1
|
Xie Y, Liu J, Ma J, Shi N, Zhang X. Excavation of resources of Streptomyces species in frozen soils of the Qinghai-Tibet Plateau based on RpfA protein of Streptomyces coelicolor. Front Microbiol 2025; 16:1557511. [PMID: 40264977 PMCID: PMC12011840 DOI: 10.3389/fmicb.2025.1557511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
This study is aimed at the actual demand for exploring new species resources of Streptomyces, and aims to solve the technical bottleneck of Streptomyces isolation and culture. A new method was established based on the resuscitation function of the RpfA protein from Streptomyces coelicolor CGMCC 4.1658T to isolate unculturable or difficult-to-culture Streptomyces species, and it was applied to explore Streptomyces species resources in special habitats in the frozen soils of the Qinghai-Tibet Plateau. The RpfA protein of S. coelicolor was heterologously expressed and validated for its in vitro activity. The purified RpfA protein was then used to isolate Streptomyces from soil samples in the frozen soils of the Qinghai-Tibet Plateau, followed by an investigation into the impact of the RpfA protein on the cultivability of Streptomyces species. The results showed that the RpfA protein had a significant promoting effect on the germination of spores of both S. coelicolor itself and other species of the Streptomyces genus, and when a suitable concentration of RpfA protein was added to the culture medium, it could significantly improve the culturability of members of phylum Actinomycetota, especially Streptomyces species. In addition, many new species of the genus Streptomyces and other genera of phylum Actinomycetota were discovered. This study provides a new approach for further exploring Streptomyces species resources in special environments such as the Qinghai-Tibet Plateau and developing new biologically active substances produced by Streptomyces.
Collapse
Affiliation(s)
- Yuxiao Xie
- College of Life Sciences, Hebei University, Baoding, China
| | - Jingjing Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Jun Ma
- College of Life Sciences, Hebei University, Baoding, China
| | - Nan Shi
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
- Engineering Research Center of Microbial Breeding and Conservation, Baoding, China
| | - Xiumin Zhang
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
- Engineering Research Center of Microbial Breeding and Conservation, Baoding, China
| |
Collapse
|
2
|
Özçelik Ü, Çevik H, Bircan HY, Yarbuğ Karakayalı F, Işıklar İ, Haberal M. Evaluation of Transplanted Kidneys and Comparison with Healthy Volunteers and Kidney Donors with Diffusion-Weighted Magnetic Resonance Imaging: Initial Experience. EXP CLIN TRANSPLANT 2024; 22:850-858. [PMID: 28332960 DOI: 10.6002/ect.2016.0341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the feasibility of diffusion-weighted magnetic resonance, by comparing imaging in renal allograft recipients for functional assessment of kidney transplants versus imaging of these features in healthy volunteers and kidney donors with native kidneys. MATERIALS AND METHODS Seventy renal transplant recipients (group A) with stable graft function at postoperative month 1, 40 healthy volunteers (group B), and 40 kidney donors (group C) underwent diffusion-weighted magnetic resonance imaging. An echo-planar diffusion-weighted imaging sequence was performed in coronal orientation by using 6 b values (0, 200, 400, 600, 800, 1000 s/mm²). The apparent diffusion coefficients were determined for the upper and lower poles of the kidney cortex and medulla. Relations between apparent diffusion coefficients and allograft function, determined by the estimated glomerular filtration rate (comparing rates > 60 mL/min/1.73 m² [group A1] versus < 60 mL/min/1.73 m² [group A2]), were investigated in renal transplant recipients, and apparent diffusion coefficients in groups A, B, and C were compared. RESULTS Apparent diffusion coefficients were statistically higher in group A1 than in group A2 (P < .05) and statistically higher in group A than in groups B and C (P < .001). There were no significant differences between groups B and C (P > .05). CONCLUSIONS We observed that apparent diffusion coefficients of transplanted kidneys at postoperative month 1 were higher than values in native kidneys of healthy volunteers and kidney donors. In addition, apparent diffusion coefficients of transplanted kidneys with estimated glomerular filtration rates > 60 mL/min/1.73 m² were higher than transplanted kidneys with rates < 60 mL/min/1.73 m².
Collapse
Affiliation(s)
- Ümit Özçelik
- From the Department of General Surgery, Baskent University School of Medicine, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
3
|
Cunha-Ferreira IC, Vizzotto CS, Frederico TD, Peixoto J, Carvalho LS, Tótola MR, Krüger RH. Impact of Paenibacillus elgii supernatant on screening bacterial strains with potential for biotechnological applications. ENGINEERING MICROBIOLOGY 2024; 4:100163. [PMID: 39629112 PMCID: PMC11610968 DOI: 10.1016/j.engmic.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 12/06/2024]
Abstract
The biotechnological industry faces a crucial demand for novel bioactive compounds, particularly antimicrobial agents, to address the rising challenge of bacterial resistance to current available antibiotics. Traditional strategies for cultivating naturally occurring microorganisms often limit the discovery of novel antimicrobial producers. This study presents a protocol for targeted selection of bacterial strains using the supernatant of Paenibacillus elgii, which produces abundant signal molecules and antimicrobial peptides. Soil samples were inoculated in these enriched culture media to selectively cultivate bacteria resistant to the supernatant, indicating their potential to produce similar compounds. The bacterial strains isolated through this method were assessed for their antibacterial activity. In addition, the functional annotation of the genome of one of these strains revealed several gene clusters of biotechnological interest. This study highlights the effectiveness of using this approach for selective cultivation of microorganisms with potential for biotechnological applications.
Collapse
Affiliation(s)
- I. C. Cunha-Ferreira
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - C. S. Vizzotto
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - T. D. Frederico
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - J. Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - L. S Carvalho
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - M. R. Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - R. H. Krüger
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| |
Collapse
|
4
|
Lodhi AF, Zhang Y, Adil M, Deng Y. Design and application of a novel culturing chip (cChip) for culturing the uncultured aquatic microorganisms. Arch Microbiol 2023; 205:285. [PMID: 37442830 DOI: 10.1007/s00203-023-03613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Culturing uncultured microorganisms is an important aspect of microbiology. Once cultured, these microorganisms can be a source of useful antibiotics, enzymes etc. In this study, we have designed a novel culturing chip (cChip) to facilitate the growth of uncultured aquatic bacterial community by concentrating the samples. cChip was optimized for microbial growth using known bacteria in the laboratory as a pre-experiment. Then microorganisms from a freshwater lake were concentrated and inoculated, before putting the inoculated cChip in a simulated lake environment and further sub-culturing on laboratory media. High-throughput sequencing and traditional culturing were also performed for comparison. These three methods were able to detect 265 genera of microorganisms in the sample, of which 78.87% were detected by high-throughput sequencing, 30.94% by cChip, while only 6.42% were obtained by traditional culture. Moreover, all microorganisms obtained by traditional culture were also cultured using the cChip. A total of 45 new strains were isolated from the cChip, and their 16S rRNA gene sequences were 91.35% to 98.7% similar to their closest relatives according to NCBI GenBank database. We conclude that the design and simple operation of cChip can improve the culture efficiency of traditional culture by almost 5 times. To the best of our knowledge, this is the first report comparing a novel culturing method with high-throughput sequencing data and traditional culturing of the same samples.
Collapse
Affiliation(s)
- Adil Farooq Lodhi
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Ying Zhang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Maria Adil
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
5
|
Kapinusova G, Lopez Marin MA, Uhlik O. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Front Microbiol 2023; 14:1089630. [PMID: 36960281 PMCID: PMC10027941 DOI: 10.3389/fmicb.2023.1089630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Collapse
Affiliation(s)
| | | | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
6
|
Chaudhary DK, Park JH, Kim PG, Ok YS, Hong Y. Enrichment cultivation of VOC-degrading bacteria using diffusion bioreactor and development of bacterial-immobilized biochar for VOC bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121089. [PMID: 36669717 DOI: 10.1016/j.envpol.2023.121089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) have been globally reported at various sites. Currently, limited literature is available on VOC bioremediation using bacterial-immobilized biochar (BC-B). In this study, multiple VOC-degrading bacteria were enriched and isolated using a newly designed diffusion bioreactor. The most effective VOC-degrading bacteria were then immobilized on rice husk-derived pristine biochar (BC) to develop BC-B. Finally, the performances of BC and BC-B for VOCs (benzene, toluene, xylene, and trichloroethane) bioremediation were evaluated by establishing batch microcosm experiments (Control, C; bioconsortium, BS; pristine biochar, BC; and bacterial-immobilized biochar, BC-B). The results revealed that the newly designed diffusion bioreactor effectively simulated native VOC-contaminated conditions, easing the isolation of 38 diverse ranges of VOC-degrading bacterial strains. Members of the genus Pseudomonas were isolated in the highest (26.33%). The most effective bacterial strain was Pseudomonas sp. DKR-23, followed by Rhodococcus sp. Korf-18, which degraded multiple VOCs in the range of 52-75%. The batch microcosm experiment data showed that BC-B remediated the highest >90% of various VOCs, which was comparatively higher than that of BC, BS, and C. In addition, compared with C, the BS, BC, and BC-B microcosms abundantly reduced the half-life of various VOCs, implying a beneficial impact on the degradation behavior of VOCs. Altogether, this study suggests that a diffusion bioreactor system can be used as a cultivation device for the isolation of a wide range of VOC-degrading bacterial strains, and a compatible combination of biochar and bacteria may be an attractive and promising approach for the sustainable bioremediation of multiple VOCs.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Joung-Ho Park
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Pil-Gon Kim
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|
7
|
Stancu MM. Characterization of new diesel-degrading bacteria isolated from freshwater sediments. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:109-122. [PMID: 36156170 DOI: 10.1007/s10123-022-00277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023]
Abstract
As the result of diesel's extensive production and use as fuel for transportation, pollution with such complex mixtures of hydrocarbons is a major concern worldwide. The present study's focus was to investigate the presence of diesel-degrading bacteria in different Danube Delta freshwater sediments. Ten bacterial strains capable to grow in a minimal medium with diesel as the sole carbon source were isolated and characterized in this study. Based on the phenotypic and molecular characteristics, the ten strains belong to four genera and seven species, such as Pseudomonas (P. aeruginosa, P. nitroreducens, P. resinovorans, P. multiresinivorans), Acinetobacter (A. tandoii), Bacillus (B. marisflavi), and Stenotrophomonas (S. maltophilia). All these bacteria were excellent biosurfactant producers, and they were able to tolerate saturated hydrocarbons, like n-heptane, n-decane, n-pentadecane, and n-hexadecane. The ten strains possess at least one alkane hydroxylase gene in their genome, and they were also able to tolerate and degrade diesel. Higher biodegradation rates of diesel were acquired for the strains from the genera Pseudomonas, Acinetobacter, and Stenotrophomonas, compared with that obtained for the Bacillus strain. Due to their remarkable potential to degrade diesel and produce biosurfactants, the ten isolated bacteria are attractive candidates for bioremediation of diesel-polluted environments.
Collapse
Affiliation(s)
- Mihaela Marilena Stancu
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031, Bucharest, Romania.
| |
Collapse
|
8
|
Gomez NCF, Onda DFL. Potential of sediment bacterial communities from Manila Bay (Philippines) to degrade low-density polyethylene (LDPE). Arch Microbiol 2022; 205:38. [PMID: 36565350 DOI: 10.1007/s00203-022-03366-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/02/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022]
Abstract
The persistence of plastics and its effects in different environments where they accumulate, particularly in coastal areas, is of serious concern. These plastics exhibit signs of degradation, possibly mediated by microorganisms. In this study, we investigated the potential of sediment microbial communities from Manila Bay, Philippines, which has a severe plastics problem, to degrade low-density polyethylene (LDPE). Plastics in selected sites were quantified and sediment samples from sites with the lowest and highest plastic accumulation were collected. These sediments were then introduced and incubated with LDPE in vitro for a period of 91 days. Fourier transform infrared spectroscopy detected the appearance of carbonyl and vinyl products on the plastic surface, indicating structural surface modifications attributed to polymer degradation. Communities attached to the plastics were profiled using high-throughput sequencing of the V4-V5 region of the 16S rRNA gene. Members of the phylum Proteobacteria dominated the plastic surface throughout the experiment. Several bacterial taxa associated with hydrocarbon degradation were also enriched, with some taxa positively correlating with the biodegradation indices, suggesting potential active roles in the partial biodegradation of plastics. Other taxa were also present, which might be consuming by-products or providing nourishment for other groups, indicating synergy in utilizing the plastic as the main carbon source and creation of a microenvironment within the plastics biofilm. This study showed that sediment microbes from Manila Bay may have naturally occurring microbial groups potentially capable of partially degrading plastics, supporting previous studies that the biodegradation potential for plastics is ubiquitously present in marine microbial assemblages.
Collapse
Affiliation(s)
- Norchel Corcia F Gomez
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Velasquez St., 1101, Quezon City, Philippines
| | - Deo Florence L Onda
- Microbial Oceanography Laboratory, The Marine Science Institute, University of the Philippines Diliman, Velasquez St., 1101, Quezon City, Philippines.
| |
Collapse
|
9
|
Soil substrate culturing approaches recover diverse members of Actinomycetota from desert soils of Herring Island, East Antarctica. Extremophiles 2022; 26:24. [PMID: 35829965 PMCID: PMC9279279 DOI: 10.1007/s00792-022-01271-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/06/2022] [Indexed: 11/12/2022]
Abstract
Antimicrobial resistance is an escalating health crisis requiring urgent action. Most antimicrobials are natural products (NPs) sourced from Actinomycetota, particularly the Streptomyces. Underexplored and extreme environments are predicted to harbour novel microorganisms with the capacity to synthesise unique metabolites. Herring Island is a barren and rocky cold desert in East Antarctica, remote from anthropogenic impact. We aimed to recover rare and cold-adapted NP-producing bacteria, by employing two culturing methods which mimic the natural environment: direct soil culturing and the soil substrate membrane system. First, we analysed 16S rRNA gene amplicon sequencing data from 18 Herring Island soils and selected the soil sample with the highest Actinomycetota relative abundance (78%) for culturing experiments. We isolated 166 strains across three phyla, including novel and rare strains, with 94% of strains belonging to the Actinomycetota. These strains encompassed thirty-five ‘species’ groups, 18 of which were composed of Streptomyces strains. We screened representative strains for genes which encode polyketide synthases and non-ribosomal peptide synthetases, indicating that 69% have the capacity to synthesise polyketide and non-ribosomal peptide NPs. Fourteen Streptomyces strains displayed antimicrobial activity against selected bacterial and yeast pathogens using an in situ assay. Our results confirm that the cold-adapted bacteria of the harsh East Antarctic deserts are worthy targets in the search for bioactive compounds.
Collapse
|
10
|
van Dorst J, Wilkins D, Crane S, Montgomery K, Zhang E, Spedding T, Hince G, Ferrari B. Microbial community analysis of biopiles in Antarctica provides evidence of successful hydrocarbon biodegradation and initial soil ecosystem recovery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117977. [PMID: 34416497 DOI: 10.1016/j.envpol.2021.117977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms comprise the bulk of biodiversity and biomass in Antarctic terrestrial ecosystems. To effectively protect and manage the Antarctic environment from anthropogenic impacts including contamination, the response and recovery of microbial communities should be included in soil remediation efficacy and environmental risk assessments. This is the first investigation into the microbial dynamics associated with large scale bioremediation of hydrocarbon contaminated soil in Antarctica. Over five years of active management, two significant shifts in the microbial community were observed. The initial shift at 12-24 months was significantly correlated with the highest hydrocarbon degradation rates, increased microbial loads, and significant increases in alkB gene abundances. ANCOM analysis identified bacterial genera most likely responsible for the bulk of degradation including Alkanindiges, Arthrobacter, Dietzia and Rhodococcus. The second microbial community shift occurring from 36 to 60 months was associated with further reductions in hydrocarbons and a recovery of amoA nitrification genes, but also increasing pH, accumulation of nitrite and a reduction of oligotrophic bacterial species. Over time, the addition of inorganic fertilisers altered the soil chemistry and led to a disruption of the nitrogen cycle, most likely decoupling ammonia oxidisers from nitrite oxidisers, resulting in nitrite accumulation. The results from this study provide key insights to the long-term management of hydrocarbon bioremediation in Antarctic soils.
Collapse
Affiliation(s)
- Josie van Dorst
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia.
| | - Daniel Wilkins
- Environmental Protection Program, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Sally Crane
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia
| | - Kate Montgomery
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Evolution and Ecology Research Centre, UNSW Sydney, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Evolution and Ecology Research Centre, UNSW Sydney, Australia
| | - Tim Spedding
- Environmental Protection Program, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Greg Hince
- Environmental Protection Program, Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Australia; Evolution and Ecology Research Centre, UNSW Sydney, Australia.
| |
Collapse
|
11
|
Success of microbial genes based transgenic crops: Bt and beyond Bt. Mol Biol Rep 2021; 48:8111-8122. [PMID: 34716867 DOI: 10.1007/s11033-021-06760-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022]
Abstract
Transgenic technology could hold the key to help farmers to fulfill the ever increasing fast-paced global demand for food. Microbes have always wondered us by their potentials and thriving abilities in the extreme conditions. The use of microorganisms as a gene source in transgenic development is a promising option for crop improvement. The aforesaid approach has already for improving the characteristics of food, industrial, horticulture, and floriculture crops. Many transgenic crops containing microbial genes have been accepted by the farmers and consumers worldwide over the last few decades. The acceptance has brought remarkable changes in the status of society by providing food safety, economic, and health benefits. Among transgenic plants harboring microbial genes, Bacillus thuringiensis (Bt) based transgenic were more focused and documented owing to its significant performance in controlling insects. However, other microbial gene-based transgenic plants have also reserved their places in the farmer's field globally. Therefore, in this review, we have thrown some light on successful transgenic plants harboring microbial genes other than Bt, having application in agriculture. Also, we presented the role of microbial genetic element and product thereof in the inception of biotechnology and discussed the potential of microbial genes in crop improvement.
Collapse
|
12
|
Ramírez-Fernández L, Orellana LH, Johnston ER, Konstantinidis KT, Orlando J. Diversity of microbial communities and genes involved in nitrous oxide emissions in Antarctic soils impacted by marine animals as revealed by metagenomics and 100 metagenome-assembled genomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147693. [PMID: 34029816 DOI: 10.1016/j.scitotenv.2021.147693] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Antarctic soils generally have low temperatures and limited availability of liquid water and nutrients. However, animals can increase the nutrient availability of ice-free areas by transferring nutrients from marine to terrestrial ecosystems, mainly through their excreta. In this study, we employed shotgun metagenomics and population genome binning techniques to study the diversity of microbial communities in Antarctic soils impacted by marine pinnipeds and birds relative to soils with no evident animal presence. We obtained ~285,000 16S rRNA gene-carrying metagenomic reads representing ~60 phyla and 100 metagenome-assembled genomes (MAGs) representing eight phyla. Only nine of these 100 MAGs represented previously described species, revealing that these soils harbor extensive novel diversity. Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant phyla in all samples, with Rhodanobacter being one of the most abundant genera in the bird-impacted soils. Further, the relative abundance of genes related to denitrification was at least double in soils impacted by birds than soils without animal influence. These results advance our understanding of the microbial populations and their genes involved in nitrous oxide emissions in ice-free coastal Antarctic soils impacted by marine animals and reveal novel microbial diversity associated with these ecosystems.
Collapse
Affiliation(s)
- Lia Ramírez-Fernández
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Luis H Orellana
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Wang Y, Shi J, Tang L, Zhang Y, Zhang Y, Wang X, Zhang X. Evaluation of Rpf protein of Micrococcus luteus for cultivation of soil actinobacteria. Syst Appl Microbiol 2021; 44:126234. [PMID: 34343788 DOI: 10.1016/j.syapm.2021.126234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
Rpf protein, a kind of resuscitation promoting factor, was first found in the culture supernatant of Micrococcus luteus. It can resuscitate the growth of M. luteus in "viable but non-culture, VBNC" state and promote the growth of Gram-positive bacteria with high G + C content. This paper investigates the resuscitating activity of M. luteus ACCC 41016T Rpf protein, which was heterologously expressed in E. coli, to cells of M. luteus ACCC 41016T and Rhodococcus marinonascens HBUM200062 in VBNC state, and examines the effect on the cultivation of actinobacteria in soil. The results showed that the recombinant Rpf protein had resuscitation effect on M. luteus ACCC 41016T and R. marinonascens HBUM200062 in VBNC state. 83 strains of actinobacteria, which were distributed in 9 families and 12 genera, were isolated from the experimental group with recombinant Rpf protein in the culture medium. A total of 41 strains of bacteria, which were distributed in 8 families and 9 genera, were isolated from the control group without Rpf protein. The experimental group showed richer species diversity than the control group. Two rare actinobacteria, namely HBUM206391T and HBUM206404T, were obtained in the experimental group supplemented with Rpf protein. Both may be potential new species of Actinomadura and Actinokineospora, indicating that the recombinant expression of M. luteus ACCC 41016T Rpf protein can effectively promote the isolation and culture of actinobacteria in soil.
Collapse
Affiliation(s)
- Yuhui Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Jiangli Shi
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Lingjie Tang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Yufan Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Yujia Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Xinyu Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China
| | - Xiumin Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, PR China.
| |
Collapse
|
14
|
Strategies for Natural Products Discovery from Uncultured Microorganisms. Molecules 2021; 26:molecules26102977. [PMID: 34067778 PMCID: PMC8156983 DOI: 10.3390/molecules26102977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms are highly regarded as a prominent source of natural products that have significant importance in many fields such as medicine, farming, environmental safety, and material production. Due to this, only tiny amounts of microorganisms can be cultivated under standard laboratory conditions, and the bulk of microorganisms in the ecosystems are still unidentified, which restricts our knowledge of uncultured microbial metabolism. However, they could hypothetically provide a large collection of innovative natural products. Culture-independent metagenomics study has the ability to address core questions in the potential of NP production by cloning and analysis of microbial DNA derived directly from environmental samples. Latest advancements in next generation sequencing and genetic engineering tools for genome assembly have broadened the scope of metagenomics to offer perspectives into the life of uncultured microorganisms. In this review, we cover the methods of metagenomic library construction, and heterologous expression for the exploration and development of the environmental metabolome and focus on the function-based metagenomics, sequencing-based metagenomics, and single-cell metagenomics of uncultured microorganisms.
Collapse
|
15
|
Coleman NV, Rich DJ, Tang FHM, Vervoort RW, Maggi F. Biodegradation and Abiotic Degradation of Trifluralin: A Commonly Used Herbicide with a Poorly Understood Environmental Fate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10399-10410. [PMID: 32786599 DOI: 10.1021/acs.est.0c02070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trifluralin is a widely used dinitroaniline herbicide, which can persist in the environment and has substantial ecotoxicity, especially to aquatic organisms. Trifluralin is very insoluble in water (0.22 mg/L at 20 °C) and highly volatile (vapor pressure of 6.7 mPa at 20 °C); these physicochemical properties determine a large part of its environmental fate, which includes rapid loss from soils if surface-applied, strong binding to soil organic matter, and negligible leaching into water. The trifluralin structure contains a tertiary amino group, two nitro-groups and a trifluoromethyl- group. Despite the strongly xenobiotic character of some of these substituents, biodegradation of trifluralin does occur, and pure cultures of bacteria and fungi capable of partially degrading the molecule either by dealkylation or nitro-group reduction have been identified. There are many unanswered questions about the environmental fate and metabolism of this herbicide; the genes and enzymes responsible for biodegradation are largely unknown, the relative roles of abiotic processes vs growth-linked biodegradation vs cometabolism are unresolved, and the impact of different environmental factors on the rates and extents of biodegradation are not clear. Here, we summarize the relevant literature on the persistence and environmental fate of trifluralin with a focus on biodegradation pathways and mechanisms, and we identify the current major knowledge gaps for future research.
Collapse
Affiliation(s)
- Nicholas V Coleman
- School of Life and Environmental Sciences, Building F22, University of Sydney, Sydney, New South Wales, Australia, 2006
| | - Deborah J Rich
- School of Life and Environmental Sciences, Building F22, University of Sydney, Sydney, New South Wales, Australia, 2006
| | - Fiona H M Tang
- Laboratory for Advanced Environmental Engineering Research, School of Civil Engineering, Building J05, University of Sydney, Sydney, New South Wales, Australia, 2006
| | - R Willem Vervoort
- School of Life and Environmental Sciences, Building C81, University of Sydney, Sydney, New South Wales, Australia 2006
| | - Federico Maggi
- Laboratory for Advanced Environmental Engineering Research, School of Civil Engineering, Building J05, University of Sydney, Sydney, New South Wales, Australia, 2006
| |
Collapse
|
16
|
Chaudhary DK, Kim J. Experimental Setup for a Diffusion Bioreactor to Isolate Unculturable Soil Bacteria. Bio Protoc 2019; 9:e3388. [PMID: 33654882 DOI: 10.21769/bioprotoc.3388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/02/2022] Open
Abstract
Unculturable bacteria are those bacteria which proliferate in their native habitat but unable to grow or thrive in the normal laboratory media and conditions. The molecular techniques have revealed the significance of these uncultured bacteria in terms of their functional diversity and potential to produce secondary metabolites. To achieve these benefits, scientists have attempted to isolate and cultivate unculturable bacteria in the laboratory using transwell plates, optical tweezers, laser microdissection, microbioreactors, and diffusions bioreactors. However, these techniques are still inadequate to resolve the difficulties of cultivating unculturable bacteria. Therefore, it is essential to develop new cultivation method that enables growth of diverse range of bacteria in the laboratory conditions. Diffusion bioreactor is a membrane bound chamber which allows microbes to proliferate in their native environment by providing the excess to naturally occurring nutrients and signaling compounds. This paper presents efficient and reliable protocol to construct a diffusion bioreactor and its utilization to isolate and cultivate unculturable soil bacteria in laboratory.
Collapse
Affiliation(s)
| | - Jaisoo Kim
- Ecology Laboratory, Department of Life Science, Kyonggi University, Suwon, South Korea
| |
Collapse
|
17
|
Rego A, Raio F, Martins TP, Ribeiro H, Sousa AGG, Séneca J, Baptista MS, Lee CK, Cary SC, Ramos V, Carvalho MF, Leão PN, Magalhães C. Actinobacteria and Cyanobacteria Diversity in Terrestrial Antarctic Microenvironments Evaluated by Culture-Dependent and Independent Methods. Front Microbiol 2019; 10:1018. [PMID: 31214128 PMCID: PMC6555387 DOI: 10.3389/fmicb.2019.01018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial diversity from McMurdo Dry Valleys in Antarctica, the coldest desert on earth, has become more easily assessed with the development of High Throughput Sequencing (HTS) techniques. However, some of the diversity remains inaccessible by the power of sequencing. In this study, we combine cultivation and HTS techniques to survey actinobacteria and cyanobacteria diversity along different soil and endolithic micro-environments of Victoria Valley in McMurdo Dry Valleys. Our results demonstrate that the Dry Valleys actinobacteria and cyanobacteria distribution is driven by environmental forces, in particular the effect of water availability and endolithic environments clearly conditioned the distribution of those communities. Data derived from HTS show that the percentage of cyanobacteria decreases from about 20% in the sample closest to the water source to negligible values on the last three samples of the transect with less water availability. Inversely, actinobacteria relative abundance increases from about 20% in wet soils to over 50% in the driest samples. Over 30% of the total HTS data set was composed of actinobacterial strains, mainly distributed by 5 families: Sporichthyaceae, Euzebyaceae, Patulibacteraceae, Nocardioidaceae, and Rubrobacteraceae. However, the 11 actinobacterial strains isolated in this study, belonged to Micrococcaceae and Dermacoccaceae families that were underrepresented in the HTS data set. A total of 10 cyanobacterial strains from the order Synechococcales were also isolated, distributed by 4 different genera (Nodosilinea, Leptolyngbya, Pectolyngbya, and Acaryochloris-like). In agreement with the cultivation results, Leptolyngbya was identified as dominant genus in the HTS data set. Acaryochloris-like cyanobacteria were found exclusively in the endolithic sample and represented 44% of the total 16S rRNA sequences, although despite our efforts we were not able to properly isolate any strain from this Acaryochloris-related group. The importance of combining cultivation and sequencing techniques is highlighted, as we have shown that culture-dependent methods employed in this study were able to retrieve actinobacteria and cyanobacteria taxa that were not detected in HTS data set, suggesting that the combination of both strategies can be usefull to recover both abundant and rare members of the communities.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Raio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Teresa P Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Hugo Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - António G G Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Joana Séneca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Mafalda S Baptista
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Charles K Lee
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,School of Science, University of Waikato, Hamilton, New Zealand
| | - S Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,School of Science, University of Waikato, Hamilton, New Zealand
| | - Vitor Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Chaudhary DK, Khulan A, Kim J. Development of a novel cultivation technique for uncultured soil bacteria. Sci Rep 2019; 9:6666. [PMID: 31040339 PMCID: PMC6491550 DOI: 10.1038/s41598-019-43182-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/16/2019] [Indexed: 01/18/2023] Open
Abstract
In this study, a new diffusion bioreactor was developed to cultivate hidden bacterial communities in their natural environment. The newly developed method was investigated to cultivate microbial communities from the forest soil, and the results were evaluated against traditional culture methods and compared to the results of a pyrosequencing-based molecular survey. The molecular analysis revealed that a diverse bacterial population was present in the soil sample. However, both the newly developed method and the traditional method recovered more than 400 isolates, which belonged to only four phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Although these isolates were distributed over only four major phyla, the use of the newly developed technique resulted in the successful cultivation of 35 previously uncultured strains, whereas no such strains were successfully cultivated by the traditional method. Furthermore, the study also found that the recovery of uncultured bacteria and novel isolates was related to sampling season, incubation period, and cultivation media. The use of soil collected in summer, a prolonged incubation period, and low-substrate modified media increased the recovery of uncultured and novel isolates. Overall, the results indicate that the newly designed diffusion bioreactor can mimic the natural environment, which permits the cultivation of previously uncultured bacteria.
Collapse
Affiliation(s)
| | - Altankhuu Khulan
- Ecology Laboratory, Department of Life Science, Kyonggi University, Suwon, South Korea
| | - Jaisoo Kim
- Ecology Laboratory, Department of Life Science, Kyonggi University, Suwon, South Korea.
| |
Collapse
|
19
|
Lambrechts S, Willems A, Tahon G. Uncovering the Uncultivated Majority in Antarctic Soils: Toward a Synergistic Approach. Front Microbiol 2019; 10:242. [PMID: 30828325 PMCID: PMC6385771 DOI: 10.3389/fmicb.2019.00242] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/29/2019] [Indexed: 01/22/2023] Open
Abstract
Although Antarctica was once believed to be a sterile environment, it is now clear that the microbial communities inhabiting the Antarctic continent are surprisingly diverse. Until the beginning of the new millennium, little was known about the most abundant inhabitants of the continent: prokaryotes. From then on, however, the rising use of deep sequencing techniques has led to a better understanding of the Antarctic prokaryote diversity and provided insights in the composition of prokaryotic communities in different Antarctic environments. Although these cultivation-independent approaches can produce millions of sequences, linking these data to organisms is hindered by several problems. The largest difficulty is the lack of biological information on large parts of the microbial tree of life, arising from the fact that most microbial diversity on Earth has never been characterized in laboratory cultures. These unknown prokaryotes, also known as microbial dark matter, have been dominantly detected in all major environments on our planet. Laboratory cultures provide access to the complete genome and the means to experimentally verify genomic predictions and metabolic functions and to provide evidence of horizontal gene transfer. Without such well-documented reference data, microbial dark matter will remain a major blind spot in deep sequencing studies. Here, we review our current understanding of prokaryotic communities in Antarctic ice-free soils based on cultivation-dependent and cultivation-independent approaches. We discuss advantages and disadvantages of both approaches and how these strategies may be combined synergistically to strengthen each other and allow a more profound understanding of prokaryotic life on the frozen continent.
Collapse
Affiliation(s)
- Sam Lambrechts
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Effect of temperature on bacterial community in petroleum hydrocarbon-contaminated and uncontaminated Antarctic soil. Polar Biol 2018. [DOI: 10.1007/s00300-018-2316-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biol 2018. [DOI: 10.1007/s00300-018-2287-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Gran-Scheuch A, Fuentes E, Bravo DM, Jiménez JC, Pérez-Donoso JM. Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils. Front Microbiol 2017; 8:1634. [PMID: 28894442 PMCID: PMC5581505 DOI: 10.3389/fmicb.2017.01634] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/11/2017] [Indexed: 12/03/2022] Open
Abstract
Antarctica is an attractive target for human exploration and scientific investigation, however the negative effects of human activity on this continent are long lasting and can have serious consequences on the native ecosystem. Various areas of Antarctica have been contaminated with diesel fuel, which contains harmful compounds such as heavy metals and polycyclic aromatic hydrocarbons (PAH). Bioremediation of PAHs by the activity of microorganisms is an ecological, economical, and safe decontamination approach. Since the introduction of foreign organisms into the Antarctica is prohibited, it is key to discover native bacteria that can be used for diesel bioremediation. By following the degradation of the PAH phenanthrene, we isolated 53 PAH metabolizing bacteria from diesel contaminated Antarctic soil samples, with three of these isolates exhibiting a high phenanthrene degrading capacity. In particular, the Sphingobium xenophagum D43FB isolate showed the highest phenanthrene degradation ability, generating up to 95% degradation of initial phenanthrene. D43FB can also degrade phenanthrene in the presence of its usual co-pollutant, the heavy metal cadmium, and showed the ability to grow using diesel-fuel as a sole carbon source. Microtiter plate assays and SEM analysis revealed that S. xenophagum D43FB exhibits the ability to form biofilms and can directly adhere to phenanthrene crystals. Genome sequencing analysis also revealed the presence of several genes involved in PAH degradation and heavy metal resistance in the D43FB genome. Altogether, these results demonstrate that S. xenophagum D43FB shows promising potential for its application in the bioremediation of diesel fuel contaminated-Antarctic ecosystems.
Collapse
Affiliation(s)
- Alejandro Gran-Scheuch
- Bionanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile.,Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmaceuticas, Universidad de ChileSantiago, Chile
| | - Edwar Fuentes
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmaceuticas, Universidad de ChileSantiago, Chile
| | - Denisse M Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de ChileSantiago, Chile.,Research and Development Laboratory, uBiomeSantiago, Chile
| | - Juan Cristobal Jiménez
- Bionanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile.,Research and Development Laboratory, uBiomeSantiago, Chile
| | - José M Pérez-Donoso
- Bionanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile.,Research and Development Laboratory, uBiomeSantiago, Chile
| |
Collapse
|
23
|
Biotechnological Advances for Restoring Degraded Land for Sustainable Development. Trends Biotechnol 2017; 35:847-859. [PMID: 28606405 DOI: 10.1016/j.tibtech.2017.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/24/2023]
Abstract
Global land resources are under severe threat due to pollution and unsustainable land use practices. Restoring degraded land is imperative for regaining ecosystem services, such as biodiversity maintenance and nutrient and water cycling, and to meet the food, feed, fuel, and fibre requirements of present and future generations. While bioremediation is acknowledged as a promising technology for restoring polluted and degraded lands, its field potential is limited for various reasons. However, recent biotechnological advancements, including producing efficient microbial consortia, applying enzymes with higher degrees of specificity, and designing plants with specific microbial partners, are opening new prospects in remediation technology. This review provides insights into such promising ways to harness biotechnology as ecofriendly methods for remediation and restoration.
Collapse
|
24
|
Pudasaini S, Wilson J, Ji M, van Dorst J, Snape I, Palmer AS, Burns BP, Ferrari BC. Microbial Diversity of Browning Peninsula, Eastern Antarctica Revealed Using Molecular and Cultivation Methods. Front Microbiol 2017; 8:591. [PMID: 28439263 PMCID: PMC5383709 DOI: 10.3389/fmicb.2017.00591] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/22/2017] [Indexed: 01/07/2023] Open
Abstract
Browning Peninsula is an ice-free polar desert situated in the Windmill Islands, Eastern Antarctica. The entire site is described as a barren landscape, comprised of frost boils with soils dominated by microbial life. In this study, we explored the microbial diversity and edaphic drivers of community structure across this site using traditional cultivation methods, a novel approach the soil substrate membrane system (SSMS), and culture-independent 454-tag pyrosequencing. The measured soil environmental and microphysical factors of chlorine, phosphate, aspect and elevation were found to be significant drivers of the bacterial community, while none of the soil parameters analyzed were significantly correlated to the fungal community. Overall, Browning Peninsula soil harbored a distinctive microbial community in comparison to other Antarctic soils comprised of a unique bacterial diversity and extremely limited fungal diversity. Tag pyrosequencing data revealed the bacterial community to be dominated by Actinobacteria (36%), followed by Chloroflexi (18%), Cyanobacteria (14%), and Proteobacteria (10%). For fungi, Ascomycota (97%) dominated the soil microbiome, followed by Basidiomycota. As expected the diversity recovered from culture-based techniques was lower than that detected using tag sequencing. However, in the SSMS enrichments, that mimic the natural conditions for cultivating oligophilic “k-selected” bacteria, a larger proportion of rare bacterial taxa (15%), such as Blastococcus, Devosia, Herbaspirillum, Propionibacterium and Methylocella and fungal (11%) taxa, such as Nigrospora, Exophiala, Hortaea, and Penidiella were recovered at the genus level. At phylum level, a comparison of OTU's showed that the SSMS shared 21% of Acidobacteria, 11% of Actinobacteria and 10% of Proteobacteria OTU's with soil. For fungi, the shared OTUs was 4% (Basidiomycota) and <0.5% (Ascomycota). This was the first known attempt to culture microfungi using the SSMS which resulted in an increase in diversity from 14 to 57 microfungi OTUs compared to standard cultivation. Furthermore, the SSMS offers the opportunity to retrieve a greater diversity of bacterial and fungal taxa for future exploitation.
Collapse
Affiliation(s)
- Sarita Pudasaini
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - John Wilson
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Mukan Ji
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Josie van Dorst
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Ian Snape
- Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and CommunitiesKingston, TAS, Australia
| | - Anne S Palmer
- Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and CommunitiesKingston, TAS, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| |
Collapse
|