up to 50% will have malignant pleural effusion throughout the course of the disease. In this study, we developed a spiral microfluidic device that can rapidly isolate cancer cells and improve their purity through fluid dynamics. This label-free, high-throughput device continuously isolates cancer cells and other unrelated molecules from pleural effusion. Most of the background cells that affect interpretation are flushed to outlets 1 to 3, and cancer cells are hydrodynamically concentrated to outlet 4, with 90% of lung cancer cells flowing to this outlet. After processing, the purity of cancer cells identified in pleural effusion by CD45 and epithelial cell adhesion molecule (EpCAM) antibodies in flow cytometry will be increased by 6 to 24 times. The microfluidic device presented here has the advantages of rapid processing and low cost, which are conducive to rapid and accurate clinical diagnosis.
Collapse
Affiliation(s)
- Ping-Hsien Tsou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Howell J, Hammarton TC, Altmann Y, Jimenez M. High-speed particle detection and tracking in microfluidic devices using event-based sensing. LAB ON A CHIP 2020; 20:3024-3035. [PMID: 32700715 DOI: 10.1039/d0lc00556h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Visualising fluids and particles within channels is a key element of microfluidic work. Current imaging methods for particle image velocimetry often require expensive high-speed cameras with powerful illuminating sources, thus potentially limiting accessibility. This study explores for the first time the potential of an event-based camera for particle and fluid behaviour characterisation in a microfluidic system. Event-based cameras have the unique capacity to detect light intensity changes asynchronously and to record spatial and temporal information with low latency, low power and high dynamic range. Event-based cameras could consequently be relevant for detecting light intensity changes due to moving particles, chemical reactions or intake of fluorescent dyes by cells to mention a few. As a proof-of-principle, event-based sensing was tested in this work to detect 1 μm and 10 μm diameter particles flowing in a microfluidic channel for average fluid velocities of up to 1.54 m s-1. Importantly, experiments were performed by directly connecting the camera to a standard fluorescence microscope, only relying on the microscope arc lamp for illumination. We present a data processing strategy that allows particle detection and tracking in both bright-field and fluorescence imaging. Detection was achieved up to a fluid velocity of 1.54 m s-1 and tracking up to 0.4 m s-1 suggesting that event-based cameras could be a new paradigm shift in microscopic imaging.
Collapse
Affiliation(s)
- Jessie Howell
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | | | | | | |
Collapse
|
16
|
Razavi Bazaz S, Rouhi O, Raoufi MA, Ejeian F, Asadnia M, Jin D, Ebrahimi Warkiani M. 3D Printing of Inertial Microfluidic Devices. Sci Rep 2020; 10:5929. [PMID: 32246111 PMCID: PMC7125121 DOI: 10.1038/s41598-020-62569-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Inertial microfluidics has been broadly investigated, resulting in the development of various applications, mainly for particle or cell separation. Lateral migrations of these particles within a microchannel strictly depend on the channel design and its cross-section. Nonetheless, the fabrication of these microchannels is a continuous challenging issue for the microfluidic community, where the most studied channel cross-sections are limited to only rectangular and more recently trapezoidal microchannels. As a result, a huge amount of potential remains intact for other geometries with cross-sections difficult to fabricate with standard microfabrication techniques. In this study, by leveraging on benefits of additive manufacturing, we have proposed a new method for the fabrication of inertial microfluidic devices. In our proposed workflow, parts are first printed via a high-resolution DLP/SLA 3D printer and then bonded to a transparent PMMA sheet using a double-coated pressure-sensitive adhesive tape. Using this method, we have fabricated and tested a plethora of existing inertial microfluidic devices, whether in a single or multiplexed manner, such as straight, spiral, serpentine, curvilinear, and contraction-expansion arrays. Our characterizations using both particles and cells revealed that the produced chips could withstand a pressure up to 150 psi with minimum interference of the tape to the total functionality of the device and viability of cells. As a showcase of the versatility of our method, we have proposed a new spiral microchannel with right-angled triangular cross-section which is technically impossible to fabricate using the standard lithography. We are of the opinion that the method proposed in this study will open the door for more complex geometries with the bespoke passive internal flow. Furthermore, the proposed fabrication workflow can be adopted at the production level, enabling large-scale manufacturing of inertial microfluidic devices.
Collapse
Affiliation(s)
- Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Omid Rouhi
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad Amin Raoufi
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fatemeh Ejeian
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- SUStech-UTS joint Research Centre for Biomedical Materials & Devices, Southern University of Science and Technology, Shenzhen, 518055, P.R. China
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- SUStech-UTS joint Research Centre for Biomedical Materials & Devices, Southern University of Science and Technology, Shenzhen, 518055, P.R. China.
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia.
| |
Collapse
|
17
|
Raoufi MA, Razavi Bazaz S, Niazmand H, Rouhi O, Asadnia M, Razmjou A, Ebrahimi Warkiani M. Fabrication of unconventional inertial microfluidic channels using wax 3D printing. SOFT MATTER 2020; 16:2448-2459. [PMID: 31984393 DOI: 10.1039/c9sm02067e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Inertial microfluidics has emerged over the past decade as a powerful tool to accurately control cells and microparticles for diverse biological and medical applications. Many approaches have been proposed to date in order to increase the efficiency and accuracy of inertial microfluidic systems. However, the effects of channel cross-section and solution properties (Newtonian or non-Newtonian) have not been fully explored, primarily due to limitations in current microfabrication methods. In this study, we overcome many of these limitations using wax 3D printing technology and soft lithography through a novel workflow, which eliminates the need for the use of silicon lithography and polydimethylsiloxane (PDMS) bonding. We have shown that by adding dummy structures to reinforce the main channels, optimizing the gap between the dummy and main structures, and dissolving the support wax on a PDMS slab to minimize the additional handling steps, one can make various non-conventional microchannels. These substantially improve upon previous wax printed microfluidic devices where the working area falls into the realm of macrofluidics rather than microfluidics. Results revealed a surface roughness of 1.75 μm for the printed channels, which does not affect the performance of inertial microfluidic devices used in this study. Channels with complex cross-sections were fabricated and then analyzed to investigate the effects of viscoelasticity and superposition on the lateral migration of the particles. Finally, as a proof of concept, microcarriers were separated from human mesenchymal stem cells using an optimized channel with maximum cell-holding capacity, demonstrating the suitability of these microchannels in the bioprocessing industry.
Collapse
Affiliation(s)
- Mohammad Amin Raoufi
- School of Biomedical Engineering, University of Technology Sydney, NSW 2007, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Guzniczak E, Otto O, Whyte G, Chandra T, Robertson NA, Willoughby N, Jimenez M, Bridle H. Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration. Biotechnol Bioeng 2020; 117:2032-2045. [PMID: 32100873 PMCID: PMC7383897 DOI: 10.1002/bit.27319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.
Collapse
Affiliation(s)
- Ewa Guzniczak
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Greifswald, Greifswald, Germany
| | - Graeme Whyte
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Neil A Robertson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Nik Willoughby
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Melanie Jimenez
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland
| | - Helen Bridle
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| |
Collapse
|
19
|
Zhou J, Mukherjee P, Gao H, Luan Q, Papautsky I. Label-free microfluidic sorting of microparticles. APL Bioeng 2019; 3:041504. [PMID: 31832577 PMCID: PMC6906121 DOI: 10.1063/1.5120501] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Massive growth of the microfluidics field has triggered numerous advances in focusing, separating, ordering, concentrating, and mixing of microparticles. Microfluidic systems capable of performing these functions are rapidly finding applications in industrial, environmental, and biomedical fields. Passive and label-free methods are one of the major categories of such systems that have received enormous attention owing to device operational simplicity and low costs. With new platforms continuously being proposed, our aim here is to provide an updated overview of the state of the art for passive label-free microparticle separation, with emphasis on performance and operational conditions. In addition to the now common separation approaches using Newtonian flows, such as deterministic lateral displacement, pinched flow fractionation, cross-flow filtration, hydrodynamic filtration, and inertial microfluidics, we also discuss separation approaches using non-Newtonian, viscoelastic flow. We then highlight the newly emerging approach based on shear-induced diffusion, which enables direct processing of complex samples such as untreated whole blood. Finally, we hope that an improved understanding of label-free passive sorting approaches can lead to sophisticated and useful platforms toward automation in industrial, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Prithviraj Mukherjee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Hua Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Qiyue Luan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
20
|
Herrmann N, Neubauer P, Birkholz M. Spiral microfluidic devices for cell separation and sorting in bioprocesses. BIOMICROFLUIDICS 2019; 13:061501. [PMID: 31700559 PMCID: PMC6831504 DOI: 10.1063/1.5125264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/14/2019] [Indexed: 05/04/2023]
Abstract
Inertial microfluidic systems have been arousing interest in medical applications due to their simple and cost-efficient use. However, comparably small sample volumes in the microliter and milliliter ranges have so far prevented efficient applications in continuous bioprocesses. Nevertheless, recent studies suggest that these systems are well suited for cell separation in bioprocesses because of their facile adaptability to various reactor sizes and cell types. This review will discuss potential applications of inertial microfluidic cell separation systems in downstream bioprocesses and depict recent advances in inertial microfluidics for bioprocess intensification. This review thereby focusses on spiral microchannels that separate particles at a moderate Reynolds number in a laminar flow (Re < 2300) according to their size by applying lateral hydrodynamic forces. Spiral microchannels have already been shown to be capable of replacing microfilters, extracting dead cells and debris in perfusion processes, and removing contaminant microalgae species. Recent advances in parallelization made it possible to process media on a liter-scale, which might pave the way toward industrial applications.
Collapse
Affiliation(s)
- N. Herrmann
- Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, 13355 Berlin, Germany
| | - P. Neubauer
- Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, 13355 Berlin, Germany
| | - M. Birkholz
- IHP—Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
21
|
Xiang N, Wang J, Li Q, Han Y, Huang D, Ni Z. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Anal Chem 2019; 91:10328-10334. [DOI: 10.1021/acs.analchem.9b02863] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jie Wang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Qiao Li
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
22
|
Moloudi R, Oh S, Yang C, Teo KL, Lam ATL, Ebrahimi Warkiani M, Win Naing M. Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures. Biotechnol J 2019; 14:e1800674. [PMID: 30791214 DOI: 10.1002/biot.201800674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/23/2018] [Indexed: 01/09/2023]
Abstract
Recently, particle concentration and filtration using inertial microfluidics have drawn attention as an alternative to membrane and centrifugal technologies for industrial applications, where the target particle size varies between 1 µm and 500 µm. Inevitably, the bigger particle size (>50 µm) mandates scaling up the channel cross-section or hydraulic diameter (DH > 0.5 mm). The Dean-coupled inertial focusing dynamics in spiral microchannels is studied broadly; however, the impacts of secondary flow on particle migration in a scaled-up spiral channel is not fully elucidated. The mechanism of particle focusing inside scaled-up rectangular and trapezoidal spiral channels (i.e., 5-10× bigger than conventional microchannels) with an aim to develop a continuous and clog-free microfiltration system for bioprocessing is studied in detail. Herein, a unique focusing based on inflection point without the aid of sheath flow is reported. This new focusing mechanism, observed in the scaled-up channels, out-performs the conventional focusing scenarios in the previously reported trapezoidal and rectangular channels. Finally, as a proof-of-concept, the utility of this device is showcased for the first time as a retention system for a cell-microcarrier (MC) suspension culture.
Collapse
Affiliation(s)
- Reza Moloudi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798.,Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634
| | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798
| | - Kim Leng Teo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668
| | - Alan Tin-Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, Center for Health Technologies, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia.,Institute of Molecular Medicine, Sechenov University, Moscow, Russia, 119146
| | - May Win Naing
- Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634
| |
Collapse
|
23
|
Zhang X, Xia K, Ji A, Xiang N. A smart and portable micropump for stable liquid delivery. Electrophoresis 2019; 40:865-872. [DOI: 10.1002/elps.201800494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Xinjie Zhang
- College of Mechanical and Electrical Engineering; Hohai University; Changzhou P. R. China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| | - Kang Xia
- College of Mechanical and Electrical Engineering; Hohai University; Changzhou P. R. China
| | - Aimin Ji
- College of Mechanical and Electrical Engineering; Hohai University; Changzhou P. R. China
| | - Nan Xiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| |
Collapse
|
24
|
Liu N, Petchakup C, Tay HM, Li KHH, Hou HW. Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
25
|
Girault M, Beneyton T, Del Amo Y, Baret JC. Microfluidic technology for plankton research. Curr Opin Biotechnol 2018; 55:134-150. [PMID: 30326407 PMCID: PMC6378650 DOI: 10.1016/j.copbio.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Plankton produces numerous chemical compounds used in cosmetics and functional foods. They also play a key role in the carbon budget on the Earth. In a context of global change, it becomes important to understand the physiological response of these microorganisms to changing environmental conditions. Their adaptations and the response to specific environmental conditions are often restricted to a few active cells or individuals in large populations. Using analytical capabilities at the subnanoliter scale, microfluidic technology has also demonstrated a high potential in biological assays. Here, we review recent advances in microfluidic technologies to overcome the current challenges in high content analysis both at population and the single cell level.
Collapse
Affiliation(s)
- Mathias Girault
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| | - Thomas Beneyton
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| | - Yolanda Del Amo
- Université de Bordeaux - OASU, UMR CNRS 5805 EPOC (Environnements et Paléoenvironnements Océaniques et Continentaux), Station Marine d'Arcachon, 33120 Arcachon, France
| | - Jean-Christophe Baret
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France.
| |
Collapse
|
26
|
Kwon T, Yao R, Hamel JFP, Han J. Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics. LAB ON A CHIP 2018; 18:2826-2837. [PMID: 30079919 DOI: 10.1039/c8lc00250a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Removing nonviable cells from a cell suspension is crucial in biotechnology and biomanufacturing. Label-free microfluidic cell separation devices based on dielectrophoresis, acoustophoresis, and deterministic lateral displacement are used to remove nonviable cells. However, their volumetric throughputs and test cell concentrations are generally too low to be useful in typical bioreactors in biomanufacturing. In this study, we demonstrate the efficient removal of small (<10 μm) nonviable cells from bioreactors while maintaining viable cells using inertial microfluidic cell sorting devices and characterize their performance. Despite the size overlap between viable and nonviable cell populations, the devices demonstrated 3.5-28.0% dead cell removal efficiency with 88.3-83.6% removal purity as well as 97.8-99.8% live cell retention efficiency at 4 million cells per mL with 80% viability. Cascaded and parallel configurations increased the cell concentration capacity (10 million cells per mL) and volumetric throughput (6-8 mL min-1). The system can be used for the removal of small nonviable cells from a cell suspension during continuous perfusion cell culture operations.
Collapse
Affiliation(s)
- Taehong Kwon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA.
| | | | | | | |
Collapse
|
27
|
Moloudi R, Oh S, Yang C, Teo KL, Lam ATL, Warkiani ME, Naing MW. Inertial-Based Filtration Method for Removal of Microcarriers from Mesenchymal Stem Cell Suspensions. Sci Rep 2018; 8:12481. [PMID: 30127526 PMCID: PMC6102204 DOI: 10.1038/s41598-018-31019-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Rapidly evolving cell-based therapies towards clinical trials demand alternative approaches for efficient expansion of adherent cell types such as human mesenchymal stem cells (hMSCs). Using microcarriers (100-300 µm) in a stirred tank bioreactor offers considerably enhanced surface to volume ratio of culture environment. However, downstream purification of the harvested cell product needs to be addressed carefully due to distinctive features and fragility of these cell products. This work demonstrates a novel alternative approach which utilizes inertial focusing to separate microcarriers (MCs) from the final cell suspension. First, we systematically investigated MC focusing dynamics inside scaled-up curved channels with trapezoidal and rectangular cross-sections. A trapezoidal spiral channel with ultra-low-slope (Tan(α) = 0.0375) was found to contribute to strong MC focusing (~300 < Re < ~400) while managing high MC volume fractions up to ~1.68%. Accordingly, the high-throughput trapezoidal spiral channel successfully separated MCs from hMSC suspension with total cell yield~94% (after two passes) at a high volumetric flow rate of ~30 mL/min (Re~326.5).
Collapse
Affiliation(s)
- Reza Moloudi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore.,Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore
| | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kim Leng Teo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Alan Tin-Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668, Singapore
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, Center for Health Technologies, University of Technology Sydney, Sydney, Ultimo NSW, 2007, Australia. .,Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow, 119991, Russia.
| | - May Win Naing
- Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634, Singapore.
| |
Collapse
|
28
|
Abstract
Inertial microfluidics is a widely used technology which enables label-free manipulation of particles in microchannels. However, this technology has been limited to bioparticles larger than RBCs, due to the strong correlation between the inertial lift forces and the particle size. This paper presents a method to extend the capabilities of inertial microfluidics to smaller bioparticles, of which a plethora of clinically relevant types exist in the human body. Therefore, this method can be integrated with microfluidic devices for inertial manipulation of bioparticles that have defied all prior attempts, enabling a variety of applications in clinical diagnosis including cytometry of micron-scale bioparticles, isolation and characterization of pathogens and extracellular microvesicles, or phenotyping of cancer or stem cells at physiological shear stresses. Inertial microfluidics (i.e., migration and focusing of particles in finite Reynolds number microchannel flows) is a passive, precise, and high-throughput method for microparticle manipulation and sorting. Therefore, it has been utilized in numerous biomedical applications including phenotypic cell screening, blood fractionation, and rare-cell isolation. Nonetheless, the applications of this technology have been limited to larger bioparticles such as blood cells, circulating tumor cells, and stem cells, because smaller particles require drastically longer channels for inertial focusing, which increases the pressure requirement and the footprint of the device to the extent that the system becomes unfeasible. Inertial manipulation of smaller bioparticles such as fungi, bacteria, viruses, and other pathogens or blood components such as platelets and exosomes is of significant interest. Here, we show that using oscillatory microfluidics, inertial focusing in practically “infinite channels” can be achieved, allowing for focusing of micron-scale (i.e. hundreds of nanometers) particles. This method enables manipulation of particles at extremely low particle Reynolds number (Rep < 0.005) flows that are otherwise unattainable by steady-flow inertial microfluidics (which has been limited to Rep > ∼10−1). Using this technique, we demonstrated that synthetic particles as small as 500 nm and a submicron bacterium, Staphylococcus aureus, can be inertially focused. Furthermore, we characterized the physics of inertial microfluidics in this newly enabled particle size and Rep range using a Peclet-like dimensionless number (α). We experimentally observed that α >> 1 is required to overcome diffusion and be able to inertially manipulate particles.
Collapse
|
29
|
Guzniczak E, Jimenez M, Irwin M, Otto O, Willoughby N, Bridle H. Impact of poloxamer 188 (Pluronic F-68) additive on cell mechanical properties, quantification by real-time deformability cytometry. BIOMICROFLUIDICS 2018; 12:044118. [PMID: 30867863 PMCID: PMC6404947 DOI: 10.1063/1.5040316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/03/2018] [Indexed: 06/09/2023]
Abstract
Advances in cellular therapies have led to the development of new approaches for cell product purification and formulation, e.g., utilizing cell endogenous properties such as size and deformability as a basis for separation from potentially harmful undesirable by-products. However, commonly used additives such as Pluronic F-68 and other poloxamer macromolecules can change the mechanical properties of cells and consequently alter their processing. In this paper, we quantified the short-term effect of Pluronic F-68 on the mechanotype of three different cell types (Jurkat cells, red blood cells, and human embryonic kidney cells) using real-time deformability cytometry. The impact of the additive concentration was assessed in terms of cell size and deformability. We observed that cells respond progressively to the presence of Pluronic F-68 within first 3 h of incubation and become significantly stiffer (p-value < 0.001) in comparison to a serum-free control and a control containing serum. We also observed that the short-term response manifested as cell stiffening is true (p-value < 0.001) for the concentration reaching 1% (w/v) of the poloxamer additive in tested buffers. Additionally, using flow cytometry, we assessed that changes in cell deformability triggered by addition of Pluronic F-68 are not accompanied by size or viability alterations.
Collapse
Affiliation(s)
- Ewa Guzniczak
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | - Melanie Jimenez
- School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Matthew Irwin
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | - Oliver Otto
- ZIK HIKE, Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, Biomechanics, University of Greifswald, Fleischmannstraße 42-44, 17489 Greifswald, Germany
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | - Helen Bridle
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
30
|
Guzniczak E, Mohammad Zadeh M, Dempsey F, Jimenez M, Bock H, Whyte G, Willoughby N, Bridle H. High-throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing. Sci Rep 2017; 7:14457. [PMID: 29089557 PMCID: PMC5663858 DOI: 10.1038/s41598-017-14958-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
Stem cell products, including manufactured red blood cells, require efficient sorting and purification methods to remove components potentially harmful for clinical application. However, standard approaches for cellular downstream processing rely on the use of specific and expensive labels (e.g. FACS or MACS). Techniques relying on inherent mechanical and physical properties of cells offer high-throughput scalable alternatives but knowledge of the mechanical phenotype is required. Here, we characterized for the first time deformability and size changes in CD34+ cells, and expelled nuclei, during their differentiation process into red blood cells at days 11, 14, 18 and 21, using Real-Time Deformability Cytometry (RT-DC) and Atomic Force Microscopy (AFM). We found significant differences (p < 0.0001; standardised mixed model) between the deformability of nucleated and enucleated cells, while they remain within the same size range. Expelled nuclei are smaller thus could be removed by size-based separation. An average Young's elastic modulus was measured for nucleated cells, enucleated cells and nuclei (day 14) of 1.04 ± 0.47 kPa, 0.53 ± 0.12 kPa and 7.06 ± 4.07 kPa respectively. Our identification and quantification of significant differences (p < 0.0001; ANOVA) in CD34+ cells mechanical properties throughout the differentiation process could enable development of new routes for purification of manufactured red blood cells.
Collapse
Affiliation(s)
- Ewa Guzniczak
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland.
| | - Maryam Mohammad Zadeh
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland
| | - Fiona Dempsey
- MedAnnex Ltd, 1 Summerhall Place, Techcube 3.5, Edinburgh, EH9 1PL, Scotland
| | - Melanie Jimenez
- University of Glasgow, School of Engineering, Biomedical Engineering Division, Glasgow, G12 8QQ, Scotland
| | - Henry Bock
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland
| | - Graeme Whyte
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland
| | - Nicholas Willoughby
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland
| | - Helen Bridle
- Heriot-Watt University, School of Engineering and Physical Science, Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, Edinburgh, EH14 4AS, Scotland
| |
Collapse
|
31
|
Kwon T, Prentice H, Oliveira JD, Madziva N, Warkiani ME, Hamel JFP, Han J. Microfluidic Cell Retention Device for Perfusion of Mammalian Suspension Culture. Sci Rep 2017; 7:6703. [PMID: 28751635 PMCID: PMC5532224 DOI: 10.1038/s41598-017-06949-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Continuous production of biologics, a growing trend in the biopharmaceutical industry, requires a reliable and efficient cell retention device that also maintains cell viability. Current filtration methods, such as tangential flow filtration using hollow-fiber membranes, suffer from membrane fouling, leading to significant reliability and productivity issues such as low cell viability, product retention, and an increased contamination risk associated with filter replacement. We introduce a novel cell retention device based on inertial sorting for perfusion culture of suspended mammalian cells. The device was characterized in terms of cell retention capacity, biocompatibility, scalability, and long-term reliability. This technology was demonstrated using a high concentration (>20 million cells/mL) perfusion culture of an IgG1-producing Chinese hamster ovary (CHO) cell line for 18-25 days. The device demonstrated reliable and clog-free cell retention, high IgG1 recovery (>99%) and cell viability (>97%). Lab-scale perfusion cultures (350 mL) were used to demonstrate the technology, which can be scaled-out with parallel devices to enable larger scale operation. The new cell retention device is thus ideal for rapid perfusion process development in a biomanufacturing workflow.
Collapse
Affiliation(s)
- Taehong Kwon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Jonas De Oliveira
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nyasha Madziva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Majid Ebrahimi Warkiani
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Jean-François P Hamel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|