1
|
Xu X, Qiao W, Dong Y, Yang H, Xu H, Qiao M. 2,3-Butanediol dehydrogenase is more efficient than acetoin reductase at metabolizing reserve carbon to improve carbon cycling pathways in Lactococcus lactis N8. Int J Biol Macromol 2025; 299:140023. [PMID: 39828149 DOI: 10.1016/j.ijbiomac.2025.140023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Acetoin (AC) and 2,3-butanediol (2,3-BDO) are metabolites produced by lactic acid bacteria using glucose as a carbon source. These two metabolites act as carbon reserves and can be reutilised by the cells. In this study, we investigated the enzymatic characteristics of acetoin reductase (ButA) and 2,3-butanediol dehydrogenase (ButB). The performance of butA or/and butB knockout mutants of Lactococcus lactis N8 was evaluated. ButA and ButB were heterologously expressed in E. coli, and their enzymatic characteristics were measured in vitro under different pH, temperature, and metal ion conditions. Kinetic parameters of the two enzymes indicated that ButA exhibited better catalytic efficiency with AC, whereas ButB performed better with 2,3-BDO. The dehydrogenase activity of ΔbutA, ΔbutB, and ΔbutBA strains were detected in vitro with AC or 2,3-BDO added medium. The ΔbutA mutant was found to metabolize both AC and 2,3-BDO more efficiently than the ΔbutB mutant. This study provides a comprehensive insight about the metabolic carbon reserve pool and cyclic pathways involving AC and 2,3-BDO in L. lactis N8.
Collapse
Affiliation(s)
- Xian Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wanjin Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Dong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Huan Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
López-Linares JC, Rama E, García-Cubero MT, Coca M, Perez CL, Yamakawa CK, Dragone G, Mussatto SI. Enhancing 2,3-butanediol and acetoin production from brewer's spent grain hemicellulosic hydrolysate through bacterial co-cultivation. N Biotechnol 2025; 88:22-31. [PMID: 40139487 DOI: 10.1016/j.nbt.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
This study evaluated bacterial co-cultivation as a strategy to mitigate brewer's spent grain (BSG) hemicellulosic hydrolysate toxicity, aiming to enhance 2,3-butanediol (2,3-BDO) and acetoin production through fermentation. Co-culture of Paenibacillus polymyxa with Pseudomonas alloputida or Rhodococcus sp. was assessed using synthetic medium and BSG hydrolysate. Attention was given to removing inhibitory compounds, including lignin-derived phenolics, hydroxymethylfurfural, furfural, and acetic acid, through microbial detoxification during co-cultivation. Various fermentation temperatures (30, 34, and 37 °C) and initial cell concentrations (OD600 of 0.05 and 0.1) were tested. Both P. polymyxa and Rhodococcus sp. effectively removed inhibitory compounds present in the medium. Co-cultures with Rhodococcus sp. exhibited higher sugar consumption rates (1.01 vs 0.88 g/L·h) than P. polymyxa monoculture, efficiently utilizing glucose, xylose, and arabinose, producing 2,3-BDO and acetoin. In co-culture with Rhodococcus sp., concentration (3.7 g/L), yield (0.14 g/g) and productivity (0.10 g/L·h) of 2,3-BDO at 34 °C considerably surpassed that of the P. polymyxa monoculture, with an increase of up to 48 %. These findings highlight the potential of co-cultures, especially with Rhodococcus sp., to alleviate inhibitory compound impacts when using complex media for fermentation. This study represents the first exploration of 2,3-BDO and acetoin production from BSG hemicellulosic hydrolysates using co-cultures.
Collapse
Affiliation(s)
- Juan C López-Linares
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Erlinda Rama
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, Kongens Lyngby 2800, Denmark
| | - María Teresa García-Cubero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Mónica Coca
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain
| | - Caroline L Perez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, Kongens Lyngby 2800, Denmark
| | - Celina K Yamakawa
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, Kongens Lyngby 2800, Denmark
| | - Giuliano Dragone
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
3
|
Muñoz-Sánchez D, Carceller A, Álvaro G, Romero O, Guillén M. Artificial cell-free system for the sustainable production of acetoin from bioethanol. BIORESOURCE TECHNOLOGY 2025; 419:132059. [PMID: 39824322 DOI: 10.1016/j.biortech.2025.132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
The present work introduces and validates an artificial cell free system for the synthesis of acetoin from ethanol, representing a greener alternative to conventional chemical synthesis. The one pot multi-enzymatic system, which employs pyruvate decarboxylase from Zymobacter palmae (ZpPDC), alcohol dehydrogenase from Saccharomyces cerevisiae (ScADH), and NADH oxidase from Streptococcus pyogenes (SpNOX), achieves nearly 100 % substrate conversion and reaction yield within 6 h under optimal conditions (pH 7.5, enzyme activities: ZpPDC 100 U·mL-1, ScADH 50 U·mL-1, SpNOX 127 U·mL-1, and 1 mM NAD+). Using air for oxygen supply mitigates enzyme inactivation while effectively accelerating the regeneration of NAD+. The use of bioethanol as a substrate demonstrates the robustness and sustainability of the bioprocess, enabling the production of natural acetoin from renewable resources. This environmentally friendly approach offers significant advantages for industrial applications, aligning with green chemistry principles.
Collapse
Affiliation(s)
- David Muñoz-Sánchez
- Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Albert Carceller
- Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Gregorio Álvaro
- Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Oscar Romero
- Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Marina Guillén
- Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
4
|
Germán-Ayuso L, Cobos R, Lorenzo L, Río F, Prieto-Fernández S, Roncal T, Cuevas JM. Evaluation of 2,3-butanediol derived from whey fermentation as an effective bio-based monomer for waterborne polyurethane dispersions. Front Chem 2025; 12:1516427. [PMID: 39834847 PMCID: PMC11743733 DOI: 10.3389/fchem.2024.1516427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Within the context of the circular economy, the transformation of agri-food waste or by-products into valuable products is essential to promoting a transition towards more sustainable and efficient utilisation of resources. Whey is a very abundant by-product of dairy manufacturing. Apart from partial reutilisation in animal feed or some food supplements, the sustainable management and disposal of whey still represent significant environmental challenges. In this work, whey is considered a valuable resource for producing high-value products, specifically 2,3-butanediol (2,3-BDO), which was produced through fermentation using the bacterial strain Lactococcus lactis 43103. The described process yielded a >90% purity of 2,3-BDO, which was evaluated as a potential chain extender in the synthesis of bio-based waterborne polyurethane dispersions (PUDs). The incorporation of whey-derived 2,3-BDO led to the development of PUDs with up to 90% bio-based content without detrimental effects on the process or liquid-phase properties. The combination of 100% bio-based polyether polyols with partially renewable L-lysine ethyl ester diisocyanate and whey-derived 2,3-BDO as a chain extender generated totally stable, low-particle-size water dispersions of amorphous polymers characterised by similar structure and molecular weight compared to those of alternative petroleum-based PUDs. These results open up the possibility of incorporating fermentation-derived 2,3-BDO as a totally renewable component in bio-based PUDs as potential sustainable resinous systems for further formulation of water-based coatings or adhesives.
Collapse
Affiliation(s)
- Lorena Germán-Ayuso
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Rubén Cobos
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Leire Lorenzo
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Miñano, Spain
| | - Francisca Río
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Miñano, Spain
| | - Soraya Prieto-Fernández
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Miñano, Spain
| | - Tomás Roncal
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de San Sebastián, Donostia-San Sebastián, Spain
| | - José M. Cuevas
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Zamudio, Spain
| |
Collapse
|
5
|
Zhu P, Zhang C, Chen J, Zeng X. Multilevel systemic engineering of Bacillus licheniformis for efficient production of acetoin from lignocellulosic hydrolysates. Int J Biol Macromol 2024; 279:135142. [PMID: 39208901 DOI: 10.1016/j.ijbiomac.2024.135142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Bio-refining lignocellulosic resource offers a renewable and sustainable approach for producing biofuels and biochemicals. However, the conversion efficiency of lignocellulosic resource is still challenging due to the intrinsic inefficiency in co-utilization of xylose and glucose. In this study, the industrial bacterium Bacillus licheniformis was engineered for biorefining lignocellulosic resource to produce acetoin. First, adaptive evolution was conducted to improve acetoin tolerance, leading to a 19.6 % increase in acetoin production. Then, ARTP mutagenesis and 60Co-γ irradiation was carried out to enhance the production of acetoin, obtaining 73.0 g/L acetoin from glucose. Further, xylose uptake and xylose utilization pathway were rewired to facilitate the co-utilization of xylose and glucose, enabling the production of 60.6 g/L acetoin from glucose and xylose mixtures. Finally, this efficient cell factory was utilized for acetoin production from lignocellulosic hydrolysates with the highest titer of 68.3 g/L in fed-batch fermentation. This strategy described here holds great applied potential in the biorefinery of lignocellulose for the efficient synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Pan Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chen Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jiaying Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
6
|
Colacicco M, De Micco C, Macrelli S, Agrimi G, Janssen M, Bettiga M, Pisano I. Process scale-up simulation and techno-economic assessment of ethanol fermentation from cheese whey. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:124. [PMID: 39342290 PMCID: PMC11439329 DOI: 10.1186/s13068-024-02567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Production of cheese whey in the EU exceeded 55 million tons in 2022, resulting in lactose-rich effluents that pose significant environmental challenges. To address this issue, the present study investigated cheese-whey treatment via membrane filtration and the utilization of its components as fermentation feedstock. A simulation model was developed for an industrial-scale facility located in Italy's Apulia region, designed to process 539 m3/day of untreated cheese-whey. The model integrated experimental data from ethanolic fermentation using a selected strain of Kluyveromyces marxianus in lactose-supplemented media, along with relevant published data. RESULTS The simulation was divided into three different sections. The first section focused on cheese-whey pretreatment through membrane filtration, enabling the recovery of 56%w/w whey protein concentrate, process water recirculation, and lactose concentration. In the second section, the recovered lactose was directed towards fermentation and downstream anhydrous ethanol production. The third section encompassed anaerobic digestion of organic residue, sludge handling, and combined heat and power production. Moreover, three different scenarios were produced based on ethanol yield on lactose (YE/L), biomass yield on lactose, and final lactose concentration in the medium. A techno-economic assessment based on the collected data was performed as well as a sensitivity analysis focused on economic parameters, encompassing considerations on cheese-whey by assessing its economical impact as a credit for the simulated facility, dictated by a gate fee, or as a cost by considering it a raw material. The techno-economic analysis revealed different minimum ethanol selling prices across the three scenarios. The best performance was obtained in the scenario presenting a YE/L = 0.45 g/g, with a minimum selling price of 1.43 €/kg. Finally, sensitivity analysis highlighted the model's dependence on the price or credit associated with cheese-whey handling. CONCLUSIONS This work highlighted the importance of policy implementation in this kind of study, demonstrating how a gate fee approach applied to cheese-whey procurement positively impacted the final minimum selling price for ethanol across all scenarios. Additionally, considerations should be made about the implementation of the simulated process as a plug-in addition in to existing processes dealing with dairy products or handling multiple biomasses to produce ethanol.
Collapse
Affiliation(s)
- Mattia Colacicco
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 4, 70125, Bari, Italy
| | - Claudia De Micco
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 4, 70125, Bari, Italy
| | - Stefano Macrelli
- CIRI FRAME (Interdepartmental Centre for Industrial Research in Renewable Resources), University of Bologna, Via Sant'Alberto, 163, 48123, Ravenna, Italy
- Italbiotec Srl Società Benefit, 20126, Milan, Italy
| | - Gennaro Agrimi
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 4, 70125, Bari, Italy
- Interuniversity Consortium for Biotechnology (CIB), 34100, Trieste, Italy
| | - Matty Janssen
- Department of Technology Management and Economics, Division of Environmental Systems Analysis, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | | | - Isabella Pisano
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 4, 70125, Bari, Italy.
- Interuniversity Consortium for Biotechnology (CIB), 34100, Trieste, Italy.
| |
Collapse
|
7
|
Gaur S, Kaur M, Kalra R, Rene ER, Goel M. Application of microbial resources in biorefineries: Current trend and future prospects. Heliyon 2024; 10:e28615. [PMID: 38628756 PMCID: PMC11019186 DOI: 10.1016/j.heliyon.2024.e28615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The recent growing interest in sustainable and alternative sources of energy and bio-based products has driven the paradigm shift to an integrated model termed "biorefinery." Biorefinery framework implements the concepts of novel eco-technologies and eco-efficient processes for the sustainable production of energy and value-added biomolecules. The utilization of microbial resources for the production of various value-added products has been documented in the literatures. However, the appointment of these microbial resources in integrated resource management requires a better understanding of their status. The main of aim of this review is to provide an overview on the defined positioning and overall contribution of the microbial resources, i.e., algae, fungi and bacteria, for various bioprocesses and generation of multiple products from a single biorefinery. By utilizing waste material as a feedstock, biofuels can be generated by microalgae while sequestering environmental carbon and producing value added compounds as by-products. In parallel, fungal biorefineries are prolific producers of lignocellulose degrading enzymes along with pharmaceutically important novel products. Conversely, bacterial biorefineries emerge as a preferred platform for the transformation of standard cells into proficient bio-factories, developing chassis and turbo cells for enhanced target compound production. This comprehensive review is poised to offer an intricate exploration of the current trends, obstacles, and prospective pathways of microbial biorefineries, for the development of future biorefineries.
Collapse
Affiliation(s)
- Suchitra Gaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Mehak Kaur
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Rishu Kalra
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| | - Eldon R. Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft, 2601DA, the Netherlands
| | - Mayurika Goel
- Sustainable Agriculture Program, The Energy and Resources Institute, TERI-Gram, Gurugram, 122001, Haryana, India
| |
Collapse
|
8
|
Xu X, Liu F, Qiao W, Dong Y, Yang H, Liu F, Xu H, Qiao M. A Point Mutation in Cassette Relieves the Repression Regulation of CcpA Resulting in an Increase in the Degradation of 2,3-Butanediol in Lactococcus lactis. Microorganisms 2024; 12:773. [PMID: 38674718 PMCID: PMC11051896 DOI: 10.3390/microorganisms12040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
In lactic acid bacteria, the global transcriptional regulator CcpA regulates carbon metabolism by repressing and activating the central carbon metabolism pathway, thus decreasing or increasing the yield of certain metabolites to maximize carbon flow. However, there are no reports on the deregulation of the inhibitory effects of CcpA on the metabolism of secondary metabolites. In this study, we identified a single-base mutant strain of Lactococcus lactis N8-2 that is capable of metabolizing 2,3-butanediol. It has been established that CcpA dissociates from the catabolite responsive element (cre) site due to a mutation, leading to the activation of derepression and expression of the 2,3-butanediol dehydrogenase gene cluster (butB and butA). Transcriptome analysis and quantitative polymerase chain reaction (Q-PCR) results showed significant upregulation of transcription of butB and butA compared to the unmutated strain. Furthermore, micro-scale thermophoresis experiments confirmed that CcpA did not bind to the mutated cre. Furthermore, in a bacterial two-plasmid fluorescent hybridization system, it was similarly confirmed that the dissociation of CcpA from cre eliminated the repressive effect of CcpA on downstream genes. Finally, we investigated the differing catalytic capacities of the 2,3-butanediol dehydrogenase gene cluster in L. lactis N8-1 and L. lactis N8-2 for 2,3-butanediol. This led to increased expression of butB and butA, which were deregulated by CcpA repression. This is the first report on the elimination of the deterrent effect of CcpA in lactic acid bacteria, which changes the direction of enzymatic catalysis and alters the direction of carbon metabolism. This provides new perspectives and strategies for metabolizing 2,3-butanediol using bacteria in synthetic biology.
Collapse
Affiliation(s)
- Xian Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Fulu Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| | - Wanjin Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (H.X.)
| | - Yujie Dong
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Huan Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Fengming Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (H.X.)
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan 030006, China; (X.X.); (Y.D.); (H.Y.); (F.L.)
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (W.Q.); (H.X.)
| |
Collapse
|
9
|
Li Y, Zhao X, Yao M, Yang W, Han Y, Liu L, Zhang J, Liu J. Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase. Microb Cell Fact 2023; 22:165. [PMID: 37644496 PMCID: PMC10466699 DOI: 10.1186/s12934-023-02163-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
3-Hydroxybutanone (Acetoin, AC) and 2,3-butanediol (BD) are two essential four-carbon platform compounds with numerous pharmaceutical and chemical synthesis applications. AC and BD have two and three stereoisomers, respectively, while the application of the single isomer product in chemical synthesis is superior. AC and BD are glucose overflow metabolites produced by biological fermentation from a variety of microorganisms. However, the AC or BD produced by microorganisms using glucose is typically a mixture of various stereoisomers. This was discovered to be due to the simultaneous presence of multiple butanediol dehydrogenases (BDHs) in microorganisms, and AC and BD can be interconverted under BDH catalysis. In this paper, beginning with the synthesis pathways of microbial AC and BD, we review in detail the studies on the formation mechanisms of different stereoisomers of AC and BD, summarize the properties of different types of BDH that have been tabulated, and analyze the structural characteristics and affinities of different types of BDH by comparing them using literature and biological database data. Using microorganisms, recent research on the production of optically pure AC or BD was also reviewed. Limiting factors and possible solutions for chiral AC and BD production are discussed.
Collapse
Affiliation(s)
- Yuchen Li
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiangying Zhao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China.
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Mingjing Yao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
| | - Wenli Yang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yanlei Han
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
| | - Liping Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jianjun Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
10
|
Moxley WC, Brown RE, Eiteman MA. Escherichia coli aceE variants coding pyruvate dehydrogenase improve the generation of pyruvate-derived acetoin. Eng Life Sci 2023; 23:e2200054. [PMID: 36874610 PMCID: PMC9978916 DOI: 10.1002/elsc.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023] Open
Abstract
Several chromosomally expressed AceE variants were constructed in Escherichia coli ΔldhA ΔpoxB ΔppsA and compared using glucose as the sole carbon source. These variants were examined in shake flask cultures for growth rate, pyruvate accumulation, and acetoin production via heterologous expression of the budA and budB genes from Enterobacter cloacae ssp. dissolvens. The best acetoin-producing strains were subsequently studied in controlled batch culture at the one-liter scale. PDH variant strains attained up to four-fold greater acetoin than the strain expressing the wild-type PDH. In a repeated batch process, the H106V PDH variant strain attained over 43 g/L of pyruvate-derived products, acetoin (38.5 g/L) and 2R,3R-butanediol (5.0 g/L), corresponding to an effective concentration of 59 g/L considering the dilution. The acetoin yield from glucose was 0.29 g/g with a volumetric productivity of 0.9 g/L·h (0.34 g/g and 1.0 g/L·h total products). The results demonstrate a new tool in pathway engineering, the modification of a key metabolic enzyme to improve the formation of a product via a kinetically slow, introduced pathway. Direct modification of the pathway enzyme offers an alternative to promoter engineering in cases where the promoter is involved in a complex regulatory network.
Collapse
Affiliation(s)
- W. Chris Moxley
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Rachel E. Brown
- School of ChemicalMaterials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark A. Eiteman
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
- School of ChemicalMaterials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
11
|
Diao M, Chen X, Li J, Shi Y, Yu B, Ma Z, Li J, Xie N. Metabolic Engineering of Escherichia coli for High-Level Production of ( R)-Acetoin from Low-Cost Raw Materials. Microorganisms 2023; 11:microorganisms11010203. [PMID: 36677495 PMCID: PMC9867144 DOI: 10.3390/microorganisms11010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Acetoin is an important four-carbon platform chemical with versatile applications. Optically pure (R)-acetoin is more valuable than the racemate as it can be applied in the asymmetric synthesis of optically active α-hydroxy ketone derivatives, pharmaceuticals, and liquid crystal composites. As a cytotoxic solvent, acetoin at high concentrations severely limits culture performance and impedes the acetoin yield of cell factories. In this study, putative genes that may improve the resistance to acetoin for Escherichia coli were screened. To obtain a high-producing strain, the identified acetoin-resistance gene was overexpressed, and the synthetic pathway of (R)-acetoin was strengthened by optimizing the copy number of the key genes. The engineered E. coli strain GXASR-49RSF produced 81.62 g/L (R)-acetoin with an enantiomeric purity of 96.5% in the fed-batch fermentation using non-food raw materials in a 3-L fermenter. Combining the systematic approach developed in this study with the use of low-cost feedstock showed great potential for (R)-acetoin production via this cost-effective biotechnological process.
Collapse
Affiliation(s)
- Mengxue Diao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
- Correspondence: (M.D.); (N.X.)
| | - Xianrui Chen
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Life Science and Technology College, Guangxi University, Nanning 530004, China
| | - Ya’nan Shi
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhilin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Life Science and Technology College, Guangxi University, Nanning 530004, China
| | - Jianxiu Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Nengzhong Xie
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
- Correspondence: (M.D.); (N.X.)
| |
Collapse
|
12
|
Sheng L, Madika A, Lau MSH, Zhang Y, Minton NP. Metabolic engineering for the production of acetoin and 2,3-butanediol at elevated temperature in Parageobacillus thermoglucosidasius NCIMB 11955. Front Bioeng Biotechnol 2023; 11:1191079. [PMID: 37200846 PMCID: PMC10185769 DOI: 10.3389/fbioe.2023.1191079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
The current climate crisis has emphasised the need to achieve global net-zero by 2050, with countries being urged to set considerable emission reduction targets by 2030. Exploitation of a fermentative process that uses a thermophilic chassis can represent a way to manufacture chemicals and fuels through more environmentally friendly routes with a net reduction in greenhouse gas emissions. In this study, the industrially relevant thermophile Parageobacillus thermoglucosidasius NCIMB 11955 was engineered to produce 3-hydroxybutanone (acetoin) and 2,3-butanediol (2,3-BDO), organic compounds with commercial applications. Using heterologous acetolactate synthase (ALS) and acetolactate decarboxylase (ALD) enzymes, a functional 2,3-BDO biosynthetic pathway was constructed. The formation of by-products was minimized by the deletion of competing pathways surrounding the pyruvate node. Redox imbalance was addressed through autonomous overexpression of the butanediol dehydrogenase and by investigating appropriate aeration levels. Through this, we were able to produce 2,3-BDO as the predominant fermentation metabolite, with up to 6.6 g/L 2,3-BDO (0.33 g/g glucose) representing 66% of the theoretical maximum at 50°C. In addition, the identification and subsequent deletion of a previously unreported thermophilic acetoin degradation gene (acoB1) resulted in enhanced acetoin production under aerobic conditions, producing 7.6 g/L (0.38 g/g glucose) representing 78% of the theoretical maximum. Furthermore, through the generation of a ΔacoB1 mutant and by testing the effect of glucose concentration on 2,3-BDO production, we were able to produce 15.6 g/L of 2,3-BDO in media supplemented with 5% glucose, the highest titre of 2,3-BDO produced in Parageobacillus and Geobacillus species to date.
Collapse
Affiliation(s)
- Lili Sheng
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Abubakar Madika
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Matthew S. H. Lau
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Minton,
| |
Collapse
|
13
|
Tian K, Hong X, Guo M, Li Y, Wu H, Caiyin Q, Qiao J. Development of Base Editors for Simultaneously Editing Multiple Loci in Lactococcus lactis. ACS Synth Biol 2022; 11:3644-3656. [PMID: 36065829 DOI: 10.1021/acssynbio.1c00561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactococcus lactis serves as the most extensively studied model organism and an important dairy species. Though CRISPR-Cas9 systems have been developed for robust genetic manipulations, simultaneously editing multiple endogenous loci in L. lactis is still challenging. Herein, we first report the development of a double-strand break-free, robust, multiloci editing system CRISPR-deaminase-assisted base editor (CRISPR-DBE), which comprises a cytidine (CRISPR-cDBE) and an adenosine deaminase-assisted base editor (CRISPR-aDBE). Specifically targeted by a sgRNA, CRISPR-cDBE can efficiently introduce a cytidine-to-thymidine mutation and CRISPR-aDBE can high-efficiently convert adenosine to guanosine within a 5 nt editing window. CRISPR-cDBE was validated and successfully applied to simultaneously inactivate multiple genes using a single plasmid in L. lactis strain NZ9000. Meanwhile, the temperature-sensitive plasmid of CRISPR-DBE can be cured quickly, and the continuous gene editing of L. lactis has been achieved. Furthermore, CRISPR-cDBE can also efficiently convert the targeted C to T in a nisin-producing, industrial L. lactis strain F44. Finally, we applied genome-wide bioinformatics analysis to determine the scope of gene inactivation for these base editors using different Cas9 variants and evaluated the preference of SpGn and SpRYn variants for the protospacer adjacent motif in L. lactis NZ9000. Taken together, our study provides a powerful tool for simultaneously editing multiple loci in L. lactis, which may have a wide range of industrial applications in the future.
Collapse
Affiliation(s)
- Kairen Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Xia Hong
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Manman Guo
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Hao Wu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Qinggele Caiyin
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| |
Collapse
|
14
|
Duval A, Sarbu A, Dalmas F, Albertini D, Avérous L. 2,3-Butanediol as a Biobased Chain Extender for Thermoplastic Polyurethanes: Influence of Stereochemistry on Macromolecular Architectures and Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Duval
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2 67087, France
- Soprema, 14 rue de Saint-Nazaire, Strasbourg 67100, France
| | - Alexandru Sarbu
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2 67087, France
- Soprema, 14 rue de Saint-Nazaire, Strasbourg 67100, France
| | - Florent Dalmas
- Univ. Lyon, INSA Lyon, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| | - David Albertini
- Univ. Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR 5270, Villeurbanne 69621, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, Strasbourg Cedex 2 67087, France
| |
Collapse
|
15
|
Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca. J Biotechnol 2022; 354:1-9. [PMID: 35644291 DOI: 10.1016/j.jbiotec.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
2,3-Butanediol (2,3-BDO) is a functional C4 compound with various industrial applications. It exists as three isomers, and racemic mixtures can be produced through chemical synthesis and fermentation using natural producers. In this study, Saccharomyces cerevisiae was engineered to produce enantiopure meso-2,3-BDO by eliminating BDH1 encoding (2 R,3 R)-butanediol dehydrogenase and introducing budC coding for acetoin reductase from Klebsiella oxytoca. The resulting strain produced 69.2 g/L of enantiopure meso-2,3-BDO production with a productivity of 1.5 g meso-2,3-BDO/L•h using cassava hydrolysates. Furthermore, improved titer and productivity of meso-2,3-BDO were achieved by resolving C2-auxotrophy. To decrease the acetoin accumulation, the budC gene was stably and strongly expressed throughout the chromosomal integration. The resulting strain produced 171 g/L of meso-2,3-BDO with 0.49 g meso-2,3-BDO /g glucose, which is 99.8 % of theoretical yield and a productivity of 1.8 g meso-2,3-BDO/L•h. These results will help facilitate the commercial production of enantiopure meso-2,3-BDO using the GRAS strain.
Collapse
|
16
|
Choi Y, Kim YH. Regulatory role of cysteines in (2R, 3R)-butanediol dehydrogenase BdhA of Bacillus velezensis strain GH1-13. J Microbiol 2022; 60:411-418. [DOI: 10.1007/s12275-022-2018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
|
17
|
Meng W, Ma C, Xu P, Gao C. Biotechnological production of chiral acetoin. Trends Biotechnol 2022; 40:958-973. [DOI: 10.1016/j.tibtech.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
|
18
|
Costa A, Corallo B, Amarelle V, Stewart S, Pan D, Tiscornia S, Fabiano E. Paenibacillus sp. Strain UY79, Isolated from a Root Nodule of Arachis villosa, Displays a Broad Spectrum of Antifungal Activity. Appl Environ Microbiol 2022; 88:e0164521. [PMID: 34757818 PMCID: PMC8788682 DOI: 10.1128/aem.01645-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
A nodule-inhabiting Paenibacillus sp. strain (UY79) isolated from wild peanut (Arachis villosa) was screened for its antagonistic activity against diverse fungi and oomycetes (Botrytis cinerea, Fusarium verticillioides, Fusarium oxysporum, Fusarium graminearum, Fusarium semitectum, Macrophomina phaseolina, Phomopsis longicolla, Pythium ultimum, Phytophthora sojae, Rhizoctonia solani, Sclerotium rolfsii, and Trichoderma atroviride). The results obtained show that Paenibacillus sp. UY79 was able to antagonize these fungi/oomycetes and that agar-diffusible compounds and volatile compounds (different from HCN) participate in the antagonism exerted. Acetoin, 2,3-butanediol, and 2-methyl-1-butanol were identified among the volatile compounds produced by strain UY79 with possible antagonistic activity against fungi/oomycetes. Paenibacillus sp. strain UY79 did not affect symbiotic association or growth promotion of alfalfa plants when coinoculated with rhizobia. By whole-genome sequence analysis, we determined that strain UY79 is a new species of Paenibacillus within the Paenibacillus polymyxa complex. Diverse genes putatively involved in biocontrol activity were identified in the UY79 genome. Furthermore, according to genome mining and antibiosis assays, strain UY79 would have the capability to modulate the growth of bacteria commonly found in soil/plant communities. IMPORTANCE Phytopathogenic fungi and oomycetes are responsible for causing devastating losses in agricultural crops. Therefore, there is enormous interest in the development of effective and complementary strategies that allow the control of the phytopathogens, reducing the input of agrochemicals in croplands. The discovery of new strains with expanded antifungal activities and with a broad spectrum of action is challenging and of great future impact. Diverse strains belonging to the P. polymyxa complex have been reported to be effective biocontrol agents. Results presented here show that the novel discovered strain of Paenibacillus sp. presents diverse traits involved in antagonistic activity against a broad spectrum of pathogens and is a potential and valuable strain to be further assessed for the development of biofungicides.
Collapse
Affiliation(s)
- Andrés Costa
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Belén Corallo
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Vanesa Amarelle
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvina Stewart
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Cultivos de Secano. Estación Experimental La Estanzuela, Colonia, Uruguay
| | - Dinorah Pan
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Susana Tiscornia
- Sección Micología, Facultad de Ciencias-Universidad de la República, Montevideo, Uruguay
| | - Elena Fabiano
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
19
|
Mechanisms of Acetoin Toxicity and Adaptive Responses in an Acetoin-Producing Species, Lactococcus lactis. Appl Environ Microbiol 2021; 87:e0107921. [PMID: 34613757 PMCID: PMC8612267 DOI: 10.1128/aem.01079-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acetoin, 3-hydroxyl,2-butanone, is extensively used as a flavor additive in food products. This volatile compound is produced by the dairy bacterium Lactococcus lactis when aerobic respiration is activated by haem addition, and comprises ∼70% of carbohydrate degradation products. Here we investigate the targets of acetoin toxicity, and determine how acetoin impacts L. lactis physiology and survival. Acetoin caused damage to DNA and proteins, which related to reactivity of its keto group. Acetoin stress was reflected in proteome profiles, which revealed changes in lipid metabolic proteins. Acetoin provoked marked changes in fatty acid composition, with massive accumulation of cycC19:0 cyclopropane fatty acid at the expense of its unsaturated C18:1 fatty acid precursor. Deletion of the cfa gene, encoding the cycC19:0 synthase, sensitized cells to acetoin stress. Acetoin-resistant transposon mutagenesis revealed a hot spot in the high affinity phosphate transporter operon pstABCDEF, which is known to increase resistance to multiple stresses. This work reveals the causes and consequences of acetoin stress on L. lactis, and may facilitate control of lactic acid bacteria production in technological processes. IMPORTANCE Acetoin, 3-hydroxyl,2-butanone, has diverse uses in chemical industry, agriculture, and dairy industries as a volatile compound that generates aromas. In bacteria, it can be produced in high amount by Lactococcus lactis when it grows under aerobic respiration. However, acetoin production can be toxic and detrimental for growth and/or survival. Our results showed that it damages DNA and proteins via its keto group. We also showed that acetoin modifies membrane fatty acid composition with the production of cyclopropane C19:0 fatty acid at the expense of an unsaturated C18:1. We isolated mutants more resistant to acetoin than the wild-type strain. All of them mapped to a single locus pstABCDEF operon, suggesting a simple means to limit acetoin toxicity in dairy bacteria and to improve its production.
Collapse
|
20
|
Rehman S, Khairul Islam M, Khalid Khanzada N, Kyoungjin An A, Chaiprapat S, Leu SY. Whole sugar 2,3-butanediol fermentation for oil palm empty fruit bunches biorefinery by a newly isolated Klebsiella pneumoniae PM2. BIORESOURCE TECHNOLOGY 2021; 333:125206. [PMID: 33940505 DOI: 10.1016/j.biortech.2021.125206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Effective utilization of cellulose and hemicelluloses is essential to sustainable bioconversion of lignocellulose. A newly isolated xylose-utilizing strain, Klebsiella pneumoniae PM2, was introduced to convert the biomass "whole sugars" into high value 2,3-butanediol (2,3-BDO) in a biorefinery process. The fermentation conditions were optimized (30°C, pH 7, and 150 rpm agitation) using glucose for maximum 2,3-BDO production in batch systems. A sulfite pretreated oil palm empty fruit bunches (EFB) whole slurry (substrate hydrolysate 119.5 g/L total glucose mixed with pretreatment spent liquor 80 g/L xylose) was fed to strain PM2 for fermentation. The optimized biorefinery process resulted in 75.03 ± 3.17 g/L of 2,3-BDO with 0.78 ± 0.33 g/L/h productivity and 0.43 g/g yield (87% of theoretical value) via a modified staged separate hydrolysis and fermentation process. This result is equivalent to approximately 135 kg 2,3-BDO and 14.5 kg acetoin precursors from 1 ton of EFB biomass without any wastage of both C6 and C5 sugars.
Collapse
Affiliation(s)
- Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Md Khairul Islam
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong, China; Department of Applied Chemistry & Chemical Engineering, Rajshahi University, Bangladesh
| | | | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Thailand
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
21
|
Lee JW, Lee YG, Jin YS, Rao CV. Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production. Appl Microbiol Biotechnol 2021; 105:5751-5767. [PMID: 34287658 DOI: 10.1007/s00253-021-11436-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
2,3-Butanediol (2,3-BDO) is a promising commodity chemical with various industrial applications. While petroleum-based chemical processes currently dominate the industrial production of 2,3-BDO, fermentation-based production of 2,3-BDO provides an attractive alternative to chemical-based processes with regards to economic and environmental sustainability. The achievement of high 2,3-BDO titer, yield, and productivity in microbial fermentation is a prerequisite for the production of 2,3-BDO at large scales. Also, enantiopure production of 2,3-BDO production is desirable because 2,3-BDO stereoisomers have unique physicochemical properties. Pursuant to these goals, many metabolic engineering strategies to improve 2,3-BDO production from inexpensive sugars by Klebsiella oxytoca, Bacillus species, and Saccharomyces cerevisiae have been developed. This review summarizes the recent advances in metabolic engineering of non-pathogenic microorganisms to enable efficient and enantiopure production of 2,3-BDO. KEY POINTS: • K. oxytoca, Bacillus species, and S. cerevisiae have been engineered to achieve efficient 2,3-BDO production. • Metabolic engineering of non-pathogenic microorganisms enabled enantiopure production of 2,3-BDO. • Cost-effective 2,3-BDO production can be feasible by using renewable biomass.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ye-Gi Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
Maina S, Prabhu AA, Vivek N, Vlysidis A, Koutinas A, Kumar V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol Adv 2021; 54:107783. [PMID: 34098005 DOI: 10.1016/j.biotechadv.2021.107783] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
The bio-based platform chemicals 2,3-butanediol (BDO) and acetoin have various applications in chemical, cosmetics, food, agriculture, and pharmaceutical industries, whereas the derivatives of BDO could be used as fuel additives, polymer and synthetic rubber production. This review summarizes the novel technological developments in adapting genetic and metabolic engineering strategies for selection and construction of chassis strains for BDO and acetoin production. The valorization of renewable feedstocks and bioprocess development for the upstream and downstream stages of bio-based BDO and acetoin production are discussed. The techno-economic aspects evaluating the viability and industrial potential of bio-based BDO production are presented. The commercialization of bio-based BDO and acetoin production requires the utilization of crude renewable resources, the chassis strains with high fermentation production efficiencies and development of sustainable purification or conversion technologies.
Collapse
Affiliation(s)
- Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Ashish A Prabhu
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece.
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
23
|
C4 Bacterial Volatiles Improve Plant Health. Pathogens 2021; 10:pathogens10060682. [PMID: 34072921 PMCID: PMC8227687 DOI: 10.3390/pathogens10060682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.
Collapse
|
24
|
Boecker S, Harder BJ, Kutscha R, Pflügl S, Klamt S. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Microb Cell Fact 2021; 20:63. [PMID: 33750397 PMCID: PMC7941745 DOI: 10.1186/s12934-021-01554-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background The alcohol 2,3-butanediol (2,3-BDO) is an important chemical and an Escherichia coli producer strain was recently engineered for bio-based production of 2,3-BDO. However, further improvements are required for realistic applications. Results Here we report that enforced ATP wasting, implemented by overexpressing the genes of the ATP-hydrolyzing F1-part of the ATPase, leads to significant increases of yield and especially of productivity of 2,3-BDO synthesis in an E. coli producer strain under various cultivation conditions. We studied aerobic and microaerobic conditions as well as growth-coupled and growth-decoupled production scenarios. In all these cases, the specific substrate uptake and 2,3-BDO synthesis rate (up to sixfold and tenfold higher, respectively) were markedly improved in the ATPase strain compared to a control strain. However, aerobic conditions generally enable higher productivities only with reduced 2,3-BDO yields while high product yields under microaerobic conditions are accompanied with low productivities. Based on these findings we finally designed and validated a three-stage process for optimal conversion of glucose to 2,3-BDO, which enables a high productivity in combination with relatively high yield. The ATPase strain showed again superior performance and finished the process twice as fast as the control strain and with higher 2,3-BDO yield. Conclusions Our results demonstrate the high potential of enforced ATP wasting as a generic metabolic engineering strategy and we expect more applications to come in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01554-x.
Collapse
Affiliation(s)
- Simon Boecker
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Björn-Johannes Harder
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Regina Kutscha
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany.
| |
Collapse
|
25
|
Kleerebezem M, Bachmann H, van Pelt-KleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol Rev 2021; 44:804-820. [PMID: 32990728 DOI: 10.1093/femsre/fuaa033] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactococcus lactis serves as a paradigm organism for the lactic acid bacteria (LAB). Extensive research into the molecular biology, metabolism and physiology of several model strains of this species has been fundamental for our understanding of the LAB. Genomic studies have provided new insights into the species L. lactis, including the resolution of the genetic basis of its subspecies division, as well as the control mechanisms involved in the fine-tuning of growth rate and energy metabolism. In addition, it has enabled novel approaches to study lactococcal lifestyle adaptations to the dairy application environment, including its adjustment to near-zero growth rates that are particularly relevant in the context of cheese ripening. This review highlights various insights in these areas and exemplifies the strength of combining experimental evolution with functional genomics and bacterial physiology research to expand our fundamental understanding of the L. lactis lifestyle under different environmental conditions.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Herwig Bachmann
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands
| | - Eunice van Pelt-KleinJan
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Sieze Douwenga
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Oscar van Mastrigt
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
26
|
Satora P, Skotniczny M, Strnad S, Piechowicz W. Chemical composition and sensory quality of sauerkraut produced from different cabbage varieties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
28
|
Subramanian V, Lunin VV, Farmer SJ, Alahuhta M, Moore KT, Ho A, Chaudhari YB, Zhang M, Himmel ME, Decker SR. Phylogenetics-based identification and characterization of a superior 2,3-butanediol dehydrogenase for Zymomonas mobilis expression. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:186. [PMID: 33292448 PMCID: PMC7656694 DOI: 10.1186/s13068-020-01820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Zymomonas mobilis has recently been shown to be capable of producing the valuable platform biochemical, 2,3-butanediol (2,3-BDO). Despite this capability, the production of high titers of 2,3-BDO is restricted by several physiological parameters. One such bottleneck involves the conversion of acetoin to 2,3-BDO, a step catalyzed by 2,3-butanediol dehydrogenase (Bdh). Several Bdh enzymes have been successfully expressed in Z. mobilis, although a highly active enzyme is yet to be identified for expression in this host. Here, we report the application of a phylogenetic approach to identify and characterize a superior Bdh, followed by validation of its structural attributes using a mutagenesis approach. RESULTS Of the 11 distinct bdh genes that were expressed in Z. mobilis, crude extracts expressing Serratia marcescens Bdh (SmBdh) were found to have the highest activity (8.89 µmol/min/mg), when compared to other Bdh enzymes (0.34-2.87 µmol/min/mg). The SmBdh crystal structure was determined through crystallization with cofactor (NAD+) and substrate (acetoin) molecules bound in the active site. Active SmBdh was shown to be a tetramer with the active site populated by a Gln247 residue contributed by the diagonally opposite subunit. SmBdh showed a more extensive supporting hydrogen-bond network in comparison to the other well-studied Bdh enzymes, which enables improved substrate positioning and substrate specificity. This protein also contains a short α6 helix, which provides more efficient entry and exit of molecules from the active site, thereby contributing to enhanced substrate turnover. Extending the α6 helix to mimic the lower activity Enterobacter cloacae (EcBdh) enzyme resulted in reduction of SmBdh function to nearly 3% of the total activity. In great contrast, reduction of the corresponding α6 helix of the EcBdh to mimic the SmBdh structure resulted in ~ 70% increase in its activity. CONCLUSIONS This study has demonstrated that SmBdh is superior to other Bdhs for expression in Z. mobilis for 2,3-BDO production. SmBdh possesses unique structural features that confer biochemical advantage to this protein. While coordinated active site formation is a unique structural characteristic of this tetrameric complex, the smaller α6 helix and extended hydrogen network contribute towards improved activity and substrate promiscuity of the enzyme.
Collapse
Affiliation(s)
- Venkataramanan Subramanian
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Samuel J Farmer
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Kyle T Moore
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Angela Ho
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Yogesh B Chaudhari
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Biodiversity and Ecosystem Research, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| |
Collapse
|
29
|
Sun W, Jiang B, Zhang Y, Guo J, Zhao D, Pu Z, Bao Y. Enabling the biosynthesis of malic acid in Lactococcus lactis by establishing the reductive TCA pathway and promoter engineering. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Meng W, Zhang Y, Cao M, Zhang W, Lü C, Yang C, Gao C, Xu P, Ma C. Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca. Microb Cell Fact 2020; 19:162. [PMID: 32778112 PMCID: PMC7419187 DOI: 10.1186/s12934-020-01420-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whey is a major pollutant generated by the dairy industry. To decrease environmental pollution caused by the industrial release of whey, new prospects for its utilization need to be urgently explored. Here, we investigated the possibility of using whey powder to produce 2,3-butanediol (BDO), an important platform chemical. RESULTS Klebsiella oxytoca strain PDL-0 was selected because of its ability to efficiently produce BDO from lactose, the major fermentable sugar in whey. After deleting genes pox, pta, frdA, ldhD, and pflB responding for the production of by-products acetate, succinate, lactate, and formate, a recombinant strain K. oxytoca PDL-K5 was constructed. Fed-batch fermentation using K. oxytoca PDL-K5 produced 74.9 g/L BDO with a productivity of 2.27 g/L/h and a yield of 0.43 g/g from lactose. In addition, when whey powder was used as the substrate, 65.5 g/L BDO was produced within 24 h with a productivity of 2.73 g/L/h and a yield of 0.44 g/g. CONCLUSION This study demonstrated the efficiency of K. oxytoca PDL-0 for BDO production from whey. Due to its non-pathogenicity and efficient lactose utilization, K. oxytoca PDL-0 might also be used in the production of other important chemicals using whey as the substrate.
Collapse
Affiliation(s)
- Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yongjia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Menghao Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Wen Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
31
|
Mar MJ, Andersen JM, Kandasamy V, Liu J, Solem C, Jensen PR. Synergy at work: linking the metabolism of two lactic acid bacteria to achieve superior production of 2-butanol. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:45. [PMID: 32180827 PMCID: PMC7065357 DOI: 10.1186/s13068-020-01689-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The secondary alcohol 2-butanol has many important applications, e.g., as a solvent. Industrially, it is usually made by sulfuric acid-catalyzed hydration of butenes. Microbial production of 2-butanol has also been attempted, however, with little success as witnessed by the low titers and yields reported. Two important reasons for this, are the growth-hampering effect of 2-butanol on microorganisms, and challenges associated with one of the key enzymes involved in its production, namely diol dehydratase. RESULTS We attempt to link the metabolism of an engineered Lactococcus lactis strain, which possesses all enzyme activities required for fermentative production of 2-butanol from glucose, except for diol dehydratase, which acts on meso-2,3-butanediol (mBDO), with that of a Lactobacillus brevis strain which expresses a functional dehydratase natively. We demonstrate growth-coupled production of 2-butanol by the engineered L. lactis strain, when co-cultured with L. brevis. After fine-tuning the co-culture setup, a titer of 80 mM (5.9 g/L) 2-butanol, with a high yield of 0.58 mol/mol is achieved. CONCLUSIONS Here, we demonstrate that it is possible to link the metabolism of two bacteria to achieve redox-balanced production of 2-butanol. Using a simple co-cultivation setup, we achieved the highest titer and yield from glucose in a single fermentation step ever reported. The data highlight the potential that lies in harnessing microbial synergies for producing valuable compounds.
Collapse
Affiliation(s)
- Mette J. Mar
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Joakim M. Andersen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Vijayalakshmi Kandasamy
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Jianming Liu
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Peter R. Jensen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
32
|
Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures. Appl Environ Microbiol 2020; 86:AEM.02785-19. [PMID: 31953330 PMCID: PMC7054105 DOI: 10.1128/aem.02785-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/07/2020] [Indexed: 11/23/2022] Open
Abstract
Lactococcus lactis is used in large quantities by the food and biotechnology industries. L. lactis can use oxygen for respiration if heme is supplied in the growth medium. This has been extensively studied in batch cultures using various mutants, but quantitative studies of how the cell growth affects respiratory metabolism, energetics, and cell quality are surprisingly scarce. Our results demonstrate that the respiratory metabolism of L. lactis is remarkably flexible and can be modulated by controlling the specific growth rate. We also link the physiological state of cells during cultivation to the quality of frozen or freeze-dried cells, which is relevant to the industry that may lack understanding of such relationships. This study extends our knowledge of respiratory metabolism in L. lactis and its impact on frozen and freeze-dried starter culture products, and it illustrates the influence of cultivation conditions and microbial physiology on the quality of starter cultures. In this study, we used chemostat cultures to analyze the quantitative effects of the specific growth rate and respiration on the metabolism in Lactococcus lactis CHCC2862 and on the downstream robustness of cells after freezing or freeze-drying. Under anaerobic conditions, metabolism remained homofermentative, although biomass yields varied with the dilution rate (D). In contrast, metabolism shifted with the dilution rate under respiration-permissive conditions. At D = 0.1 h−1, no lactate was produced, while lactate formation increased with higher dilution rates. Thus, a clear metabolic shift was observed, from flavor-forming respiratory metabolism at low specific growth rates to mixed-acid respiro-fermentative metabolism at higher specific growth rates. Quantitative analysis of the respiratory activity, lactose uptake rate, and metabolite production rates showed that aerobic acetoin formation provided most of the NADH consumed in respiration. Moreover, the maintenance-associated lactose consumption under respiration-permissive conditions was only 10% of the anaerobic value, either due to higher respiratory yield of ATP on consumed lactose or due to lower maintenance-related ATP demand. The cultivation conditions also affected the quality of the starter cultures produced. Cells harvested under respiration-permissive conditions at D = 0.1 h−1 were less robust after freeze-drying and had lower acidification activity for subsequent milk acidification, whereas respiration-permissive conditions at the higher dilution rates led to robust cells that performed equally well or better than anaerobic cells. IMPORTANCELactococcus lactis is used in large quantities by the food and biotechnology industries. L. lactis can use oxygen for respiration if heme is supplied in the growth medium. This has been extensively studied in batch cultures using various mutants, but quantitative studies of how the cell growth affects respiratory metabolism, energetics, and cell quality are surprisingly scarce. Our results demonstrate that the respiratory metabolism of L. lactis is remarkably flexible and can be modulated by controlling the specific growth rate. We also link the physiological state of cells during cultivation to the quality of frozen or freeze-dried cells, which is relevant to the industry that may lack understanding of such relationships. This study extends our knowledge of respiratory metabolism in L. lactis and its impact on frozen and freeze-dried starter culture products, and it illustrates the influence of cultivation conditions and microbial physiology on the quality of starter cultures.
Collapse
|
33
|
Sharma A, Gupta G, Ahmad T, Kaur B, Hakeem KR. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. J Microbiol Methods 2020; 170:105862. [DOI: 10.1016/j.mimet.2020.105862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/04/2023]
|
34
|
Cho SW, Yim J, Seo SW. Engineering Tools for the Development of Recombinant Lactic Acid Bacteria. Biotechnol J 2020; 15:e1900344. [DOI: 10.1002/biot.201900344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/27/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sung Won Cho
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Jaewoo Yim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
35
|
Abstract
Industrial biotechnology is a continuously expanding field focused on the application of microorganisms to produce chemicals using renewable sources as substrates. Currently, an increasing interest in new versatile processes, able to utilize a variety of substrates to obtain diverse products, can be observed. A robust microbial strain is critical in the creation of such processes. Lactic acid bacteria (LAB) are used to produce a wide variety of chemicals with high commercial interest. Lactic acid (LA) is the most predominant industrial product obtained from LAB fermentations, and its production is forecasted to rise as the result of the increasing demand of polylactic acid. Hence, the creation of new ways to revalorize LA production processes is of high interest and could further enhance its economic value. Therefore, this review explores some co-products of LA fermentations, derived from LAB, with special focus on bacteriocins, lipoteichoic acid, and probiotics. Finally, a multi-product process involving LA and the other compounds of interest is proposed.
Collapse
|
36
|
van Tilburg AY, Cao H, van der Meulen SB, Solopova A, Kuipers OP. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories. Curr Opin Biotechnol 2019; 59:1-7. [DOI: 10.1016/j.copbio.2019.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/05/2018] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
|
37
|
Song CW, Park JM, Chung SC, Lee SY, Song H. Microbial production of 2,3-butanediol for industrial applications. J Ind Microbiol Biotechnol 2019; 46:1583-1601. [PMID: 31468234 DOI: 10.1007/s10295-019-02231-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
2,3-Butanediol (2,3-BD) has great potential for diverse industries, including chemical, cosmetics, agriculture, and pharmaceutical areas. However, its industrial production and usage are limited by the fairly high cost of its petro-based production. Several bio-based 2,3-BD production processes have been developed and their economic advantages over petro-based production process have been reported. In particular, many 2,3-BD-producing microorganisms including bacteria and yeast have been isolated and metabolically engineered for efficient production of 2,3-BD. In addition, several fermentation processes have been tested using feedstocks such as starch, sugar, glycerol, and even lignocellulose as raw materials. Since separation and purification of 2,3-BD from fermentation broth account for the majority of its production cost, cost-effective processes have been simultaneously developed. The construction of a demonstration plant that can annually produce around 300 tons of 2,3-BD is scheduled to be mechanically completed in Korea in 2019. In this paper, core technologies for bio-based 2,3-BD production are reviewed and their potentials for use in the commercial sector are discussed.
Collapse
Affiliation(s)
- Chan Woo Song
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon, 34122, South Korea
| | - Jong Myoung Park
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon, 34122, South Korea
| | - Sang Chul Chung
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon, 34122, South Korea.,Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Bioinformatics Research Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Bioinformatics Research Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hyohak Song
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon, 34122, South Korea.
| |
Collapse
|
38
|
Liu JM, Solem C, Jensen PR. Harnessing biocompatible chemistry for developing improved and novel microbial cell factories. Microb Biotechnol 2019; 13:54-66. [PMID: 31386283 PMCID: PMC6922530 DOI: 10.1111/1751-7915.13472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 01/15/2023] Open
Abstract
White biotechnology relies on the sophisticated chemical machinery inside living cells for producing a broad range of useful compounds in a sustainable and environmentally friendly way. However, despite the impressive repertoire of compounds that can be generated using white biotechnology, this approach cannot currently fully replace traditional chemical production, often relying on petroleum as a raw material. One challenge is the limited number of chemical transformations taking place in living organisms. Biocompatible chemistry, that is non‐enzymatic chemical reactions taking place under mild conditions compatible with living organisms, could provide a solution. Biocompatible chemistry is not a novel invention, and has since long been used by living organisms. Examples include Fenton chemistry, used by microorganisms for degrading plant materials, and manganese or ketoacids dependent chemistry used for detoxifying reactive oxygen species. However, harnessing biocompatible chemistry for expanding the chemical repertoire of living cells is a relatively novel approach within white biotechnology, and it could potentially be used for producing valuable compounds which living organisms otherwise are not able to generate. In this mini review, we discuss such applications of biocompatible chemistry, and clarify the potential that lies in using biocompatible chemistry in conjunction with metabolically engineered cell factories for cheap substrate utilization, improved cell physiology, efficient pathway construction and novel chemicals production.
Collapse
Affiliation(s)
- Jian-Ming Liu
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
39
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
40
|
Andersen JM, Pedersen CM, Bang-Berthelsen CH. Omics-based comparative analysis of putative mobile genetic elements in Lactococcus lactis. FEMS Microbiol Lett 2019; 366:5487889. [PMID: 31074793 DOI: 10.1093/femsle/fnz102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/09/2019] [Indexed: 12/29/2022] Open
Abstract
Lactococcus lactis is globally used in food fermentation. Genomics is useful to investigate speciation and differential occurrence of (un)desired gene functions, often related to mobile DNA. This study investigates L. lactis for putative chromosomal mobile genetic elements through comparative genomics, and analyses how they contribute to chromosomal variation at strain level. Our work identified 95 loci that may range over 10% of the chromosome size when including prophages, and the loci display a marked differential occurrence in the analysed strains. Analysis of differential transcriptomics data revealed how mobile genetic elements may impact the host physiology in response to conditional changes. This insight in the genetic variation of mobile genetic elements in L. lactis holds potential to further identify important functions related to food and biotechnology applications within this important species.
Collapse
Affiliation(s)
- Joakim Mark Andersen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Christine Møller Pedersen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
41
|
Liu J, Chan SHJ, Chen J, Solem C, Jensen PR. Systems Biology - A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria. Front Microbiol 2019; 10:876. [PMID: 31114552 PMCID: PMC6503107 DOI: 10.3389/fmicb.2019.00876] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Lactic Acid Bacteria (LAB) are extensively employed in the production of various fermented foods, due to their safe status, ability to affect texture and flavor and finally due to the beneficial effect they have on shelf-life. More recently, LAB have also gained interest as production hosts for various useful compounds, particularly compounds with sensitive applications, such as food ingredients and therapeutics. As for all industrial microorganisms, it is important to have a good understanding of the physiology and metabolism of LAB in order to fully exploit their potential, and for this purpose, many systems biology approaches are available. Systems metabolic engineering, an approach that combines optimization of metabolic enzymes/pathways at the systems level, synthetic biology as well as in silico model simulation, has been used to build microbial cell factories for production of biofuels, food ingredients and biochemicals. When developing LAB for use in foods, genetic engineering is in general not an accepted approach. An alternative is to screen mutant libraries for candidates with desirable traits using high-throughput screening technologies or to use adaptive laboratory evolution to select for mutants with special properties. In both cases, by using omics data and data-driven technologies to scrutinize these, it is possible to find the underlying cause for the desired attributes of such mutants. This review aims to describe how systems biology tools can be used for obtaining both engineered as well as non-engineered LAB with novel and desired properties.
Collapse
Affiliation(s)
- Jianming Liu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Jun Chen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
42
|
Norcross S, Sunderraj A, Tantama M. pH- and Temperature-Dependent Peptide Binding to the Lactococcus lactis Oligopeptide-Binding Protein A Measured with a Fluorescence Anisotropy Assay. ACS OMEGA 2019; 4:2812-2822. [PMID: 30842982 PMCID: PMC6396125 DOI: 10.1021/acsomega.8b02427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/22/2019] [Indexed: 05/03/2023]
Abstract
Bacterial ATP-binding cassette transporters are a superfamily of transport systems involved in the import of various molecules including amino acids, ions, sugars, and peptides. In the lactic acid bacteria Lactococcus lactis, the oligopeptide-binding protein A (OppA) binds peptides for import to support nitrogen metabolism and cell growth. The OppA protein is of great interest because it can bind peptides over a broad variety of lengths and sequences; however, current methods to study peptide binding have employed low throughput, endpoint, or low dynamic range techniques. Therefore, in this study, we developed a fluorescence anisotropy-based peptide-binding assay that can be readily employed to quantify OppA function. To test the utility of our assay, we characterized the pH dependence of oligopeptide binding because L. lactis is commonly used in fermentation and often must survive in low pH environments caused by lactic acid export. We determined that OppA affinity increases as pH or temperature decreases, and circular dichroism spectroscopy further indicated that acidic conditions increase the thermal stability of the protein, increasing the unfolding transition temperature by 10 °C from pH 8 to pH 6. Thus, our fluorescence anisotropy assay provides an easy technique to measure peptide binding, and it can be used to understand molecular aspects of OppA function under stress conditions experienced during fermentation and other biotechnology applications.
Collapse
Affiliation(s)
- Stevie Norcross
- Department
of Chemistry, Institute for Integrative Neuroscience, and Institute for
Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive Box 68, West Lafayette, Indiana 47907, United States
| | - Ashwin Sunderraj
- Department
of Chemistry, Institute for Integrative Neuroscience, and Institute for
Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive Box 68, West Lafayette, Indiana 47907, United States
| | - Mathew Tantama
- Department
of Chemistry, Institute for Integrative Neuroscience, and Institute for
Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive Box 68, West Lafayette, Indiana 47907, United States
- E-mail: . Phone: 765-494-5312
| |
Collapse
|
43
|
High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141. Bioprocess Biosyst Eng 2018; 42:475-483. [DOI: 10.1007/s00449-018-2051-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
|
44
|
Liu J, Li H, Zhao G, Caiyin Q, Qiao J. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. J Ind Microbiol Biotechnol 2018; 45:313-327. [PMID: 29582241 DOI: 10.1007/s10295-018-2031-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Huiling Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Guangrong Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
45
|
Kong HG, Shin TS, Kim TH, Ryu CM. Stereoisomers of the Bacterial Volatile Compound 2,3-Butanediol Differently Elicit Systemic Defense Responses of Pepper against Multiple Viruses in the Field. FRONTIERS IN PLANT SCIENCE 2018; 9:90. [PMID: 29527214 PMCID: PMC5829544 DOI: 10.3389/fpls.2018.00090] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/16/2018] [Indexed: 05/21/2023]
Abstract
The volatile compound 2,3-butanediol, which is produced by certain strains of root-associated bacteria, consists of three stereoisomers, namely, two enantiomers (2R,3R- and 2S,3S-butanediol) and one meso compound (2R,3S-butanediol). The ability of 2,3-butanediol to induce plant resistance against pathogenic fungi and bacteria has been investigated; however, little is known about its effects on induced resistance against viruses in plants. To investigate the effects of 2,3-butanediol on plant systemic defense against viruses, we evaluated the disease control capacity of each of its three stereoisomers in pepper. Specifically, we investigated the optimal concentration of 2,3-butanediol to use for disease control against Cucumber mosaic virus and Tobacco mosaic virus in the greenhouse and examined the effects of drench application of these compounds in the field. In the field trial, treatment with 2R,3R-butanediol and 2R,3S-butanediol significantly reduced the incidence of naturally occurring viruses compared with 2S,3S-butanediol and control treatments. In addition, 2R,3R-butanediol treatment induced the expression of plant defense marker genes in the salicylic acid, jasmonic acid, and ethylene signaling pathways to levels similar to those of the benzothiadiazole-treated positive control. This study reports the first field trial showing that specific stereoisomers of 2,3-butanediol trigger plant immunity against multiple viruses.
Collapse
Affiliation(s)
- Hyun G. Kong
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Teak S. Shin
- Crop Protection R&D Center, Farm Hannong Co., Ltd., Nonsan-si, South Korea
| | - Tae H. Kim
- Crop Protection R&D Center, Farm Hannong Co., Ltd., Nonsan-si, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
46
|
Xu Y, Xu C, Li X, Sun B, Eldin AA, Jia Y. A combinational optimization method for efficient synthesis of tetramethylpyrazine by the recombinant Escherichia coli. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Yamada R, Wakita K, Mitsui R, Nishikawa R, Ogino H. Efficient production of 2,3-butanediol by recombinant Saccharomyces cerevisiae through modulation of gene expression by cocktail δ-integration. BIORESOURCE TECHNOLOGY 2017; 245:1558-1566. [PMID: 28522198 DOI: 10.1016/j.biortech.2017.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, the expression of 4 genes encoding α-acetolactate synthase, α-acetolactate decarboxylase, 2,3-butanediol dehydrogenase, and NADH oxidase was modulated using a previously developed cocktail δ-integration strategy. The resultant strain, YPH499/dPdAdG/BD6-10, was used in a fed-batch cultivation for the production of 2,3-butanediol. The concentration, production rate, and yield obtained were 80.0g/L, 4.00g/L/h, and 41.7%, respectively. The production rate and yield of the compound obtained are higher for this strain compared to reports published for Saccharomyces cerevisiae so far. The cocktail δ-integration strategy allows for modulation of multiple gene expression, without the exact knowledge of rate-limiting steps, and therefore, could be used as a promising strategy for the production of bio-based chemicals in recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Kazuki Wakita
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Ryosuke Mitsui
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Riru Nishikawa
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
48
|
Liu J, Wang Z, Kandasamy V, Lee SY, Solem C, Jensen PR. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis. Metab Eng 2017; 44:22-29. [DOI: 10.1016/j.ymben.2017.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/14/2017] [Accepted: 09/02/2017] [Indexed: 01/25/2023]
|
49
|
The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends Biotechnol 2017; 35:756-769. [DOI: 10.1016/j.tibtech.2017.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
|
50
|
Petersen KV, Liu J, Chen J, Martinussen J, Jensen PR, Solem C. Metabolic characterization and transformation of the non-dairyLactococcus lactisstrain KF147, for production of ethanol from xylose. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Kia Vest Petersen
- Department of Bioengineering; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jianming Liu
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jun Chen
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jan Martinussen
- Department of Bioengineering; Technical University of Denmark; Kongens Lyngby Denmark
| | - Peter Ruhdal Jensen
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Christian Solem
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| |
Collapse
|