1
|
Yan G, Ma X, Huang W, Wang C, Han Y, Wang S, Liu H, Zhang M. Decoding the complexity of coding and non-coding RNAs across maize anther development at the isoform level. J Genet Genomics 2025:S1673-8527(25)00149-3. [PMID: 40383373 DOI: 10.1016/j.jgg.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2025] [Revised: 05/10/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Anther is a key male reproductive organ that is essential for the plant life cycle, from the sporophyte to the gametophyte generation. To explore isoform-level transcriptional landscape of developing anthers in maize (Zea mays L.), we analyzed Iso-Seq data from anthers collected at 10 developmental stages, together with strand-specific RNA-seq, CAGE-seq, and PAS-seq data. Of the 152,026 high-confidence full-length isoforms identified, 68.8% have not been described; these include 22,365 isoforms that originate from previously unannotated loci and 82,167 novel isoforms that originate from annotated protein-coding genes. Using our newly developed strategy to detect dynamic expression patterns of isoforms, we identified 13,899 differentially variable regions (DVRs); surprisingly, 1,275 genes contain more than two DVRs, revealing highly efficient utilization of limited genic regions. We identified 7,876 long non-coding RNAs (lncRNAs) from 4,098 loci, most of which were preferentially expressed during cell differentiation and meiosis. We also detected 371 long-range interactions involving intergenic lncRNAs (lincRNAs); interestingly, 243 were lincRNA-gene ones, and the interacting genes were highly expressed in anthers, suggesting that many potential lncRNA regulators of key genes are required for anther development. This study provides valuable resources and fundamental information for studying the essential transcripts of key genes during anther development.
Collapse
Affiliation(s)
- Ge Yan
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuxu Ma
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Chunyu Wang
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjia Han
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Shufang Wang
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Han Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Mei Zhang
- Key Laboratory of Forage Breeding-by-Design and Utilization, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Ding C, Chen G, Luan S, Gao R, Fan Y, Zhang Y, Wang X, Li G, Foda MF, Yan J, Li X. Simultaneous profiling of chromatin-associated RNA at targeted DNA loci and RNA-RNA Interactions through TaDRIM-seq. Nat Commun 2025; 16:1500. [PMID: 39929795 PMCID: PMC11811046 DOI: 10.1038/s41467-024-53534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/09/2024] [Indexed: 02/13/2025] Open
Abstract
Eukaryotic genomes are extensively transcribed into various types of RNAs, many of which are physically associated with chromatin in cis at their transcription sites or in trans to other genomic loci. Emerging roles have been uncovered for these chromatin-associated RNAs (caRNAs) in gene regulation and genome organization, yet they remain challenging to interrogate. Here, we present TaDRIM-seq, a technique employing Protein G (PG)-Tn5-targeted DNA elements and in situ proximity ligation to concurrently probe caRNAs across diverse genomic regions as well as global RNA-RNA interactions within intact nuclei. Notably, this approach diminishes required cell inputs, minimizes hands-on time compared to established methodologies, and is compatible in both mammalian cells and plants. Using this technique, we identify extensive caRNAs at DNA anchor regions associated with chromatin loops and reveal diurnal variation in RNA-DNA and RNA-RNA connectivity networks within rice.
Collapse
Affiliation(s)
- Cheng Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Shiping Luan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Runxin Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yudong Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaoting Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
| | - Mohamed F Foda
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh13736, Egypt
| | - Jiapei Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Zhang D, Xue J, Peng F. The regulatory activities of MALAT1 in the development of bone and cartilage diseases. Front Endocrinol (Lausanne) 2022; 13:1054827. [PMID: 36452326 PMCID: PMC9701821 DOI: 10.3389/fendo.2022.1054827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been comprehensively implicated in various cellular functions by mediating transcriptional or post-transcriptional activities. MALAT1 is involved in the differentiation, proliferation, and apoptosis of multiple cell lines, including BMSCs, osteoblasts, osteoclasts, and chondrocytes. Interestingly, MALAT1 may interact with RNAs or proteins, regulating cellular processes. Recently, MALAT1 has been reported to be associated with the development of bone and cartilage diseases by orchestrating the signaling network. The involvement of MALAT1 in the pathological development of bone and cartilage diseases makes it available to be a potential biomarker for clinical diagnosis or prognosis. Although the potential mechanisms of MALAT1 in mediating the cellular processes of bone and cartilage diseases are still needed for further elucidation, MALAT1 shows great promise for drug development.
Collapse
Affiliation(s)
- Di Zhang
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Fang Peng
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Fang Peng,
| |
Collapse
|
4
|
Macino M, Biferali B, Cipriano A, Ballarino M, Mozzetta C. Targeting the Expression of Long Noncoding RNAs in Murine Satellite Cells from Single Myofibers. Bio Protoc 2021; 11:e4209. [PMID: 34859124 DOI: 10.21769/bioprotoc.4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 11/02/2022] Open
Abstract
LncRNAs have been recently implicated in the epigenetic control of muscle differentiation and their functional characterization has traditionally relied upon in vitro models of myogenic differentiation. However, the use of experimental paradigms to specifically target lncRNAs expression in muscle stem cells (MuSCs), also known as satellite cells, represents an important requisite to interrogate their function in more physiological contexts. Since isolation and culture of single myofibers preserves satellite cells within their physiological niche underneath the surrounding basal lamina, this procedure represents the optimal approach to follow satellite cell dynamics ex-vivo, such as activation from quiescence, expansion of committed progenitors, differentiation, and self-renewal. Here, we detail an optimized protocol to isolate viable single myofibers from the extensor digitorum longus (EDL) skeletal muscle of adult mice and to manipulate the expression of lncRNAs by antisense LNA GapmeRs-mediated knock-down (KD). Furthermore, we describe a method of EdU incorporation that, coupled to lncRNA KD and subsequent immunofluorescence analysis of proliferating, differentiating, and satellite cell-specific markers, permits the inference of lncRNAs function on muscle stem cells dynamics. Graphic abstract: Graphical representation of the single myofiber isolation method. Experimental workflow showing the main steps of the protocol procedure: EDL muscle harvesting from the mouse hindlimb; EDL digestion into single myofibers; transfection with antisense oligos and culture for 96h; immunofluorescence protocol and image outcome.
Collapse
Affiliation(s)
- Martina Macino
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) at Sapienza University of Rome, Rome, Italy.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Beatrice Biferali
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) at Sapienza University of Rome, Rome, Italy.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Andrea Cipriano
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) at Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
6
|
Yeasmin F, Imamachi N, Tanu T, Taniue K, Kawamura T, Yada T, Akimitsu N. Identification and analysis of short open reading frames (sORFs) in the initially annotated noncoding RNA LINC00493 from human cells. J Biochem 2021; 169:421-434. [PMID: 33386847 DOI: 10.1093/jb/mvaa143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Whole transcriptome analyses have revealed that mammalian genomes are massively transcribed, resulting in the production of huge numbers of transcripts with unknown functions (TUFs). Previous research has categorized most TUFs as noncoding RNAs (ncRNAs) because most previously studied TUFs do not encode open reading frames (ORFs) with biologically significant lengths [>100 amino acids (AAs)]. Recent studies, however, have reported that several transcripts harbouring small ORFs that encode peptides shorter than 100 AAs are translated and play important biological functions. Here, we examined the translational capacity of transcripts annotated as ncRNAs in human cells, and identified several hundreds of ribosome-associated transcripts previously annotated as ncRNAs. Ribosome footprinting and polysome profiling analyses revealed that 61 of them are potentially translatable. Among them, 45 were nonnonsense-mediated mRNA decay targets, suggesting that they are productive mRNAs. We confirmed the translation of one ncRNA, LINC00493, by luciferase reporter assaying and western blotting of a FLAG-tagged LINC00493 peptide. While proteomic analysis revealed that the LINC00493 peptide interacts with many mitochondrial proteins, immunofluorescence assays showed that its peptide is mitochondrially localized. Our findings indicate that some transcripts annotated as ncRNAs encode peptides and that unannotated peptides may perform important roles in cells.
Collapse
Affiliation(s)
- Fouzia Yeasmin
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Naoto Imamachi
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Tanzina Tanu
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Tetsushi Yada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| |
Collapse
|
7
|
Liu S, Harmston N, Glaser TL, Wong Y, Zhong Z, Madan B, Virshup DM, Petretto E. Wnt-regulated lncRNA discovery enhanced by in vivo identification and CRISPRi functional validation. Genome Med 2020; 12:89. [PMID: 33092630 PMCID: PMC7580003 DOI: 10.1186/s13073-020-00788-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Wnt signaling is an evolutionarily conserved developmental pathway that is frequently hyperactivated in cancer. While multiple protein-coding genes regulated by Wnt signaling are known, the functional lncRNAs regulated by Wnt signaling have not been systematically characterized. METHODS We comprehensively mapped Wnt-regulated lncRNAs from an orthotopic Wnt-addicted pancreatic cancer model and examined the response of lncRNAs to Wnt inhibition between in vivo and in vitro cancer models. We further annotated and characterized these Wnt-regulated lncRNAs using existing genomic classifications (using data from FANTOM5) in the context of Wnt signaling and inferred their role in cancer pathogenesis (using GWAS and expression data from the TCGA). To functionally validate Wnt-regulated lncRNAs, we performed CRISPRi screens to assess their role in cancer cell proliferation both in vivo and in vitro. RESULTS We identified 3633 lncRNAs, of which 1503 were regulated by Wnt signaling in an orthotopic Wnt-addicted pancreatic cancer model. These lncRNAs were much more sensitive to changes in Wnt signaling in xenografts than in cultured cells. Our analysis suggested that Wnt signaling inhibition could influence the co-expression relationship of Wnt-regulated lncRNAs and their eQTL-linked protein-coding genes. Wnt-regulated lncRNAs were also implicated in specific gene networks involved in distinct biological processes that contribute to the pathogenesis of cancers. Consistent with previous genome-wide lncRNA CRISPRi screens, around 1% (13/1503) of the Wnt-regulated lncRNAs were found to modify cancer cell growth in vitro. This included CCAT1 and LINC00263, previously reported to regulate cancer growth. Using an in vivo CRISPRi screen, we doubled the discovery rate, identifying twice as many Wnt-regulated lncRNAs (25/1503) that had a functional effect on cancer cell growth. CONCLUSIONS Our study demonstrates the value of studying lncRNA functions in vivo, provides a valuable resource of lncRNAs regulated by Wnt signaling, and establishes a framework for systematic discovery of functional lncRNAs.
Collapse
Affiliation(s)
- Shiyang Liu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | | | - Trudy Lee Glaser
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yunka Wong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Zheng Zhong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
- MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
8
|
Rzeszutek I, Singh A. Small RNAs, Big Diseases. Int J Mol Sci 2020; 21:E5699. [PMID: 32784829 PMCID: PMC7460979 DOI: 10.3390/ijms21165699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
The past two decades have seen extensive research done to pinpoint the role of microRNAs (miRNAs) that have led to discovering thousands of miRNAs in humans. It is not, therefore, surprising to see many of them implicated in a number of common as well as rare human diseases. In this review article, we summarize the progress in our understanding of miRNA-related research in conjunction with different types of cancers and neurodegenerative diseases, as well as their potential in generating more reliable diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aditi Singh
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Arun G, Aggarwal D, Spector DL. MALAT1 Long Non-Coding RNA: Functional Implications. Noncoding RNA 2020; 6:E22. [PMID: 32503170 PMCID: PMC7344863 DOI: 10.3390/ncrna6020022] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
The mammalian genome is pervasively transcribed and the functional significance of many long non-coding RNA (lncRNA) transcripts are gradually being elucidated. Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is one of the most well-studied lncRNAs. MALAT1 is a highly conserved nuclear retained lncRNA that is abundantly expressed in cells and tissues and has been shown to play a role in regulating genes at both the transcriptional and post-transcriptional levels in a context-dependent manner. However, Malat1 has been shown to be dispensable for normal development and viability in mice. Interestingly, accumulating evidence suggests that MALAT1 plays an important role in numerous diseases including cancer. Here, we discuss the current state-of-knowledge in regard to MALAT1 with respect to its function, role in diseases, and the potential therapeutic opportunities for targeting MALAT1 using antisense oligonucleotides and small molecules.
Collapse
Affiliation(s)
- Gayatri Arun
- Envisagenics, 101 Avenue of the Americas, New York, NY 10013, USA;
| | - Disha Aggarwal
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, NY 11794, USA;
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - David L. Spector
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, NY 11794, USA;
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| |
Collapse
|
10
|
Yamazaki T, Nakagawa S, Hirose T. Architectural RNAs for Membraneless Nuclear Body Formation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:227-237. [PMID: 32019862 DOI: 10.1101/sqb.2019.84.039404] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) are fundamental regulators of various cellular processes. A subset of lncRNAs, termed architectural RNAs (arcRNAs), function in the formation and maintenance of phase-separated membraneless organelles in multiple eukaryotic species. These membraneless organelles represent an important type of compartmentalization in the crowded cellular environment and have several distinct features. The NEAT1_2 lncRNA is a well-characterized arcRNA that functions as an essential scaffold of paraspeckle nuclear bodies. Here, we describe the biogenesis of paraspeckles on arcRNAs through phase separation, focusing on the specific functions of multiple NEAT1_2 RNA domains and their partner RNA-binding proteins. Finally, we present an updated model of paraspeckle formation and discuss future perspectives of research into arcRNA-instructed architectures of phase-separated nuclear bodies.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815 Japan
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812 Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815 Japan
| |
Collapse
|
11
|
Wang R, Nakshatri H. Systemic Actions of Breast Cancer Facilitate Functional Limitations. Cancers (Basel) 2020; 12:cancers12010194. [PMID: 31941005 PMCID: PMC7016719 DOI: 10.3390/cancers12010194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a disease of a specific organ, but its effects are felt throughout the body. The systemic effects of breast cancer can lead to functional limitations in patients who suffer from muscle weakness, fatigue, pain, fibromyalgia, or many other dysfunctions, which hasten cancer-associated death. Mechanistic studies have identified quite a few molecular defects in skeletal muscles that are associated with functional limitations in breast cancer. These include circulating cytokines such as TNF-α, IL-1, IL-6, and TGF-β altering the levels or function of myogenic molecules including PAX7, MyoD, and microRNAs through transcriptional regulators such as NF-κB, STAT3, and SMADs. Molecular defects in breast cancer may also include reduced muscle mitochondrial content and increased extracellular matrix deposition leading to energy imbalance and skeletal muscle fibrosis. This review highlights recent evidence that breast cancer-associated molecular defects mechanistically contribute to functional limitations and further provides insights into therapeutic interventions in managing functional limitations, which in turn may help to improve quality of life in breast cancer patients.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-278-2238
| |
Collapse
|
12
|
Thiel D, Conrad ND, Ntini E, Peschutter RX, Siebert H, Marsico A. Identifying lncRNA-mediated regulatory modules via ChIA-PET network analysis. BMC Bioinformatics 2019; 20:292. [PMID: 31142264 PMCID: PMC6540383 DOI: 10.1186/s12859-019-2900-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Although several studies have provided insights into the role of long non-coding RNAs (lncRNAs), the majority of them have unknown function. Recent evidence has shown the importance of both lncRNAs and chromatin interactions in transcriptional regulation. Although network-based methods, mainly exploiting gene-lncRNA co-expression, have been applied to characterize lncRNA of unknown function by means of ’guilt-by-association’, no strategy exists so far which identifies mRNA-lncRNA functional modules based on the 3D chromatin interaction graph. Results To better understand the function of chromatin interactions in the context of lncRNA-mediated gene regulation, we have developed a multi-step graph analysis approach to examine the RNA polymerase II ChIA-PET chromatin interaction network in the K562 human cell line. We have annotated the network with gene and lncRNA coordinates, and chromatin states from the ENCODE project. We used centrality measures, as well as an adaptation of our previously developed Markov State Models (MSM) clustering method, to gain a better understanding of lncRNAs in transcriptional regulation. The novelty of our approach resides in the detection of fuzzy regulatory modules based on network properties and their optimization based on co-expression analysis between genes and gene-lncRNA pairs. This results in our method returning more bona fide regulatory modules than other state-of-the art approaches for clustering on graphs. Conclusions Interestingly, we find that lncRNA network hubs tend to be significantly enriched in evolutionary conserved lncRNAs and enhancer-like functions. We validated regulatory functions for well known lncRNAs, such as MALAT1 and the enhancer-like lncRNA FALEC. In addition, by investigating the modular structure of bigger components we mine putative regulatory functions for uncharacterized lncRNAs. Electronic supplementary material The online version of this article (10.1186/s12859-019-2900-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Thiel
- Max Planck Institute for Molecular Genetics, Berlin, Ihnestraße 63-73, Berlin, 14195, Germany
| | | | - Evgenia Ntini
- Max Planck Institute for Molecular Genetics, Berlin, Ihnestraße 63-73, Berlin, 14195, Germany.,Department of Mathematics and Informatics, Freie Universität, Berlin, Arnimallee 7, Berlin, 14195, Germany
| | - Ria X Peschutter
- Max Planck Institute for Molecular Genetics, Berlin, Ihnestraße 63-73, Berlin, 14195, Germany
| | - Heike Siebert
- Department of Mathematics and Informatics, Freie Universität, Berlin, Arnimallee 7, Berlin, 14195, Germany
| | - Annalisa Marsico
- Max Planck Institute for Molecular Genetics, Berlin, Ihnestraße 63-73, Berlin, 14195, Germany. .,Department of Mathematics and Informatics, Freie Universität, Berlin, Arnimallee 7, Berlin, 14195, Germany. .,Institute of Computational Biology (ICB), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Oberschleißheim, 85764, Germany.
| |
Collapse
|
13
|
Discovery, Identification, and Functional Characterization of Plant Long Intergenic Noncoding RNAs After Virus Infection. Methods Mol Biol 2019. [PMID: 30945185 DOI: 10.1007/978-1-4939-9045-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Long intergenic noncoding RNAs (lincRNAs), which possess diverse features such as remodeling chromatin and genome architecture, RNA stabilization, and genome architecture, are important regulatory factors in plant genomes. They serve to fine-tune the expression of neighboring genes. Here, we describe a procedure of discovery, identification, and functional characterization of plant lincRNAs after virus infection. From high-throughput RNA-Seq transcriptome analysis, the noncoding RNA transcripts with significant fold changes (upregulation or downregulation) will be discovered and identified. The lincRNA of interest will be further confirmed and validated using rapid amplification of cDNA ends (RACE). In addition, functional characterization of the lincRNA will be followed up through overexpression and knockdown strategies.
Collapse
|
14
|
Giral H, Landmesser U, Kratzer A. Into the Wild: GWAS Exploration of Non-coding RNAs. Front Cardiovasc Med 2018; 5:181. [PMID: 30619888 PMCID: PMC6304420 DOI: 10.3389/fcvm.2018.00181] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/03/2018] [Indexed: 01/16/2023] Open
Abstract
Genome-wide association studies (GWAS) have proven a fundamental tool to identify common variants associated to complex traits, thus contributing to unveil the genetic components of human disease. Besides, the advent of GWAS contributed to expose unexpected findings that urged to redefine the framework of population genetics. First, loci identified by GWAS had small effect sizes and could only explain a fraction of the predicted heritability of the traits under study. Second, the majority of GWAS hits mapped within non-coding regions (such as intergenic or intronic regions) where new functional RNA species (such as lncRNAs or circRNAs) have started to emerge. Bigger cohorts, meta-analysis and technical improvements in genotyping allowed identification of an increased number of genetic variants associated to coronary artery disease (CAD) and cardiometabolic traits. The challenge remains to infer causal mechanisms by which these variants influence cardiovascular disease development. A tendency to assign potential causal variants preferentially to coding genes close to lead variants contributed to disregard the role of non-coding elements. In recent years, in parallel to an increased knowledge of the non-coding genome, new studies started to characterize disease-associated variants located within non-coding RNA regions. The upcoming of databases integrating single-nucleotide polymorphisms (SNPs) and non-coding RNAs together with novel technologies will hopefully facilitate the discovery of causal non-coding variants associated to disease. This review attempts to summarize the current knowledge of genetic variation within non-coding regions with a focus on long non-coding RNAs that have widespread impact in cardiometabolic diseases.
Collapse
Affiliation(s)
- Hector Giral
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Adelheid Kratzer
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
15
|
Li C, Zou C, Cui Y, Fu Y, Fang C, Li Y, Li J, Wang W, Xiang H, Li C. Genome-wide epigenetic landscape of pig lincRNAs and their evolution during porcine domestication. Epigenomics 2018; 10:1603-1618. [PMID: 30371096 DOI: 10.2217/epi-2017-0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM We aimed to identify previously unreported long intergenic noncoding RNAs (lincRNAs) in the porcine liver, an important metabolic tissue, and further illustrate the epigenomic landscapes and the evolution of lincRNAs. MATERIALS & METHODS We used porcine omics data and comprehensively analyzed and identified lincRNAs and their methylation, expression and evolutionary patterns during pig domestication. RESULTS LincRNAs exhibit highly methylated promoter and downstream regions, as well as lower expression levels and higher tissue specificity than protein-coding genes. We identified a batch of lincRNAs with selection signals that are associated with pig domestication, which are more highly expressed in the liver than in other tissues (19:10/8/6/3/2/1/1). Interestingly, the lincRNA linc-sscg1779 and its target gene C6, which is crucial in liver metabolism, are differentially expressed during pig domestication. CONCLUSION Although they may originate from noisy transcripts, lincRNAs may be subjected to artificial selection. This phenomenon implies the functional importance of lincRNAs in pig domestication.
Collapse
Affiliation(s)
- Cencen Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Cheng Zou
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yong Cui
- Guangzhou Key Laboratory of Insect Development Regulation & Application Research, Institute of Insect Science & Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yuhua Fu
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yao Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jingxuan Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Poly-technical University, Xi'an, 710072, PR China
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation & Application Research, Institute of Insect Science & Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, & Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
16
|
LncRNAs in TGF-β-Driven Tissue Fibrosis. Noncoding RNA 2018; 4:ncrna4040026. [PMID: 30287731 PMCID: PMC6315857 DOI: 10.3390/ncrna4040026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/22/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a crucial mediator in tissue fibrosis that promotes accumulation of extracellular matrix (ECM), myofibroblasts to epithelial–mesenchymal transition (EMT), endothelial-mesenchymal transition (EndoMT), and apoptosis via canonical and noncanonical signaling pathways. In the past decades, a number of microRNAs have been reported to participate in TGF-β-mediated tissue scarring; however, the roles of long noncoding RNAs (lncRNAs) in fibrogenesis remain largely unknown. Recently, emerging evidence has shown that lncRNAs are involved in the development of different diseases, including cancer, autoimmune diseases, cardiovascular diseases, and fibrotic diseases. In this review, we summarize the current updates of lncRNAs in TGF-β1-driven tissue fibrosis and discuss their therapeutic potential for the treatment of chronic fibrotic diseases.
Collapse
|
17
|
Wang Z, Cunningham JM, Yang XH. CisPi: a transcriptomic score for disclosing cis-acting disease-associated lincRNAs. Bioinformatics 2018; 34:i664-i670. [PMID: 30423099 PMCID: PMC6129262 DOI: 10.1093/bioinformatics/bty574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation Long intergenic noncoding RNAs (lincRNAs) have risen to prominence in cancer biology as new biomarkers of disease. Those lincRNAs transcribed from active cis-regulatory elements (enhancers) have provided mechanistic insight into cis-acting regulation; however, in the absence of an enhancer hallmark, computational prediction of cis-acting transcription of lincRNAs remains challenging. Here, we introduce a novel transcriptomic method: a cis-regulatory lincRNA-gene associating metric, termed 'CisPi'. CisPi quantifies the mutual information between lincRNAs and local gene expression regarding their response to perturbation, such as disease risk-dependence. To predict risk-dependent lincRNAs in neuroblastoma, an aggressive pediatric cancer, we advance this scoring scheme to measure lincRNAs that represent the minority of reads in RNA-Seq libraries by a novel side-by-side analytical pipeline. Results Altered expression of lincRNAs that stratifies tumor risk is an informative readout of oncogenic enhancer activity. Our CisPi metric therefore provides a powerful computational model to identify enhancer-templated RNAs (eRNAs), eRNA-like lincRNAs, or active enhancers that regulate the expression of local genes. First, risk-dependent lincRNAs revealed active enhancers, over-represented neuroblastoma susceptibility loci, and uncovered novel clinical biomarkers. Second, the prioritized lincRNAs were significantly prognostic. Third, the predicted target genes further inherited the prognostic significance of these lincRNAs. In sum, RNA-Seq alone is sufficient to identify disease-associated lincRNAs using our methodologies, allowing broader applications to contexts in which enhancer hallmarks are not available or show limited sensitivity. Availability and implementation The source code is available on request. The prioritized lincRNAs and their target genes are in the Supplementary Material. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhezhen Wang
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | | | - Xinan H Yang
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Petros Z, Lee MTM, Takahashi A, Zhang Y, Yimer G, Habtewold A, Schuppe-Koistinen I, Mushiroda T, Makonnen E, Kubo M, Aklillu E. Genome-Wide Association and Replication Study of Hepatotoxicity Induced by Antiretrovirals Alone or with Concomitant Anti-Tuberculosis Drugs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:207-216. [PMID: 28388302 DOI: 10.1089/omi.2017.0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug-induced hepatotoxicity (DIH) is a common adverse event that is associated with both antiretroviral (ARV) and anti-tuberculosis drugs (ATD). Moreover, the genetic variations predisposing ARV- and ARV-ATD-induced liver toxicity in African populations are not well investigated, despite the two diseases being the major global health problems in sub-Saharan Africa. We performed a genome-wide association study (GWAS) and replication study to identify the genetic variants linked to the risk of developing DIH due to ARV drugs alone, and ARV-ATD co-treatment in Ethiopian HIV-positive patients. Treatment-naïve newly diagnosed HIV patients (n = 719) with or without tuberculosis (TB) co-infection were enrolled prospectively and received efavirenz-based ARV therapy with or without rifampicin-based short course ATD, respectively. Whole-genome genotyping was performed by using the Illumina Omni Express Exome Bead Chip genotyping array with 951,117 single nucleotide polymorphisms (SNPs) on a total of 41 cases of DIH, and 452 people without DIH (treatment tolerants). The replication study was carried out for 100 SNPs with the lowest p-values (top SNPs) by using an independent cohort consisting of 18 DIH cases and 208 treatment tolerants. We identified a missense SNP rs199650082 (2756G→A, R919Q, p = 1.4 × 10-6, odds ratio [OR] = 18.2, 95% confidence interval [CI] = 7.1-46.9) in an endoplasmic reticulum to the nucleus signaling-1 (ERN1) gene on chromosome 17 to be associated with DIH in the ARV-only cohort. In the ARV-ATD co-treatment groups, rs4842407, a long intergenic noncoding RNAs (lincRNAs) transcript variant on chromosome 12, was associated with DIH (p = 5.3 × 10-7, OR = 5.4, 95% CI = 2.8-10.3). These genetic variants that are putatively associated with DIH due to ARV drugs alone and ARV-ATD co-treatment establish a foundation for future personalized medicine in people with HIV and TB and call for larger studies in independent populations.
Collapse
Affiliation(s)
- Zelalem Petros
- 1 Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan .,2 Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University , Addis Ababa, Ethiopia
| | - Ming Ta Michael Lee
- 1 Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Atsushi Takahashi
- 3 Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Yanfei Zhang
- 1 Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Getnet Yimer
- 2 Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University , Addis Ababa, Ethiopia
| | - Abiy Habtewold
- 2 Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University , Addis Ababa, Ethiopia
| | - Ina Schuppe-Koistinen
- 4 Department of Physiology and Pharmacology, Science for Life Laboratory, Karolinska Institutet , Stockholm, Sweden
| | - Taisei Mushiroda
- 5 Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Eyasu Makonnen
- 2 Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University , Addis Ababa, Ethiopia
| | - Michiaki Kubo
- 6 Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences , Yokohama, Japan
| | - Eleni Aklillu
- 7 Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge C1:68 , KarolinskaInstitutet, Stockholm, Sweden
| |
Collapse
|
19
|
Gonçalves TJ, Armand AS. Non-coding RNAs in skeletal muscle regeneration. Noncoding RNA Res 2017; 2:56-67. [PMID: 30159421 PMCID: PMC6096429 DOI: 10.1016/j.ncrna.2017.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 01/09/2023] Open
Abstract
Following injury, skeletal muscles can regenerate from muscle specific stem cells, called satellite cells. Quiescent in uninjured muscles, satellite cells become activated, proliferate and differentiate into myotubes. Muscle regeneration occurs following distinct main overlapping phases, including inflammation, regeneration and maturation of the regenerated myofibers. Each step of muscle regeneration is orchestrated through complex signaling networks and gene regulatory networks, leading to the expression of specific set of genes in each concerned cell type. Apart from the well-established transcriptional mechanisms involving the myogenic regulatory factors of the MyoD family, increasing data indicate that each step of muscle regeneration is controlled by a wide range of non-coding RNAs. In this review, we discuss the role of two classes of non-coding RNAs (microRNAs and long non-coding RNAs) in the inflammatory, regeneration and maturation steps of muscle regeneration.
Collapse
Affiliation(s)
- Tristan J.M. Gonçalves
- Institut Necker-Enfants Malades, Inserm, U1151, 14 rue Maria Helena Vieira Da Silva, CS 61431, Paris, F-75014, France
- INSERM UMRS 1124, 45 rue des Saints-Pères, F-75270 Paris cedex 06, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Sophie Armand
- Institut Necker-Enfants Malades, Inserm, U1151, 14 rue Maria Helena Vieira Da Silva, CS 61431, Paris, F-75014, France
- INSERM UMRS 1124, 45 rue des Saints-Pères, F-75270 Paris cedex 06, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
20
|
Niu CS, Li Y, Liu YB, Ma SG, Liu F, Li L, Xu S, Wang XJ, Liu S, Wang RB, Qu J, Yu SS. Biological and chemical guided isolation of 3,4-secograyanane diterpenoids from the roots of Pieris formosa. RSC Adv 2017. [DOI: 10.1039/c7ra08635k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Seventeen new 3,4-secograyanoids (1–17), together with seven known compounds (18–24), were isolated from the roots of Pieris formosa.
Collapse
|