1
|
Lun X, Wang Y, Zhao N, Yue Y, Meng F, Liu Q, Song X, Liang Y, Lu L. Metabolism and immune responses of striped hamsters to ectoparasite challenges: insights from transcriptomic analysis. Front Immunol 2024; 15:1516382. [PMID: 39723213 PMCID: PMC11669363 DOI: 10.3389/fimmu.2024.1516382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The striped hamster, often parasitized by ectoparasites in nature, is an ideal model for studying host-ectoparasite molecular interactions. Investigating the response to ectoparasites under laboratory conditions helps elucidate the mechanism of host adaptations to ectoparasite pressure. Methods Using transcriptome sequencing, we analyzed gene expression in striped hamsters after short-term (3 days) and long-term (28 days) flea (Xenopsylla cheopis) parasitism. Differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Hub genes were pinpointed using protein-protein interaction (PPI) network analysis and the MCODE in Cytoscape. Gene Set Enrichment Analysis (GSEA) was used to further clarify the functional pathways of these hub genes. Validation of DEGs was performed via RT-qPCR. Additionally, the concentrations of reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were determined using specific enzyme-linked immunosorbent assay (ELISA) detection kits for hamsters. Results GO analysis revealed that during early parasitism, hosts primarily responded to the ectoparasites by adjusting the expression of genes related to metabolic functions. As parasitism persisted, the immune response became prominent, activating various immune pathways against ectoparasites. KEGG analysis confirmed the ongoing roles of metabolism and immunity. Notably, the chemical carcinogenesis - reactive oxygen species pathway was upregulated during flea parasitism, with downregulation of hub genes ATP5MC1 and ATP5MC2, highlighting the importance of mitochondrial function in oxidative stress. ELISA findings revealed that on day 3, flea parasitism groups showed elevated ROS expression and reduced SOD and CAT levels compared to the control group. By day 28, only SOD expression showed a significant decrease in both parasitism groups. Conclusion This study uncovered the dynamic changes in metabolism and immune responses of striped hamsters parasitized by Xenopsylla cheopis. Hosts adjust their physiological and immune states to optimize survival strategies during different ectoparasite stages, enhancing our understanding of host-ectoparasite interactions. This also paves the way for further research into how hosts regulate complex biological processes in response to ectoparasite challenges.
Collapse
Affiliation(s)
- Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiguan Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujuan Yue
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fengxia Meng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuping Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Lun X, Shi Y, Wang Y, Zhao N, Liu Q, Meng F, Song X, Wang J, Lu L. Transcriptome analysis of Kunming mice responses to the bite of Xenopsylla cheopis. Parasit Vectors 2024; 17:250. [PMID: 38849919 PMCID: PMC11157846 DOI: 10.1186/s13071-024-06331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Flea bites could trigger a series of complex molecular responses in the host. However, our understanding of the responses at the molecular level is still relatively limited. This study quantifies the changes in gene expression in mice after flea bites by RNA sequencing (RNA-seq) from their spleens, revealing the potential biological effects of host response to flea bites. METHODS RNA-seq was used for transcriptome analysis to screen for differentially expressed genes (DEGs) between the control mice group and the flea bite mice group. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on DEGs. Protein-protein interaction (PPI) network analysis on DEGs related to immune processes was performed. Finally, we randomly selected several genes from the screened DEGs to validate the results from the transcriptome data by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS A total of 521 DEGs were identified, including 277 upregulated and 244 downregulated. There were 258 GO terms significantly enriched by upregulated DEGs and 419 GO terms significantly enriched by downregulated DEGs. Among the upregulated DEGs, 22 GO terms were associated with immune cells (e.g., B cells and T cells) and immune regulatory processes, while among the downregulated DEGs, 58 GO terms were associated with immune cells and immune regulatory processes. Through PPI analysis, we found that CD40 molecules with significantly downregulated expression levels after flea bites may play an important role in host immune regulation. Through KEGG pathway enrichment analysis, a total of 26 significantly enriched KEGG pathways were identified. The RT-qPCR analysis results indicated that the transcriptome sequencing results were reliable. CONCLUSIONS Through in-depth analysis of transcriptome changes in mice caused by flea bites, we revealed that flea bites could stimulate a series of biological and immunological responses in mice. These findings not only provided a deeper understanding of the impact of flea bites on the host but also provided a basis for further research on the interaction between ectoparasites and the host. We believe that digging deeper into the significance of these transcriptome changes will help reveal more about the adaptive response of the host to ectoparasites.
Collapse
Affiliation(s)
- Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Yuan Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yiguan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Fengxia Meng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Xiuping Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
3
|
Lu S, Andersen JF, Bosio CF, Hinnebusch BJ, Ribeiro JM. Acid phosphatase-like proteins, a biogenic amine and leukotriene-binding salivary protein family from the flea Xenopsylla cheopis. Commun Biol 2023; 6:1280. [PMID: 38110569 PMCID: PMC10728186 DOI: 10.1038/s42003-023-05679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
The salivary glands of hematophagous arthropods contain pharmacologically active molecules that interfere with host hemostasis and immune responses, favoring blood acquisition and pathogen transmission. Exploration of the salivary gland composition of the rat flea, Xenopsylla cheopis, revealed several abundant acid phosphatase-like proteins whose sequences lacked one or two of their presumed catalytic residues. In this study, we undertook a comprehensive characterization of the tree most abundant X. cheopis salivary acid phosphatase-like proteins. Our findings indicate that the three recombinant proteins lacked the anticipated catalytic activity and instead, displayed the ability to bind different biogenic amines and leukotrienes with high affinity. Moreover, X-ray crystallography data from the XcAP-1 complexed with serotonin revealed insights into their binding mechanisms.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - John F Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Christopher F Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - B Joseph Hinnebusch
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
4
|
Bian Y, Tuo J, He L, Li W, Li S, Chu H, Zhao Y. Voltage-gated sodium channels in cancer and their specific inhibitors. Pathol Res Pract 2023; 251:154909. [PMID: 37939447 DOI: 10.1016/j.prp.2023.154909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Voltage-gated sodium channels (VGSCs) participate in generating and spreading action potentials in electrically excited cells such as neurons and muscle fibers. Abnormal expression of VGSCs has been observed in various types of tumors, while they are either not expressed or expressed at a low level in the matching normal tissue. Hence, this abnormal expression suggests that VGSCs confer some advantage or viability on tumor cells, making them a valuable indicator for identifying tumor cells. In addition, overexpression of VGSCs increased the ability of cancer cells to metastasize and invade, as well as correlated with the metastatic behavior of different cancers. Therefore, blocking VGSCs presents a new strategy for the treatment of cancers. A portion of this review summarizes the structure and function of VGSCs and also describes the correlation between VGSCs and cancers. Most importantly, we provide an overview of current research on various subtype-selective VGSC inhibitors and updates on ongoing clinical studies.
Collapse
Affiliation(s)
- Yuan Bian
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiale Tuo
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Liangpeng He
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shangxiao Li
- School of Medical Devices, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, PR China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
5
|
Lu S, Danchenko M, Macaluso KR, Ribeiro JMC. Revisiting the sialome of the cat flea Ctenocephalides felis. PLoS One 2023; 18:e0279070. [PMID: 36649293 PMCID: PMC9844850 DOI: 10.1371/journal.pone.0279070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023] Open
Abstract
The hematophagous behaviour emerged independently in several instances during arthropod evolution. Survey of salivary gland and saliva composition and its pharmacological activity led to the conclusion that blood-feeding arthropods evolved a distinct salivary mixture that can interfere with host defensive response, thus facilitating blood acquisition and pathogen transmission. The cat flea, Ctenocephalides felis, is the major vector of several pathogens, including Rickettsia typhi, Rickettsia felis and Bartonella spp. and therefore, represents an important insect species from the medical and veterinary perspectives. Previously, a Sanger-based sialome of adult C. felis female salivary glands was published and reported 1,840 expressing sequence tags (ESTs) which were assembled into 896 contigs. Here, we provide a deeper insight into C. felis salivary gland composition using an Illumina-based sequencing approach. In the current dataset, we report 8,892 coding sequences (CDS) classified into 27 functional classes, which were assembled from 42,754,615 reads. Moreover, we paired our RNAseq data with a mass spectrometry analysis using the translated transcripts as a reference, confirming the presence of several putative secreted protein families in the cat flea salivary gland homogenates. Both transcriptomic and proteomic approaches confirmed that FS-H-like proteins and acid phosphatases lacking their putative catalytic residues are the two most abundant salivary proteins families of C. felis and are potentially related to blood acquisition. We also report several novel sequences similar to apyrases, odorant binding proteins, antigen 5, cholinesterases, proteases, and proteases inhibitors, in addition to putative novel sequences that presented low or no sequence identity to previously deposited sequences. Together, the data represents an extended reference for the identification and characterization of the pharmacological activity present in C. felis salivary glands.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, Maryland, United States of America
- * E-mail:
| | - Monika Danchenko
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, Maryland, United States of America
| |
Collapse
|
6
|
Lu S, Andersen JF, Bosio CF, Hinnebusch BJ, Ribeiro JMC. Integrated analysis of the sialotranscriptome and sialoproteome of the rat flea Xenopsylla cheopis. J Proteomics 2022; 254:104476. [PMID: 34990822 PMCID: PMC8883501 DOI: 10.1016/j.jprot.2021.104476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Over the last 20 years, advances in sequencing technologies paired with biochemical and structural studies have shed light on the unique pharmacological arsenal produced by the salivary glands of hematophagous arthropods that can target host hemostasis and immune response, favoring blood acquisition and, in several cases, enhancing pathogen transmission. Here we provide a deeper insight into Xenopsylla cheopis salivary gland contents pairing transcriptomic and proteomic approaches. Sequencing of 99 pairs of salivary glands from adult female X. cheopis yielded a total of 7432 coding sequences functionally classified into 25 classes, of which the secreted protein class was the largest. The translated transcripts also served as a reference database for the proteomic study, which identified peptides from 610 different proteins. Both approaches revealed that the acid phosphatase family is the most abundant salivary protein group from X. cheopis. Additionally, we report here novel sequences similar to the FS-H family, apyrases, odorant and hormone-binding proteins, antigen 5-like proteins, adenosine deaminases, peptidase inhibitors from different subfamilies, proteins rich in Glu, Gly, and Pro residues, and several potential secreted proteins with unknown function. SIGNIFICANCE: The rat flea X. cheopis is the main vector of Yersinia pestis, the etiological agent of the bubonic plague responsible for three major pandemics that marked human history and remains a burden to human health. In addition to Y. pestis fleas can also transmit other medically relevant pathogens including Rickettsia spp. and Bartonella spp. The studies of salivary proteins from other hematophagous vectors highlighted the importance of such molecules for blood acquisition and pathogen transmission. However, despite the historical and clinical importance of X. cheopis little is known regarding their salivary gland contents and potential activities. Here we provide a comprehensive analysis of X. cheopis salivary composition using next generation sequencing methods paired with LC-MS/MS analysis, revealing its unique composition compared to the sialomes of other blood-feeding arthropods, and highlighting the different pathways taken during the evolution of salivary gland concoctions. In the absence of the X. cheopis genome sequence, this work serves as an extended reference for the identification of potential pharmacological proteins and peptides present in flea saliva.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - John F Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher F Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - B Joseph Hinnebusch
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Zeng Q, Lu W, Deng Z, Zhang B, Wu J, Chai J, Chen X, Xu X. The toxin mimic FS48 from the salivary gland of Xenopsylla cheopis functions as a Kv1.3 channel-blocking immunomodulator of T cell activation. J Biol Chem 2022; 298:101497. [PMID: 34919963 PMCID: PMC8732088 DOI: 10.1016/j.jbc.2021.101497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
The Kv1.3 channel has been widely demonstrated to play crucial roles in the activation and proliferation of T cells, which suggests that selective blockers could serve as potential therapeutics for autoimmune diseases mediated by T cells. We previously described that the toxin mimic FS48 from salivary gland of Xenopsylla cheopis downregulates the secretion of proinflammatory factors by Raw 264.7 cells by blocking the Kv1.3 channel and the subsequent inactivation of the proinflammatory MAPK/NF-κB pathways. However, the effects of FS48 on human T cells and autoimmune diseases are unclear. Here, we described its immunomodulatory effects on human T cells derived from suppression of Kv1.3 channel. Kv1.3 currents in Jurkat T cells were recorded by whole-cell patch-clamp, and Ca2+ influx, cell proliferation, and TNF-α and IL-2 secretion were measured using Fluo-4, CCK-8, and ELISA assays, respectively. The in vivo immunosuppressive activity of FS48 was evaluated with a rat DTH model. We found that FS48 reduced Kv1.3 currents in Jurkat T cells in a concentration-dependent manner with an IC50 value of about 1.42 μM. FS48 also significantly suppressed Kv1.3 protein expression, Ca2+ influx, MAPK/NF-κB/NFATc1 pathway activation, and TNF-α and IL-2 production in activated Jurkat T cells. Finally, we show that FS48 relieved the DTH response in rats. We therefore conclude that FS48 can block the Kv1.3 channel and inhibit human T cell activation, which most likely contributes to its immunomodulatory actions and highlights the great potential of this evolutionary-guided peptide as a drug template in future studies.
Collapse
Affiliation(s)
- Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhui Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Deng Z, Zeng Q, Tang J, Zhang B, Chai J, Andersen JF, Chen X, Xu X. Anti-inflammatory effects of FS48, the first potassium channel inhibitor from the salivary glands of the flea Xenopsylla cheopis. J Biol Chem 2021; 296:100670. [PMID: 33864815 PMCID: PMC8131326 DOI: 10.1016/j.jbc.2021.100670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
The voltage-gated potassium (Kv) 1.3 channel plays a crucial role in the immune responsiveness of T-lymphocytes and macrophages, presenting a potential target for treatment of immune- and inflammation related-diseases. FS48, a protein from the rodent flea Xenopsylla cheopis, shares the three disulfide bond feature of scorpion toxins. However, its three-dimensional structure and biological function are still unclear. In the present study, the structure of FS48 was evaluated by circular dichroism and homology modeling. We also described its in vitro ion channel activity using patch clamp recording and investigated its anti-inflammatory activity in LPS-induced Raw 264.7 macrophage cells and carrageenan-induced paw edema in mice. FS48 was found to adopt a common αββ structure and contain an atypical dyad motif. It dose-dependently exhibited the Kv1.3 channel in Raw 264.7 and HEK 293T cells, and its ability to block the channel pore was demonstrated by the kinetics of activation and competition binding with tetraethylammonium. FS48 also downregulated the secretion of proinflammatory molecules NO, IL-1β, TNF-α, and IL-6 by Raw 264.7 cells in a manner dependent on Kv1.3 channel blockage and the subsequent inactivation of the MAPK/NF-κB pathways. Finally, we observed that FS48 inhibited the paw edema formation, tissue myeloperoxidase activity, and inflammatory cell infiltrations in carrageenan-treated mice. We therefore conclude that FS48 identified from the flea saliva is a novel potassium channel inhibitor displaying anti-inflammatory activity. This discovery will promote understanding of the bloodsucking mechanism of the flea and provide a new template molecule for the design of Kv1.3 channel blockers.
Collapse
Affiliation(s)
- Zhenhui Deng
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIAID, National Intitutes of Health, Bethesda, Maryland, USA
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Luo Q, Wu T, Wu W, Chen G, Luo X, Jiang L, Tao H, Rong M, Kang S, Deng M. The Functional Role of Voltage-Gated Sodium Channel Nav1.5 in Metastatic Breast Cancer. Front Pharmacol 2020; 11:1111. [PMID: 32792949 PMCID: PMC7393602 DOI: 10.3389/fphar.2020.01111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs), which are abnormally expressed in various types of cancers such as breast cancer, prostate cancer, lung cancer, and cervical cancer, are involved in the metastatic process of invasion and migration. Nav1.5 is a pore-forming α subunit of VGSC encoded by SCN5A. Various studies have demonstrated that Nav1.5, often as its neonatal splice form, is highly expressed in metastatic breast cancer cells. Abnormal activation and expression of Nav1.5 trigger a variety of cellular mechanisms, including changing H+ efflux, promoting epithelial-to-mesenchymal transition (EMT) and the expression of cysteine cathepsin, to potentiate the metastasis and invasiveness of breast cancer cells in vitro and in vivo. Here, we systematically review the latest available data on the pro-metastatic effect of Nav1.5 and its underlying mechanisms in breast cancer. We summarize the factors affecting Nav1.5 expression in breast cancer cells, and discuss the potential of Nav1.5 blockers serving as candidates for breast cancer treatment.
Collapse
Affiliation(s)
- Qianxuan Luo
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ting Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Gong Chen
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Luo
- Department of Biochemistry and Molecular Biology, Hunan Normal University, Changsha, China
| | - Liping Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, China
| | - Mingqiang Rong
- Department of Biochemistry and Molecular Biology, Hunan Normal University, Changsha, China
| | - Shuntong Kang
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
10
|
In-vitro effects of the FS50 protein from salivary glands of Xenopsylla cheopis on voltage-gated sodium channel activity and motility of MDA-MB-231 human breast cancer cells. Anticancer Drugs 2019; 29:880-889. [PMID: 29912729 DOI: 10.1097/cad.0000000000000662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Voltage-gated sodium channel activity enhances the motility and oncogene expression of metastasic cancer cells that express a neonatal alternatively spliced form of the NaV1.5 isoform. We reported previously that FS50, a salivary protein from Xenopsylla cheopis, showed inhibitory activity against the NaV1.5 channel when assayed in HEK 293T cells and antiarrhythmia effects on rats and monkeys after induction of arrhythmia by BaCl2. This study aims to identify the effect of FS50 on voltage-gated sodium channel activity and the motility of MDA-MB-231 human breast cancer cells in vitro. NaV1.5 was abnormally expressed in the highly metastatic breast cancer cell line MDA-MB-231, but not in the MCF-7 cell line. FS50 significantly inhibited sodium current, migration, and invasion in a dose-dependent manner, but had no effect on the proliferation of MDA-MB-231 cells at the working concentrations (1.5-12 μmol/l) after a long-term treatment for 48 h. Meanwhile, FS50 decreased NaV1.5 mRNA expression without altering the total protein level in MDA-MB-231 cells. Correspondingly, the results also showed that MMP-9 activity and the ratio of MMP-9 mRNA to TIMP-1 mRNA were markedly decreased by FS50. Taken together, our findings highlighted for the first time an inhibitory effect of a salivary protein from a blood-feeding arthropod on breast cancer cells through the NaV1.5 channel. Furthermore, this study provided a new candidate leading molecule against antitumor cells expressing NaV1.5.
Collapse
|
11
|
Structural diversity of arthropod venom toxins. Toxicon 2018; 152:46-56. [DOI: 10.1016/j.toxicon.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
|