1
|
Lv R, Sun L, Luo Z, Song Y, Li S, Zhang Q. Host-Guest Synergy of Metal-Organic Frameworks for Enhanced Near-Infrared Ultrafast Laser Responsiveness. ACS CENTRAL SCIENCE 2025; 11:583-591. [PMID: 40290149 PMCID: PMC12022905 DOI: 10.1021/acscentsci.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Host-guest metal-organic frameworks (MOFs) offer significant potential and value in regulating and optimizing novel material properties and functionalities, owing to the synergistic effects between the host framework and the guest units. This study reported two silver-based host-guest MOFs, [Ag(ATRZ)(BrO3)]n (CMOF-1) and [Ag(ATRZ)1.5(ClO4)]n (CMOF-2), as promising candidates for laser-responsive materials. These materials feature 1D and 3D structures, respectively, comprising Ag-ATRZ cationic MOF frameworks integrated with two distinct oxidizing anionic guests, BrO3 - and ClO4 -. CMOF-1 and CMOF-2 are synthesized through straightforward, environmentally benign methods, enabling rapid fabrication. The exceptional near-infrared (NIR) laser responsiveness of CMOF-1 and CMOF-2 was achieved through the modulation of the cationic MOFs (CMOFs) architectures and synergistic interactions between the host and guest components. Moreover, both exhibit ultrafast deflagration-to-detonation transition (DDT) capabilities, alongside excellent thermal stability. This work expands the application scope of host-guest MOFs, and provides an effective strategy for developing high-performance laser-responsive materials.
Collapse
Affiliation(s)
- Ruibing Lv
- Institute
of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China
| | - Lei Sun
- School
of Chemical Engineering, Chongqing University
of Technology, Chongqing, 400054, P. R.
China
| | - Zhenghang Luo
- Institute
of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China
| | - Yujie Song
- Institute
of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China
| | - Shuo Li
- School
of Chemical Engineering, Chongqing University
of Technology, Chongqing, 400054, P. R.
China
| | - Qi Zhang
- Institute
of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China
| |
Collapse
|
2
|
Chen X, Qin H, Zhou X, Li W, Zhang J, Wang S, Liu Y. Long-lasting chemiluminescence-based portable biosensor for POCT of food contaminant azodicarbonamide. Talanta 2025; 285:127319. [PMID: 39673977 DOI: 10.1016/j.talanta.2024.127319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Azodicarbonamide (ADA) in flour products is easily converted to semicarbazide which greatly threatens human health. Herein, a long-lasting chemiluminescence (CL)-based biosensor was developed for quantitative point-of-care testing (POCT) of ADA. The threonine (Thr)-functionalized Cu-hemin MOFs (Cu-hemin@Thr) could induce persistent CL of luminol with excellent stability. The CL intensity was related to the competition reaction among ADA and a composite of glutathione-silver ions (GSH-Ag+). In the presence of ADA, GSH is oxidized to glutathione disulfide (GSSG), which breaks the coordination between Ag+ and GSH. The CL of the sensing system is then decreased which is expected to be used for ADA detection. By combining a homemade portable device as a detector and a smartphone as an analyzer, quantitative POCT of ADA was successfully achieved. The limit of detection was 0.562 μM (0.065 ppm), which is much lower than the maximum permissible concentration of ADA (45 ppm) in flour extract. The developed strategy demonstrated quantitative POCT capabilities along with advantages of low cost, excellent selectivity, and repeatability, presenting great potential application in food safety and environment monitoring.
Collapse
Affiliation(s)
- Xiying Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haijuan Qin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Weiran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jingjing Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China; Dongguan University of Technology, School of Life and Health Technology, Dongguan, 523808, China.
| |
Collapse
|
3
|
Ghaedamini H, Kim DS. A non-enzymatic hydrogen peroxide biosensor based on cerium metal-organic frameworks, hemin, and graphene oxide composite. Bioelectrochemistry 2025; 161:108823. [PMID: 39332214 DOI: 10.1016/j.bioelechem.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
This study presents the development of a novel non-enzymatic electrochemical biosensor for the real-time detection of hydrogen peroxide (H2O2) based on a composite of cerium metal-organic frameworks (Ce-MOFs), hemin, and graphene oxide (GO). The Ce-MOFs served as an efficient matrix for hemin encapsulation, while GO enhanced the conductivity of the composite. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and thermogravimetric analysis (TGA) confirmed the successful integration of hemin into the Ce-MOFs. The Ce-MOFs@hemin/GO-modified sensor demonstrated sensitive H2O2 detection due to the exceptional electrocatalytic activity of Ce-MOFs@hemin and the high conductivity of GO. This biosensor exhibited a linear response to H2O2 concentrations from 0.05 to 10 mM with a limit of detection (LOD) of 9.3 μM. The capability of the biosensor to detect H2O2 released from human prostate carcinoma cells was demonstrated, highlighting its potential for real-time monitoring of cellular oxidative stress in complex biological environments. To further assess its practical applicability, the sensor was tested in human serum samples, yielding promising results with recovery values ranging from 94.50 % to 103.29 %. In addition, the sensor showed excellent selectivity against common interfering compounds due to the outstanding peroxidase-like activity of the composite.
Collapse
Affiliation(s)
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
4
|
Ayyandurai N, Venkatesan S, Raman S. Palladium Nanoparticle-Decorated Copper-Hemin Metal Organic Framework for Enzymatic Electrochemical Detection of Creatinine in Human Urine. ACS APPLIED BIO MATERIALS 2024; 7:8444-8455. [PMID: 39630977 DOI: 10.1021/acsabm.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Creatinine is indeed a crucial biomarker for kidney diseases. In this work, a novel electrochemical biosensor based on a copper-hemin metal organic framework [Cu-hemin metal-organic framework (MOF)] nanoflake decorated with palladium (Pd) (Pd/Cu-hemin MOF) was fabricated and incorporated with creatinine deiminase (CD) on a glassy carbon electrode (GCE) for creatinine detection. The formation of a Pd/Cu-hemin MOF composite was confirmed by X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The formation of the composite as nanoflakes is evident from the scanning electron microscopy image. The transmission electron microscopy image clarifies the decoration of palladium nanoparticles on Cu-hemin MOF surfaces. Thus, the proposed biosensor (Pd/Cu-hemin MOF/CD/GCE) electrochemical performances were studied with cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. As a result, the Pd/Cu-hemin MOF/CD/GCE-based electrochemical detection of creatinine exhibits a broad linear range from 0 to 130 μM (R2 = 0.99), a low limit of detection 0.08 μM, and an excellent sensitivity of 3.2 μA μM-1 cm-2. The biosensor also determines creatinine in samples of human urine with a good recovery from 99.4 to 100.8%. Thus, in this study, an electrochemical biosensing platform based on Pd/Cu-hemin MOF/CD/GCE has been designed practically for creatinine.
Collapse
Affiliation(s)
- Nagarajan Ayyandurai
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025 Tamil Nadu, India
| | - Sethuraman Venkatesan
- Research and Development, New Energy Technology Centre, Lithium-Ion Division, Amara Raja Advanced Cell Technology, Nanakramguda, 500032 Hyderabad, India
| | - Sasikumar Raman
- Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai 600025 Tamil Nadu, India
| |
Collapse
|
5
|
Alsharabasy AM, Sankar M, Biggs M, Farràs P, Pandit A. Iron protoporphyrin IX-hyaluronan hydrogel-supported luminol chemiluminescence for the detection of nitric oxide in physiological solutions. Talanta 2024; 278:126522. [PMID: 38991408 DOI: 10.1016/j.talanta.2024.126522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Due to its role as a free radical signal-transducing agent with a short lifespan, precise measurement of nitric oxide (●NO) levels presents significant challenges. Various analytical techniques offer distinct advantages and disadvantages for ●NO detection. This research aims to simplify the detection process by developing a hydrogel system using iron(III)-protoporphyrin IX (hemin)-loaded hyaluronan for the detection of ●NO in solution. Various hydrogel formulations were created, and the effects of their components on hydrogel-supported luminol chemiluminescence (CL) kinetics, radical scavenging, and physicochemical properties were analysed through factorial analysis. The candidate formulations were then evaluated using two ●NO donors. An increase in the degree of crosslinking in unloaded formulations enhanced interactions with the CL reaction components, hydrogen peroxide (H2O2) and luminol, thereby affecting light generation. However, hemin loading negated these effects, resulting in more prominent luminescence kinetics in formulations with lower crosslinking degrees. Similarly, ●NO influenced the kinetics differently, interacting with both the CL reaction and hydrogel components. Hemin-loaded formulations exhibited enhanced signal propagation when exposed to ●NO, followed by H2O2 and luminol, whereas reversing the order of addition inhibited this propagation. The magnitude of these luminescence changes depended on the type and concentration of the ●NO donor, demonstrating greater sensitivity to ●NO levels compared to amperometric sensing. These findings suggest that the studied hydrogel platform has potential for the facile and accurate detection of ●NO in solution, requiring minimal sample sizes.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| | - Magesh Sankar
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland
| | - Manus Biggs
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland; School of Biological and Chemical Sciences, Ryan Institute, University of Galway, H91 TK33, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY, Ireland.
| |
Collapse
|
6
|
Shi J, Barman SC, Cheng S, Zeng Y. Metal-organic framework-interfaced ELISA probe enables ultrasensitive detection of extracellular vesicle biomarkers. J Mater Chem B 2024; 12:6342-6350. [PMID: 38856318 PMCID: PMC11222032 DOI: 10.1039/d4tb00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The enzyme-linked immunosorbent assay (ELISA) remains the prevailing method for quantifying protein biomarkers. Enzymatic signal generation and amplification are key mechanisms that govern its analytical performance. This study reports the synthesis and application of microscale metal-organic framework (MOF)/enzyme composite particles as a novel detection probe to substantially enhance the sensitivity of ELISA. An optimal one-pot approach was established to incorporate a substantial amount of streptavidin-horseradish peroxidase (SA-HRP) either within or on the surface of the metal-azolate framework (MAF-7) microparticles. This approach enables the labeling of a single sandwich antibody-antigen complex with numerous enzymes, which markedly amplifies the enzymatic colorimetric signal generation. Moreover, MAF-7 caging was found to enhance the reactivity of the caged HRP enzyme, further promoting the overall detection sensitivity of ELISA. Compared to other developments that are often associated with more complicated detection modalities, our method is compatible with standard immunoassays and commonly used photometrical signal detection. The implementation of this strategy in the detection of CD147 results in a remarkably low limit of detection of 2.8 fg mL-1, representing a 105-fold improvement compared to that obtained with the standard ELISA. Moreover, the heightened sensitivity of this technique renders it particularly suitable for diagnosing breast cancer, thus presenting a promising tool for the early detection of the disease in clinical settings.
Collapse
Affiliation(s)
- Jingzhu Shi
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Sharat Chandra Barman
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
- Currently working at King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- University of Florida Health Cancer Center, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Khan A, Riahi Z, Tae Kim J, Rhim JW. Carrageenan-based multifunctional packaging films containing Zn-carbon dots/anthocyanin derived from Kohlrabi peel for monitoring quality and extending the shelf life of shrimps. Food Chem 2024; 432:137215. [PMID: 37633134 DOI: 10.1016/j.foodchem.2023.137215] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Carrageenan-based active/intelligent packaging films containing anthocyanin and ZnO-doped CD (Zn-CD) from purple Kohlrabi peels were prepared for freshness monitoring and shelf-life extension of shrimp, and the influence of additives on the films' physical, functional, and structural properties was investigated. The films showed excellent UV blocking ability (85.2% of UV-A and 99.4% of UV-B) and high antioxidant effect (∼99% for ABTS and ∼ 58.6% for DPPH radical scavenging activity) and showed strong antibacterial activity to stop the growth (100%) of L. monocytogenes and to reduce the growth of E. coli by 8.1 log CFU/mL after 12 h of incubation. In shrimp packaging experiments, the films were evident in the freshness monitoring, reduced spoilage, and increased shelf life. This study suggests that next-generation biopolymer films impregnated with biomass-derived CDs and natural colorants will provide broad directions for ensuring safety and extending shelf life to meet the accelerating demand for packaging products.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Zohreh Riahi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jun Tae Kim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
8
|
Liu Y, Dong N, Liu S, Meng S, Liu D, You T. Photoelectrochemical aptasensing with methylene blue filled Ni-MOFs nanocomposite by spatial confinement for microcystin-LR detection. Mikrochim Acta 2024; 191:108. [PMID: 38244133 DOI: 10.1007/s00604-024-06185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Microcystin LR (MC-LR) is a hazardous cyanotoxin produced by cyanobacteria during freshwater eutrophication, which can cause liver cancer. Here, a photoelectrochemical (PEC) aptasensor based on methylene blue (MB)-loaded Ni-MOF composite (Ni-MOF/MB) with spatial confinement was constructed for the sensitive detection of MC-LR. Ni-MOF with two-dimensional sheet structure was prepared via a liquid-liquid interface synthesis method with environmental-friendly solvent and milder reaction conditions. Benefiting from the uniform pore size, Ni-MOF acted as reaction platform to anchor the photosensitive molecule MB. The electron donor, ascorbic acid (AA), was produced by alkaline phosphatase (ALP) loaded on DNA strand catalyzing ascorbic acid phosphate. The generated AA was absorbed by Ni-MOF/MB, thereby effectively improving the utilization of AA and avoiding the external environment interferences to enlarge the photocurrent of MB. For analysis, ALP-labeled aptamer can specifically recognize MC-LR by forming a complex to strip from aptasensor, thus leading to a decreased photocurrent. The developed PEC aptasensor offered a linear range of 10 fM-100 pM with a detection limit of 6 fM. It was successfully employed for detecting MC-LR in farm water and fish meat, and the results were validated by ultrahigh-performance liquid chromatography-mass spectrometry. This method presents a new idea of MOF-limited domain for PEC aptasensing.
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
Nabi S, Sofi FA, Jan Q, Bhat AY, Ingole PP, Bayati M, Bhat MA. The enhanced electrocatalytic performance of nanoscopic Cu 6Pd 12Fe 12 heterometallic molecular box encaged cytochrome c. NANOSCALE 2023; 16:411-426. [PMID: 38073595 DOI: 10.1039/d3nr03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Designing molecular cages for atomic/molecular scale guests is a special art used by material chemists to harvest the virtues of the otherwise vile idea known as "the cage". In recent years, there has been a notable surge in research investigations focused on the exploration and utilization of the distinct advantages offered by this art in the advancement of efficient and stable bio-electrocatalysts. This usually is achieved through encapsulation of biologically accessible redox proteins within specifically designed molecular cages and matrices. Herein, we present the first successful method for encaging cytochrome c (Cyt-c), a clinically significant enzyme system, inside coordination-driven self-assembled Cu6Pd12Fe12 heterometallic hexagonal molecular boxes (Cu-HMHMB), in order to create a Cyt-c@Cu-HMHMB composite. 1H NMR, FTIR, and UV-Vis spectroscopy, ICP-MS, TGA and voltammetric investigations carried out on the so-crafted Cyt-c@Cu-HMHMB bio-inorganic composite imply that the presented strategy ensures encaging of Cyt-c in a catalytically active, electrochemically stable and redox-accessible state inside the Cu-HMHMB. Cyt-c@Cu-HMHMB is demonstrated to exhibit excellent stability and electrocatalytic activity toward very selective, sensitive electrochemical sensing of nitrite exhibiting a limit of detection as low as 32 nanomolar and a sensitivity of 7.28 μA μM-1 cm-2. Importantly, Cyt-c@Cu-HMHMB is demonstrated to exhibit an excellent electrocatalytic performance toward the 4ē pathway oxygen reduction reaction (ORR) with an onset potential of 0.322 V (vs. RHE) and a Tafel slope of 266 mV dec-1. Our findings demonstrate that Cu-HMHMB is an excellent matrix for Cyt-c encapsulation. We anticipate that the entrapment-based technique described here will be applicable to other enzyme systems and Cyt-c for various electrochemical and other applications.
Collapse
Affiliation(s)
- Shazia Nabi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Qounsar Jan
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Aamir Y Bhat
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Maryam Bayati
- Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| |
Collapse
|
10
|
Yu X, Ma Y, Liu S, Qi C, Zhang W, Xiang W, Li Z, Yang K, Duan S, Du X, Yu J, Xie Y, Wang Z, Jiang W, Zhang L, Lin X. Bacterial metabolism-triggered-chemiluminescence-based point-of-care testing platform for sensitive detection and photothermal inactivation of Staphylococcus aureus. Anal Chim Acta 2023; 1281:341899. [PMID: 38783739 DOI: 10.1016/j.aca.2023.341899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
Post-operative pathogenic infections in liver transplantation seriously threaten human health. It is essential to develop novel methods for the highly sensitive and rapid detection of Staphylococcus aureus (S. aureus). Interestingly, the combination of the property of bacteria to secrete hydrogen peroxidase, bacterial metabolism-triggered-chemiluminescence (CL)-based bioassays can be as a candidate point-of-care testing (POCT) for the detection of S. aureus against the CL substrate Luminol and hydrogen peroxide without excitation light sources. Here, a CL-based strategy with stable and visualized CL intensity was fabricated according to a hybrid biomimetic enzyme of copper-Hemin metal-organic framework, which enhances the biological enzyme activity while improving the stability and sensitivity of the assay. By further integrating S. aureus-specific capture and one-step separation of the antibody-modified Fe3O4 NPs (Fe3O4 NPs@Ab), the portable device integrated smartphone enables CL-based POCT for specific detection of S. aureus in the range of 101-106 CFU/mL with a limit of detection as low as 1 CFU/mL. Specifically, S. aureus can be eliminated after detection with high antibacterial efficiency due to the excellent photothermal properties of Fe3O4 NPs@Ab. The developed multifunctional platform has the advantages of simplicity of operation and low cost, indicating great potential in clinical applications.
Collapse
Affiliation(s)
- Xinghui Yu
- School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Yongqiang Ma
- School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Siyuan Liu
- Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Chunchun Qi
- School of Medicine, Nankai University, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Weiqi Zhang
- School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Wen Xiang
- School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Zhaoxian Li
- School of Medicine, Nankai University, Tianjin, 300192, China; Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Kai Yang
- Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Shaoxian Duan
- Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Xinrao Du
- Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Jian Yu
- Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin Medical University First Center Clinical College, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Yan Xie
- Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Zicheng Wang
- Tianjin Sprite Biological Technology, Tianjin, 300021, China
| | - Wentao Jiang
- Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China.
| | - Li Zhang
- Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China.
| | - Xiaodong Lin
- University of Macau Zhuhai UM Science & Technology Research Institute, Zhuhai, 519000, China.
| |
Collapse
|
11
|
Yan Y, Liu Y, Li J, Li Y, Wu H, Li H, Ma X, Tang Y, Tong Y, Yi K, Liang Q, Liu Z. A Molecular Switch-Integrated Nanoplatform Enables Photo-Unlocked Antibacterial Drug Delivery for Synergistic Abscess Therapy. Adv Healthc Mater 2023; 12:e2301157. [PMID: 37392145 DOI: 10.1002/adhm.202301157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Drug delivery systems (DDSs) capable of sequential multistage drug release are urgently needed for antibacterial applications. Herein, a molecular switch-integrated, photo-responsive nanoplatform is reported based on hollow mesoporous silica nanospheres (HMSN) loaded with silver nanoparticles (Ag NPs), vancomycin (Van), and hemin (HAVH) for bacteria elimination and abscess therapy. Upon near-infrared (NIR) light irradiation, the molecular switch, hemin, can effuse from the mesopores of HMSN, triggering the release of pre-loaded Ag+ and Van, which enables photothermal-modulated drug release and synergistic photothermal-chemo therapy (PTT-CHT). The HAVH_NIR irreversibly disrupts the bacterial cell membrane, facilitating the penetration of Ag+ and Van. It is found that these compounds restrain the transcription and translation of ribosomes and lead to rapid bacterial death. Furthermore, hemin can effectively inhibit excessive inflammatory responses associated with the treatment, promoting accelerated wound healing in a murine abscess model. This work presents a new strategy for antibacterial drug delivery with high controllability and extendibility, which may benefit the development of smart multifunctional nanomedicine for diseases not limited to bacterial infections.
Collapse
Affiliation(s)
- Yunxiang Yan
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Yong Liu
- School of Science, Hainan University, Haikou, 570228, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Ye Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Haoheng Wu
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Hong Li
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Yuan Tong
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| |
Collapse
|
12
|
Mousaabadi KZ, Ensafi AA, Naghsh E, Hu JS, Rezaei B. Dual Ni/Co-hemin metal-organic framework-PrGO for high-performance asymmetric hybrid supercapacitor. Sci Rep 2023; 13:12422. [PMID: 37528177 PMCID: PMC10393980 DOI: 10.1038/s41598-023-39553-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
In this study, we conducted direct synthesis of a dual metal-organic framework (Ni/Co-Hemin MOF) on phosphorous-doped reduced graphene oxide (PrGO) to serve as an active material in high-performance asymmetrical supercapacitors. The nanocomposite was utilized as an active material in supercapacitors, exhibiting a noteworthy specific capacitance of 963 C g-1 at 1.0 A g-1, along with a high rate capability of 68.3% upon increasing the current density by 20 times, and superior cycling stability. Our comprehensive characterization and control experiments indicated that the improved performance can be attributed to the combined effect of the dual MOF and the presence of phosphorous, influencing the battery-type supercapacitor behavior of GO. Additionally, we fabricated an asymmetric hybrid supercapacitor (AHSC) using Ni/Co-Hemin/PrGO/Nickel foam (NF) and activated carbon (AC)/NF. This AHSC demonstrated a specific capacitance of 281 C g-1 at 1.0 A g-1, an operating voltage of 1.80 V, an impressive energy density of 70.3 Wh kg-1 at a high power density of 0.9 kW kg-1. Notably, three AHSC devices connected in series successfully powered a clock for approximately 42 min. These findings highlight the potential application of Hemin-based MOFs in advanced supercapacitor systems.
Collapse
Affiliation(s)
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Erfan Naghsh
- Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, Canada
| | - Jin-Song Hu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
13
|
Bhaduri SN, Ghosh D, Debnath S, Biswas R, Chatterjee PB, Biswas P. Copper(II)-Incorporated Porphyrin-Based Porous Organic Polymer for a Nonenzymatic Electrochemical Glucose Sensor. Inorg Chem 2023; 62:4136-4146. [PMID: 36862998 DOI: 10.1021/acs.inorgchem.2c04072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
To date, the fabrication of multifunctional nanoplatforms based on a porous organic polymer for electrochemical sensing of biorelevant molecules has received considerable attention in the search for a more active, robust, and sensitive electrocatalyst. Here, in this report, we have developed a new porous organic polymer based on porphyrin (TEG-POR) from a polycondensation reaction between a triethylene glycol-linked dialdehyde and pyrrole. The Cu(II) complex of the polymer Cu-TEG-POR shows high sensitivity and a low detection limit for glucose electro-oxidation in an alkaline medium. The characterization of the as-synthesized polymer was done by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and 13C CP-MAS solid-state NMR. The N2 adsorption/desorption isotherm was carried out at 77 K to analyze the porous property. TEG-POR and Cu-TEG-POR both show excellent thermal stability. The Cu-TEG-POR-modified GC electrode shows a low detection limit (LOD) value of 0.9 μM and a wide linear range (0.001-1.3 mM) with a sensitivity of 415.8 μA mM-1 cm-2 toward electrochemical glucose sensing. The interference of the modified electrode from ascorbic acid, dopamine, NaCl, uric acid, fructose, sucrose, and cysteine was insignificant. Cu-TEG-POR exhibits acceptable recovery for blood glucose detection (97.25-104%), suggesting its scope in the future for selective and sensitive nonenzymatic glucose detection in human blood.
Collapse
Affiliation(s)
- Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| |
Collapse
|
14
|
Zhang Y, Wang F, Shi L, Lu M, Lee KJ, Ditty MM, Xing Y, He HZ, Ren X, Zheng SY. Nanoscale coordination polymers enabling antioxidants inhibition for enhanced chemodynamic therapy. J Control Release 2023; 354:196-206. [PMID: 36610480 DOI: 10.1016/j.jconrel.2023.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Reactive oxygen species (ROS) generation to induce cell death is an effective strategy for cancer therapy. In particular, chemodynamic therapy (CDT), using Fenton-type reactions to generate highly cytotoxic hydroxyl radical (•OH), is a promising treatment modality. However, the therapeutic efficacy of ROS-based cancer treatment is still limited by some critical challenges, such as overexpression of enzymatic and non-enzymatic antioxidants by tumor cells, as well as the low tumor targeting efficiency of therapeutic agents. To address those problems, biomimetic CuZn protoporphyrin IX nanoscale coordination polymers have been developed, which significantly amplify oxidative stress against tumors by simultaneously inhibiting enzymatic and non-enzymatic antioxidants and initiating the CDT. In this design, cancer cell membrane camouflaged nanoparticle exhibits an excellent homotypic targeting effect. After being endocytosed into tumor cells, the nanoparticles induce depletion of the main non-enzymatic antioxidant glutathione (GSH) by undergoing a redox reaction with GSH. Afterward, the redox reaction generated cuprous ion (Cu+) works as a CDT agent for •OH generation. Furthermore, the released Zn protoporphyrin IX strongly inhibits the activity of the typical enzymatic antioxidant heme oxygenase-1. This tetra-modal synergistic strategy endows the biomimetic nanoparticles with great capability for anticancer therapy, which has been demonstrated in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Yan Zhang
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Faming Wang
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Lai Shi
- D2M Biotherapeutics, Natick, MA 01760, United States
| | - Mengrou Lu
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Keng-Jung Lee
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | | | - Yunhui Xing
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Hong-Zhang He
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Captis Diagnostics Inc, Pittsburgh, PA 15213, United States
| | - Xi Ren
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Si-Yang Zheng
- Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
15
|
Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Fu X, Sale M, Ding B, Lewis W, Silvester DS, Ling CD, D'Alessandro DM. Hydrogen-Bonding 2D Coordination Polymer for Enzyme-Free Electrochemical Glucose Sensing. CrystEngComm 2022. [DOI: 10.1039/d2ce00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regular detection of blood glucose levels is a critical indicator for effective diabetes management. Owing to the intrinsic highly sensitive nature of enzymes, the performance of enzymatic glucose sensors is...
Collapse
|
17
|
Hu Q, Qin J, Wang XF, Ran GY, Wang Q, Liu GX, Ma JP, Ge JY, Wang HY. Cu-Based Conductive MOF Grown in situ on Cu Foam as a Highly Selective and Stable Non-Enzymatic Glucose Sensor. Front Chem 2021; 9:786970. [PMID: 34912785 PMCID: PMC8666423 DOI: 10.3389/fchem.2021.786970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
A non-enzymatic electrochemical sensor for glucose detection is executed by using a conductive metal–organic framework (MOF) Cu-MOF, which is built from the 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligand and copper acetate by hydrothermal reaction. The Cu-MOF demonstrates superior electrocatalytic activity for glucose oxidation under alkaline pH conditions. As an excellent non-enzymatic sensor, the Cu-MOF grown on Cu foam (Cu-MOF/CF) displays an ultra-low detection limit of 0.076 μM through a wide concentration range (0.001–0.95 mM) and a strong sensitivity of 30,030 mA μM−1 cm−2. Overall, the Cu-MOF/CF exhibits a low detection limit, high selectivity, excellent stability, fast response time, and good practical application feasibility for glucose detection and can promote the development of MOF materials in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Qin Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiao-Feng Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Guang-Ying Ran
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Guang-Xiang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Jian-Ping Ma
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Hai-Ying Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China.,School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
18
|
Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021; 199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.
Collapse
|
19
|
Radwan AB, Paramparambath S, Cabibihan JJ, Al-Ali AK, Kasak P, Shakoor RA, Malik RA, Mansour SA, Sadasivuni KK. Superior Non-Invasive Glucose Sensor Using Bimetallic CuNi Nanospecies Coated Mesoporous Carbon. BIOSENSORS 2021; 11:bios11110463. [PMID: 34821679 PMCID: PMC8615784 DOI: 10.3390/bios11110463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 05/14/2023]
Abstract
The assessment of blood glucose levels is necessary for the diagnosis and management of diabetes. The accurate quantification of serum or plasma glucose relies on enzymatic and nonenzymatic methods utilizing electrochemical biosensors. Current research efforts are focused on enhancing the non-invasive detection of glucose in sweat with accuracy, high sensitivity, and stability. In this work, nanostructured mesoporous carbon coupled with glucose oxidase (GOx) increased the direct electron transfer to the electrode surface. A mixed alloy of CuNi nanoparticle-coated mesoporous carbon (CuNi-MC) was synthesized using a hydrothermal process followed by annealing at 700 °C under the flow of argon gas. The prepared catalyst's crystal structure and morphology were explored using X-ray diffraction and high-resolution transmission electron microscopy. The electrocatalytic activity of the as-prepared catalyst was investigated using cyclic voltammetry (CV) and amperometry. The findings show an excellent response time of 4 s and linear range detection from 0.005 to 0.45 mM with a high electrode sensitivity of 11.7 ± 0.061 mA mM cm-2 in a selective medium.
Collapse
Affiliation(s)
- Ahmed Bahgat Radwan
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
- Correspondence: (A.B.R.); (K.K.S.)
| | - Sreedevi Paramparambath
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
| | - John-John Cabibihan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Abdulaziz Khalid Al-Ali
- Department of Computer Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
- KINDI Center for Computing Research, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Peter Kasak
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
| | - Rana A. Shakoor
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha P.O. Box 24144, Qatar;
| | - Said A. Mansour
- Qatar Energy and Environment Research Institute, Hamad bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
| | - Kishor Kumar Sadasivuni
- Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (P.K.); (R.A.S.)
- Correspondence: (A.B.R.); (K.K.S.)
| |
Collapse
|
20
|
Zhang J, Jin N, Ji N, Chen X, Shen Y, Pan T, Li L, Li S, Zhang W, Huo F. The Encounter of Biomolecules in Metal-Organic Framework Micro/Nano Reactors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52215-52233. [PMID: 34369162 DOI: 10.1021/acsami.1c09660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, biochemical reactions often take place in confined spaces, as typically exemplified by cells. As numerous cellular reactors can be integrated to maintain the living system, researchers have made constant efforts to construct cell-like structures for achieving similar transformations in vitro. Micro/nano reactors engineered by polymers and colloids are becoming popular and being applied in many fields, especially there has been an increasing trend toward constructing metal-organic framework (MOF) micro/nano reactors with the thriving of MOF nanotechnologies. Because of the uniform pores of MOFs, the transmission of substances can be regulated more accurately. Along with properties of large specific surface area, functional diversity and precise control of the particle size, MOFs are also ideal platforms for building distinct microenvironments for biological substances. Compared with traditional polymersomes and colloidosomes, the unique characteristics of MOFs render them potent micro/nano reactor shell materials, mimicking cells for applications in enzymatic catalysis, sensing, nanotherapy, vaccine, biodegradation, etc. This review highlights recent signs of progress on the design of MOF micro/nano reactors and their applications in biology, discusses the existing problems, and prospects their promising properties for smarter multifunctional applications.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Na Jin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ning Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xinyi Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
21
|
Li K, Xu K, He Y, Lu L, Mao Y, Gao P, Liu G, Wu J, Zhang Y, Xiang Y, Luo Z, Cai K. Functionalized Tumor-Targeting Nanosheets Exhibiting Fe(II) Overloading and GSH Consumption for Ferroptosis Activation in Liver Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102046. [PMID: 34448349 DOI: 10.1002/smll.202102046] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Liver tumor is difficult to cure for its high degree of malignancy and rapid progression characteristics. Ferroptosis as a new model of inducing cell death is expected to break the treatment bottleneck of liver tumors. Here, a strategy to induce ferroptosis in HepG2 cells with acid-degradable tumor targeted nanosheets Cu-Hemin-PEG-Lactose acid (Cu-Hemin-PEG-LA) is proposed. After highly ingested by HepG2 cells, Cu-Hemin-PEG-LA nanosheets are degraded by weak acid and release Cu(II) and hemin, which consuming intracellular glutathione (GSH) content and increasing the expression of heme oxygenase 1 (HMOX1) protein, respectively. Furthermore, the expression of glutathione peroxidase 4 protein (GPX4) is down-regulated by consumption intracellular GSH content via converting GSH into glutathione oxidized (GSSG), which is named the classical mode. The intracellular Fe2+ content is overloaded by the significant up-regulation of HMOX1 expression, which is denoted as nonclassical mode. The synergistic effect of classical and nonclassical mode increased the intracellular lipid reactive oxide species, induced the occurrence of ferroptosis and up-regulated the expression of BH3 interacting domain death agonist (BID), apoptosis-inducing factor (AIF), and endonuclease G proteins (EndoG). The synergistic strategy demonstrate the excellent ferroptosis induction ability and antitumor efficacy in vivo, which provides great potential for the clinical transformation of ferroptosis.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yulan Mao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yuchen Zhang
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Yang Xiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
22
|
Hassan IU, Salim H, Naikoo GA, Awan T, Dar RA, Arshad F, Tabidi MA, Das R, Ahmed W, Asiri AM, Qurashi A. A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Fabrication of Cu-hemin metal-organic-frameworks nanoflower supported on three-dimensional reduced graphene oxide for the amperometric detection of H 2O 2. Mikrochim Acta 2021; 188:160. [PMID: 33834299 DOI: 10.1007/s00604-021-04795-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023]
Abstract
A novel electrochemical sensor based on Cu-hemin metal-organic-frameworks nanoflower/three-dimensional reduced graphene oxide (Cu-hemin MOFs/3D-RGO) was constructed to detect H2O2 released from living cells. The nanocomposite was synthesized via a facile co-precipitation method using hemin as the ligand, then decorated with 3D-RGO. The prepared Cu-hemin MOFs showed a 3D hollow spherical flower-like structure with a large specific surface area and mesoporous properties, which could load more biomolecules and greatly enhance the stability by protecting the activity of hemin. In addition, the introduction of 3D-RGO effectively enhanced the conductivity of Cu-hemin MOFs. Thus, the proposed sensor (Cu-hemin MOFs/3D-RGO/GCE) showed excellent electrochemical performances towards H2O2 with a wide linear range (10-24,400 μM), high sensitivity (207.34 μA mM-1 cm-2), low LOD (0.14 μM), and rapid response time (less than 3 s). Most importantly, we prepared a Cu-hemin MOFs/3D-RGO/ITO electrode with cells growing on it. Compared with detecting H2O2 in cell suspension by GCE-based electrode, adhesion of cells on ITO could shorten the diffusion distance of H2O2 from solution to the surface of the electrode and achieve in situ and a real-time monitor of H2O2 released by living cells. This self-supported sensing electrode showed great potential applications in monitoring the pathological and physiological dynamics of cancer cells.
Collapse
|
24
|
Alsharabasy AM, Pandit A, Farràs P. Recent Advances in the Design and Sensing Applications of Hemin/Coordination Polymer-Based Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003883. [PMID: 33217074 DOI: 10.1002/adma.202003883] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The fabrication of biomimetic catalysts as substituents for enzymes is of critical interest in the field due to the problems associated with the extraction, purification, and storage of enzymes in sensing applications. Of these mimetics, hemin/coordination polymer-based nanocomposites, mainly hemin/metal-organic frameworks (MOF), have been developed for various biosensing applications because of the unique properties of each component, while trying to mimic the normal biological functions of heme within the protein milieu of enzymes. This critical review first discusses the different catalytic functions of heme in the body in the form of enzyme/protein structures. The properties of hemin dimerization are then elucidated with the supposed models of hemin oxidation. After that, the progress in the fabrication of hemin/MOF nanocomposites for the sensing of diverse biological molecules is discussed. Finally, the challenges in developing this type of composites are examined as well as possible proposals for future directions to enhance the sensing performance in this field further.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
- School of Chemistry, Ryan Institute, National University of Ireland Galway, Galway, H91CF50, Ireland
| |
Collapse
|
25
|
López-Castaños KA, Ortiz-Frade LA, Méndez E, Quiroga-González E, González-Fuentes MA, Méndez-Albores A. Indirect Quantification of Glyphosate by SERS Using an Incubation Process With Hemin as the Reporter Molecule: A Contribution to Signal Amplification Mechanism. Front Chem 2020; 8:612076. [PMID: 33392153 PMCID: PMC7775572 DOI: 10.3389/fchem.2020.612076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 02/03/2023] Open
Abstract
The indirect determination of the most used herbicide worldwide, glyphosate, was achieved by the SERS technique using hemin chloride as the reporter molecule. An incubation process between hemin and glyphosate solutions was required to obtain a reproducible Raman signal on SERS substrates consisting of silicon decorated with Ag nanoparticles (Si-AgNPs). At 780 nm of excitation wavelength, SERS spectra from hemin solutions do not show extra bands in the presence of glyphosate. However, the hemin bands increase in intensity as a function of glyphosate concentration. This allows the quantification of the herbicide using as marker band the signal associated with the ring breathing mode of pyridine at 745 cm-1. The linear range was from 1 × 10-10 to 1 × 10-5 M and the limit of detection (LOD) was 9.59 × 10-12 M. This methodology was successfully applied to the quantification of the herbicide in honey. From Raman experiments with and without silver nanoparticles, it was possible to state that the hemin is the species responsible for the absorption in the absence or the presence of the herbicide via vinyl groups. Likewise, when the glyphosate concentration increases, a subtle increase occurs in the planar orientation of the vinyl group at position 2 in the porphyrin ring of hemin over the silver surface, favoring the reduction of the molecule. The total Raman signal of the hemin-glyphosate incubated solutions includes a maximized electromagnetic contribution by the use of the appropriate laser excitation, and chemical contributions related to charge transfer between silver and hemin, and from resonance properties of Raman scattering of hemin. Incubation of the reporter molecule with the analyte before the conjugation with the SERS substrate has not been explored before and could be extrapolated to other reporter-analyte systems that depend on a binding equilibrium process.
Collapse
Affiliation(s)
| | - Luis A. Ortiz-Frade
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Pedro Escobedo, Mexico
| | - Erika Méndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - Alia Méndez-Albores
- Centro de Química-ICUAP, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
26
|
Chen X, Wang X, Cao G, Wu Y, Luo H, Ji Z, Shen C, Huo D, Hou C. Colorimetric and fluorescent dual-identification of glutathione based on its inhibition on the 3D ball-flower shaped Cu-hemin-MOF’s peroxidase-like activity. Mikrochim Acta 2020; 187:601. [DOI: 10.1007/s00604-020-04565-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
|
27
|
Lin C, Du Y, Wang S, Wang L, Song Y. Glucose oxidase@Cu-hemin metal-organic framework for colorimetric analysis of glucose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111511. [PMID: 33255068 DOI: 10.1016/j.msec.2020.111511] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/08/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022]
Abstract
The work presents a novel glucose oxidase@Cu-hemin metal-organic frameworks (GOD@ Cu-hemin MOFs) with a ball-flower structure as bienzymatic catalysts for detection of glucose. The GOD@Cu-hemin MOFs exhibits great stability as compared with free horseradish peroxidase and GOD toward harsh conditions because the ball-flower-like shell of Cu-hemin MOF effectively protects from GOD. Thus, the GOD@Cu-Hemin MOFs can be used in external harsh conditions such as high temperature and acid/base. The GOD@Cu-hemin MOFs is capable of sensitive and selective detection of glucose via peroxidase-like of Cu-hemin MOFs and GOD by using 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. Under the existence of glucose, O2 is reduced into H2O2 via GOD@Cu-hemin MOFs. The produced H2O2 as well as Cu-hemin MOFs oxidize TMB into blue oxTMB which shows UV-Vis absorbance at 652. The absorption intensity of oxTMB linearly increases with the increasing concentration of glucose from 0.01 to 1.0 mM with detection limit of 2.8 μM. An integrated agarose hydrogel film (Aga/GOD@Cu-hemin MOF/TMB) sensor is rationally designed for colorimetric detection of glucose. The sensor displays a response range of 30 μM-0.8 mM with a detection limit of 0.01 mM. The result indicates that the Cu-hemin MOFs are an ideal carrier for the encapsulation of enzymes.
Collapse
Affiliation(s)
- Chunhua Lin
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yue Du
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Shiqi Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| |
Collapse
|
28
|
Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136673] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Choi HS, Yang X, Liu G, Kim DS, Yang JH, Lee JH, Han SO, Lee J, Kim SW. Development of Co-hemin MOF/chitosan composite based biosensor for rapid detection of lactose. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
31
|
Zhao P, Chen S, Zhou J, Zhang S, Huo D, Hou C. A novel Fe-hemin-metal organic frameworks supported on chitosan-reduced graphene oxide for real-time monitoring of H 2O 2 released from living cells. Anal Chim Acta 2020; 1128:90-98. [PMID: 32825916 DOI: 10.1016/j.aca.2020.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 01/18/2023]
Abstract
Herein, a kind of novel hemin-based metal organic frameworks (Fe-hemin-MOFs) with unique peroxidase-like bioactivity was developed for the first time. The synthesized Fe-hemin-MOFs exhibited satisfactory catalytic activity toward hydrogen peroxide (H2O2). When it was further supported on Chitosan-reduced graphene oxide (CS-rGO), amplified electrochemical signal could be obtained. The Fe-hemin-MOFs/CS-rGO composite was used to construct a novel H2O2 electrochemical sensor. The electrocatalytic reduction of H2O2 displayed two segments linearity range from 1 to 61 μM and 61-1311 μM, as well as a low detection limit of 0.57 μM. Furthermore, the proposed sensor was successfully used for real-time monitoring of H2O2 released from living cells, which extended the practical application of MOFs-based sensors in monitoring the pathological process in living cells.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Sha Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jun Zhou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Suyi Zhang
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China. https://
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China. https://
| |
Collapse
|
32
|
Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213222] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Xie Y, Xu M, Wang L, Liang H, Wang L, Song Y. Iron-porphyrin-based covalent-organic frameworks for electrochemical sensing H 2O 2 and pH. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110864. [PMID: 32409033 DOI: 10.1016/j.msec.2020.110864] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Here, a novel iron-porphyrin-based covalent organic framework (COFp-Fepor NH2-BTA) was synthesized and applied for electrochemical sensing H2O2 and pH which involved in many biological processes. The COFp-Fepor NH2-BTA was obtained by post-modification of porphyrin-based COF (COFp-por NH2-BTA) which was firstly synthesized by aldehyde-ammonia condensation reaction between 1,3,5-benzenetricarboxaldehyde and 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H- porphine. The COFp-por NH2-BTA was proved to be regular and uniform spherical particles with diameter about 1 μm, as well as possessed good crystalline structure and abundant micropores of about 1.4 nm. The resulted COFp-Fepor NH2-BTA after post-modification with Fe2+ maintained the original shape and crystalline structure of COFp-por NH2-BTA, while the micropores decreased to be about 0.89 nm. Electrochemical results indicated that the synthesized COFp-Fepor NH2-BTA had good electrochemical redox and proton activity owing to iron-porphyrin, enabling to simultaneously be used as mimic peroxidase to catalyze the reduction of hydrogen peroxide (H2O2) and evaluate pH using current and potential as signal, respectively. The prepared sensor showed good performance for H2O2 detection from 6.85 nM to 7 μM with the detection limit of 2.06 nM (S/N = 3), and pH test from 3.0 to 9.0. This work demonstrated that the iron-porphyrin-based COF could be used as a mimic peroxidase to apply in biological fields.
Collapse
Affiliation(s)
- Yi Xie
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Mengli Xu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Huihui Liang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Linyu Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
34
|
Li D, Han Y, Li D, Kang Q, Shen D. Computational characterization of halogen vapor attachment, diffusion and desorption processes in zeolitic imidazolate framework-8. Sci Rep 2020; 10:3010. [PMID: 32080244 PMCID: PMC7033102 DOI: 10.1038/s41598-020-59871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 11/29/2022] Open
Abstract
Computational simulation methods are used for characterizing the detailed attachment, diffusion and desorption of halogen vapor molecules in zeolitic imidazolate framework-8 (ZIF-8). The attachment energies of Cl2, Br2 and I2 are -55.2, -48.5 and -43.0 kJ mol-1, respectively. The framework of ZIF-8 is disrupted by Cl2, which bonds with Zn either on the surface or by freely diffusing into the cage. A framework deformation on the surface of ZIF-8 can be caused by the attachment of Br2, but only reorientation of the 2-methylimidazolate linkers (mIms) for I2. In diffusion, the halogen molecules have a tendency to vertically permeate the apertures of cages followed with swing effect implemented by the mIms. Larger rotation angles of mIms are caused by Br2 because of its stronger interaction with mIms than I2. A maximum of 7 Br2 or 5 I2 molecules can be accommodated in one cage. Br2 are clinging to the mIms and I2 are arranged as crystal layout in the cages, therefore in desorption processes molecules attached to the surface and free inside are desorbed while some remained. These results are beneficial for better understanding the adsorption and desorption processes of halogen vapors in the porous materials.
Collapse
Affiliation(s)
- Dejie Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Ying Han
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Deqiang Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
35
|
Mi L, Sun Y, Shi L, Li T. Hemin-Bridged MOF Interface with Double Amplification of G-Quadruplex Payload and DNAzyme Catalysis: Ultrasensitive Lasting Chemiluminescence MicroRNA Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7879-7887. [PMID: 31983198 DOI: 10.1021/acsami.9b18053] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, we report a double-amplified sensing platform for ultrasensitive chemiluminescence (CL) miRNA detection in real patients' blood in which a hemin-bridged metal-organic framework (MOF) is employed as a functional interface to boost the payload and catalysis of G-quadruplex (G4) DNAzymes. Hemin is here used as the organic ligand for the MOF synthesis, which endows the MOF with an intrinsic peroxidase-like catalytic activity. Most importantly, the MOF surface provides a large amount of binding sites for polymeric G4 DNAzymes that are produced by miRNA-triggered rolling circle amplification reactions, and meanwhile, the interfaced G4 DNAzymes on MOFs (G4/MOFzymes) display an about 100-fold higher catalytic activity than those in solution. By using the G4/MOFzyme catalysts in the luminol/H2O2 CL system, the amplification detection of two acute myocardial infarction (AMI)-related miRNAs (low to 1 fM seen with naked eyes) is achieved in human serum with a smartphone as a portable imaging detector, which provides a facile methodology for point-of-care (POC) diagnosis of AMI. Compared with previous smartphone-based counterparts not requiring sophisticated equipment, this new facile methodology shows both 6 orders of magnitude higher sensitivity and an ∼50-fold longer duration for CL miRNA imaging. These unique features allow our developed G4/MOFzymes to be further employed as a novel luminescent ink for printing commonly used patterns.
Collapse
Affiliation(s)
- Lan Mi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yudie Sun
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Lin Shi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Tao Li
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
36
|
Enhanced catalytic degradation of bisphenol A by hemin-MOFs supported on boron nitride via the photo-assisted heterogeneous activation of persulfate. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115822] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Raza W, Kukkar D, Saulat H, Raza N, Azam M, Mehmood A, Kim KH. Metal-organic frameworks as an emerging tool for sensing various targets in aqueous and biological media. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115654] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Wu L, Lu Z, Ye J. Enzyme-free glucose sensor based on layer-by-layer electrodeposition of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode. Biosens Bioelectron 2019; 135:45-49. [PMID: 30991271 DOI: 10.1016/j.bios.2019.03.064] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
Abstract
A high-performance nonenzymatic glucose sensor was successfully prepared by a layer by layer strategy through electrodeposition assembling multilayer films of Cu-metal-organic frameworks/multi-walled carbon nanotubes (Cu-MOF/MWNTs) modified glassy carbon electrodes (GCE). Different multilayer films of Cu-MOF/MWNTs modified GCE (Cu-MOF/MWNTs/GCE) were prepared by repeating the electrodeposition of MWNTs onto the GCE in an MWNTs solution (MWNTs/GCE) and electrodeposition of the Cu-MOF layer onto the MWNTs film surface to form a Cu-MOF/MWNTs composite layer in the crystallization solution of Cu-MOF. Results confirmed that this method to fabricate multilayer composite films on the GCE was fast and convenient, and that multilayer composite films were stable and unified. The electrode modified by the multilayer composite films could effectively increase the exposure of active sites and increase the surface area of reactive contact. The GCE modified by eight layers (four multilayers Cu-MOF/MWNTs films) showed the optimum catalytic performance in the oxidation of glucose. The novel glucose sensor exhibited a wider detection linear range of 0.5 μM-11.84 mM, with a detection limit of 0.4 μM and a sensitivity of 3878 μA cm-2 mM-1. Moreover, the electrochemical response of the sensor on glucose was fast (within 0.3 s) and stable, exhibited good selectivity and was free of interference.
Collapse
Affiliation(s)
- Lan Wu
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Zhiwei Lu
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| | - Jianshan Ye
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| |
Collapse
|
39
|
Bilal M, Adeel M, Rasheed T, Iqbal HM. Multifunctional metal–organic frameworks-based biocatalytic platforms: recent developments and future prospects. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2019; 8:2359-2371. [DOI: 10.1016/j.jmrt.2018.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Alizadeh N, Salimi A, Hallaj R, Fathi F, Soleimani F. Ni-hemin metal-organic framework with highly efficient peroxidase catalytic activity: toward colorimetric cancer cell detection and targeted therapeutics. J Nanobiotechnology 2018; 16:93. [PMID: 30458781 PMCID: PMC6245618 DOI: 10.1186/s12951-018-0421-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Given the great benefits of artificial enzymes, a simple approach is proposed via assembling of Ni2+ with hemin for synthesis of Ni-hemin metal–organic-frameworks (Ni-hemin MOFs) mimic enzyme. The formation of the Ni-hemin MOFs was verified by scanning electron microscopy, Transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy and UV–vis absorption spectroscopy. This novel nanocomposite exhibited surprising peroxidase like activity monitored by catalytic oxidation of a typical peroxidase substrate, 3,3,5,5′-tetramethylbenzidine, in the presence of H2O2. By using folic acid conjugated MOF nanocomposite as a recognition element, we develop a colorimetric assay for the direct detection of cancer cells. Results The proposed sensor presented high sensitivity and selectivity for the detection of human breast cancer cells (MCF-7) and Human Caucasian gastric adenocarcinoma. By measuring UV–vis absorbance response, a wide detection range from 50 to 105 cells/mL with a detection limit as low as 10 cells/mLwas reached for MCF-7 cells. We further discuss therapeutics efficiency of Ni-hemin MOFs in the presence of H2O2 and ascorbic acid. Peroxidase-mimic Ni-hemin MOFs as reactive oxygen species which could damage MCF-7 cancer cells, however for normal cells (human embryonic kidney HEK 293 cells) killing effect was negligible. Conclusions Based on these behaviors, the developed method offers a fast, easy and cheap assay for the interest in future diagnostic and treatment application.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran. .,Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Reserch Center, Kurdistan University of Medical Sciences, 66177-13446, Sananandaj, Iran
| | - Farzad Soleimani
- Cellular and Molecular Reserch Center, Kurdistan University of Medical Sciences, 66177-13446, Sananandaj, Iran
| |
Collapse
|
41
|
Biomineralization-mimetic preparation of robust metal-organic frameworks biocomposites film with high enzyme load for electrochemical biosensing. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Zhang T, Wang L, Gao C, Zhao C, Wang Y, Wang J. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol. NANOTECHNOLOGY 2018; 29:074003. [PMID: 29251262 DOI: 10.1088/1361-6528/aaa26e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L-1 with a detection limit (3σ) of 0.005 μmol L-1. The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L-1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.
Collapse
Affiliation(s)
- Ting Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China. State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Dare NA, Brammer L, Bourne SA, Egan TJ. Fe(III) Protoporphyrin IX Encapsulated in a Zinc Metal–Organic Framework Shows Dramatically Enhanced Peroxidatic Activity. Inorg Chem 2018; 57:1171-1183. [DOI: 10.1021/acs.inorgchem.7b02612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicola A. Dare
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Lee Brammer
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Susan A. Bourne
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| |
Collapse
|
44
|
Song Y, Shan B, Feng B, Xu P, Zeng Q, Su D. A novel biosensor based on ball-flower-like Cu-hemin MOF grown on elastic carbon foam for trichlorfon detection. RSC Adv 2018; 8:27008-27015. [PMID: 35541091 PMCID: PMC9083247 DOI: 10.1039/c8ra04596h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, ball-flower-like Cu-hemin MOFs microstructures supported by flexible three-dimensional (3D) nitrogen-containing melamine carbon foam composites (denoted as Cu-H MOFs/NECF) were constructed. They were used for the immobilization of acetylcholinesterase (AChE) to detect trichlorfon, a widely applicable organophosphorus pesticide (OP). The formation of Cu-H MOFs/NECF was confirmed by scanning electron microscopy, X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The results indicated that ball-flower-like Cu-hemin MOF microstructures were evenly grown on the fibers of 3D-NECF via a simple room temperature mixing method, which could greatly increase the effective surface area. The Cu-H MOFs/NECF composites also overcome the disadvantages of carbon foam materials such as too large pore diameters that always lead to the stacking of the protease and poor conductivity. Moreover, the composites contain nitrogen elements not only from melamine but also from hemin, which is bound to greatly increase the biocompatibility. The composites were directly used to immobilize a large number of AChE to prepare integrated AChE/Cu-H MOFs/NECF electrodes. Simultaneously, the integrated electrode showed better performance for trichlorfon detection. The sensor exhibited good stability and toughness, wide linear range (0.25–20 ng mL−1) and low detection limit (0.082 ng mL−1). Hence, the AChE/Cu-H MOFs/NECF trichlorfon sensor could be a valuable platform for the pesticide residues field testing. The Cu-hemin MOFs/nitrogen-doped elastic carbon foam (Cu-hemin MOFs/NECF) composite structure was constructed as the supporting matrix to load acetylcholinesterase (AChE) for preparing pesticide biosensors.![]()
Collapse
Affiliation(s)
- Yonggui Song
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Baixi Shan
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Bingwei Feng
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Pengfei Xu
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Qiang Zeng
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Dan Su
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| |
Collapse
|