1
|
Pramitasuri TI, Susilawathi NM, Tarini NMA, Sudewi AAR, Evans MC. Cholesterol dependent cytolysins and the brain: Revealing a potential therapeutic avenue for bacterial meningitis. AIMS Microbiol 2023; 9:647-667. [PMID: 38173970 PMCID: PMC10758573 DOI: 10.3934/microbiol.2023033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacterial meningitis is a catastrophic nervous system disorder with high mortality and wide range of morbidities. Some of the meningitis-causing bacteria occupy cholesterol dependent cytolysins (CDCs) to increase their pathogenicity and arrange immune-evasion strategy. Studies have observed that the relationship between CDCs and pathogenicity in these meningitides is complex and involves interactions between CDC, blood-brain barrier (BBB), glial cells and neurons. In BBB, these CDCs acts on capillary endothelium, tight junction (TJ) proteins and neurovascular unit (NVU). CDCs also observed to elicit intriguing effects on brain inflammation which involves microglia and astrocyte activations, along with neuronal damage as the end-point of pathological pathways in bacterial meningitis. As some studies mentioned potential advantage of CDC-targeted therapeutic mechanisms to combat CNS infections, it might be a fruitful avenue to deepen our understanding of CDC as a candidate for adjuvant therapy to combat bacterial meningitis.
Collapse
Affiliation(s)
- Tjokorda Istri Pramitasuri
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
- Postgraduate Research Student, Faculty of Medicine, Imperial College London, United Kingdom
| | - Ni Made Susilawathi
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Ni Made Adi Tarini
- Department of Microbiology, Faculty of Medicine, Universitas Udayana-Rumah Sakit Umum Pusat Prof Dr dr IGNG Ngoerah, Bali, Indonesia
| | - AA Raka Sudewi
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Matthew C Evans
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, United Kingdom
- Department of Brain Sciences, Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| |
Collapse
|
2
|
Hatrongjit R, Boueroy P, Jenjaroenpun P, Wongsurawat T, Meekhanon N, Chopjitt P, Zheng H, Fittipaldi N, Chareonsudjai S, Segura M, Gottschalk M, Kerdsin A. Genomic characterization and virulence of Streptococcus suis serotype 4 clonal complex 94 recovered from human and swine samples. PLoS One 2023; 18:e0288840. [PMID: 37498866 PMCID: PMC10374156 DOI: 10.1371/journal.pone.0288840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Herein, we performed genomic analysis of seven S. suis serotype 4 strains belonging to clonal complex (CC) 94 that were recovered from a human patient or from diseased and clinically healthy pigs. Genomic exploration and comparisons, as well as in vitro cytotoxicity tests, indicated that S. suis CC94 serotype 4 strains are potentially virulent. Genomic analysis revealed that all seven strains clustered within minimum core genome group 3 (MCG-3) and had a high number of virulence-associated genes similar to those of virulent serotype 2 strains. Cytotoxicity assays showed that both the human lung adenocarcinoma cell line and HeLa cells rapidly lost viability following incubation for 4 h with the strains at a concentration of 106 bacterial cells. The human serotype 4 strain (ID36054) decreased cell viability profoundly and similarly to the control serotype 2 strain P1/7. In addition, strain ST1689 (ID34572), isolated from a clinically healthy pig, presented similar behaviour in an adenocarcinoma cell line and HeLa cells. The antimicrobial resistance genes tet(O) and ermB that confer resistance to tetracyclines, macrolides, and lincosamides were commonly found in the strains. However, aminoglycoside and streptothricin resistance genes were found only in certain strains in this study. Our results indicate that S. suis CC94 serotype 4 strains are potentially pathogenic and virulent and should be monitored.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Faculty of Science and Engineering, Department of General Sciences, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Piroon Jenjaroenpun
- Faculty of Medicine Siriraj Hospital, Department of Research and Development, Division of Bioinformatics and Data Management for Research, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Faculty of Medicine Siriraj Hospital, Department of Research and Development, Division of Bioinformatics and Data Management for Research, Mahidol University, Bangkok, Thailand
| | - Nattakan Meekhanon
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Nahuel Fittipaldi
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Sorujsiri Chareonsudjai
- Faculty of Medicine, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
3
|
Zhang C, Shang X, Yuan Y, Li Y. Platelet‑related parameters as potential biomarkers for the prognosis of sepsis. Exp Ther Med 2023; 25:133. [PMID: 36845958 PMCID: PMC9947577 DOI: 10.3892/etm.2023.11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
Early diagnosis and accurate prognosis are key for reducing the fatality rate and medical expenses associated with sepsis. Platelets are involved in the delayed tissue injury that occurs during sepsis. Therefore, the aim of the present study was to investigate the usefulness of platelets and associated parameters as prognostic markers of sepsis. The present study collected patient samples based on The Third International Consensus Definitions for Sepsis and Septic Shock criteria. Platelet-associated parameters were detected by flow cytometry and their correlation with clinical scores and prognoses was analyzed. Considering the association between endothelial cells and platelet activation, levels of plasma tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and angiopoietin-2 (Ang-2) were analyzed by ELISA. The results showed significant differences in platelet P-selectin expression and phosphatidylserine exposure, mitochondrial membrane potential (Mmp)-Index values and plasma levels of TWEAK and Ang-2 between patients and healthy controls (P<0.05). Except for P-selectin and TWEAK levels, all parameters were correlated with clinical scores (acute physiology and chronic health evaluation II and sequential/sepsis-related organ failure assessment). Additionally, platelet Mmp-Index between admission and the end of therapy was only different in non-survivors (P<0.001) and platelet phosphatidylserine exposure was significantly lower in survivors (P=0.006). Therefore, of the parameters tested, the dynamic monitoring of phosphatidylserine exposure, platelet Mmp-Index values and plasma Ang-2 levels had the most potential for the assessment of disease severity and clinical outcomes.
Collapse
Affiliation(s)
- Chao Zhang
- Hebei Key Laboratory of Nerve Injury and Repair, Institute of Basic Medicine, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xueyi Shang
- Department of Critical Care Medicine, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100071, P.R. China
| | - Yuan Yuan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P.R. China,Correspondence to: Dr Yuan Yuan, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai, Beijing 100071, P.R. China
| | - Yan Li
- Department of Critical Care Medicine, The Fifth Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100071, P.R. China,Respiratory Department, Hebei Hua'Ao Hospital, Zhangjiakou, Hebei 075000, P.R. China,Correspondence to: Dr Yuan Yuan, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai, Beijing 100071, P.R. China
| |
Collapse
|
4
|
Roodsant TJ, Van Der Putten BCL, Tamminga SM, Schultsz C, Van Der Ark KCH. Identification of Streptococcus suis putative zoonotic virulence factors: A systematic review and genomic meta-analysis. Virulence 2021; 12:2787-2797. [PMID: 34666617 PMCID: PMC8632099 DOI: 10.1080/21505594.2021.1985760] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen. Over 100 putative virulence factors have been described, but it is unclear to what extent these virulence factors could contribute to zoonotic potential of S. suis. We identified all S. suis virulence factors studied in experimental models of human origin in a systematic review and assessed their contribution to zoonotic potential in a subsequent genomic meta-analysis. PubMed and Scopus were searched for English-language articles that studied S. suis virulence published until 31 March 2021. Articles that analyzed a virulence factor by knockout mutation, purified protein, and/or recombinant protein in a model of human origin, were included. Data on virulence factor, strain characteristics, used human models and experimental outcomes were extracted. All publicly available S. suis genomes with available metadata on host, disease status and country of origin, were included in a genomic meta-analysis. We calculated the ratio of the prevalence of each virulence factor in human and pig isolates. We included 130 articles and 1703 S. suis genomes in the analysis. We identified 53 putative virulence factors that were encoded by genes which are part of the S. suis core genome and 26 factors that were at least twice as prevalent in human isolates as in pig isolates. Hhly3 and NisK/R were particularly enriched in human isolates, after stratification by genetic lineage and country of isolation. This systematic review and genomic meta-analysis have identified virulence factors that are likely to contribute to the zoonotic potential of S. suis.
Collapse
Affiliation(s)
- Thomas J Roodsant
- Amsterdam UMC, University of Amsterdam, Department of Global Health-Amsterdam, Institute for Global Health and Development, Amsterdam, Netherlands.,Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Boas C L Van Der Putten
- Amsterdam UMC, University of Amsterdam, Department of Global Health-Amsterdam, Institute for Global Health and Development, Amsterdam, Netherlands.,Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sara M Tamminga
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Constance Schultsz
- Amsterdam UMC, University of Amsterdam, Department of Global Health-Amsterdam, Institute for Global Health and Development, Amsterdam, Netherlands.,Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kees C H Van Der Ark
- Amsterdam UMC, University of Amsterdam, Department of Global Health-Amsterdam, Institute for Global Health and Development, Amsterdam, Netherlands.,Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Xu L, Lin L, Lu X, Xiao P, Liu R, Wu M, Jin M, Zhang A. Acquiring high expression of suilysin enable non-epidemic Streptococccus suis to cause streptococcal toxic shock-like syndrome (STSLS) through NLRP3 inflammasome hyperactivation. Emerg Microbes Infect 2021; 10:1309-1319. [PMID: 33792531 PMCID: PMC8253218 DOI: 10.1080/22221751.2021.1908098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidemic Streptococcus suis (S. suis) strain [Sequence type (ST) 7] was gradually evolving from the non-epidemic ST1 strain and got the ability for high expressing of suilysin (SLY). And the high expression of SLY was required for the epidemic strain to cause NLRP3 hyperactivation, which is essential for the induction of cytokines storm, dysfunction of multiple organs, and a high incidence of mortality, the characters of streptococcal toxic shock-like syndrome (STSLS). However, it remains to be elucidated whether acquiring high SLY expression due to genome evolution was sufficient for the non-epidemic strain to cause STSLS. Here, we found that the overexpression of SLY in ST1 strain (P1/7-SLY) could obviously increase the inflammasome activation, which was dependent on NLRP3 signalling. In contrast, the strain (P1/7-mSLY) overexpressing the mutant SLY (protein without hemolytic activity) could not significantly increase the inflammasome activation. Furthermore, similar to the epidemic strain, P1/7-SLY could cause STSLS in nlrp3+/+ mice but not in nlrp3−/− mice. In contrast, P1/7-mSLY could not cause STSLS in both nlrp3+/+ mice and nlrp3−/− mice. In summary, we demonstrate that genetic evolution enabling S. suis strain to express high level of SLY may be an essential and sufficient condition for NLRP3 inflammasome hyperactivation, which could further cause cytokines storm and STSLS.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Lan Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xi Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Peng Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Ran Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Meizhou Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, People's Republic of China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, People's Republic of China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020; 12:toxins12090531. [PMID: 32825096 PMCID: PMC7551085 DOI: 10.3390/toxins12090531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it. This review highlights host responses to CDC pathogenesis with a focus on macrophages. Due to their robust plasticity, macrophages play key roles in the outcome of bacterial infections. Understanding the unique features and differences within the common theme of CDCs bolsters new tools for research and therapy.
Collapse
|
7
|
Arenas J, Bossers-de Vries R, Harders-Westerveen J, Buys H, Ruuls-van Stalle LMF, Stockhofe-Zurwieden N, Zaccaria E, Tommassen J, Wells JM, Smith HE, de Greeff A. In vivo transcriptomes of Streptococcus suis reveal genes required for niche-specific adaptation and pathogenesis. Virulence 2020; 10:334-351. [PMID: 30957693 PMCID: PMC6527017 DOI: 10.1080/21505594.2019.1599669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and a zoonotic pathogen residing in the nasopharynx or the gastrointestinal tract of pigs with a potential of causing life-threatening invasive disease. It is endemic in the porcine production industry worldwide, and it is also an emerging human pathogen. After invasion, the pathogen adapts to cause bacteremia and disseminates to different organs including the brain. To gain insights in this process, we infected piglets with a highly virulent strain of S. suis, and bacterial transcriptomes were obtained from blood and different organs (brain, joints, and heart) when animals had severe clinical symptoms of infection. Microarrays were used to determine the genome-wide transcriptional profile at different infection sites and during growth in standard growth medium in vitro. We observed differential expression of around 30% of the Open Reading Frames (ORFs) and infection-site specific patterns of gene expression. Genes with major changes in expression were involved in transcriptional regulation, metabolism, nutrient acquisition, stress defenses, and virulence, amongst others, and results were confirmed for a subset of selected genes using RT-qPCR. Mutants were generated in two selected genes, and the encoded proteins, i.e., NADH oxidase and MetQ, were shown to be important virulence factors in coinfection experiments and in vitro assays. The knowledge derived from this study regarding S. suis gene expression in vivo and identification of virulence factors is important for the development of novel diagnostic and therapeutic strategies to control S. suis disease.
Collapse
Affiliation(s)
- Jesús Arenas
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Ruth Bossers-de Vries
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - José Harders-Westerveen
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Herma Buys
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | | | | | - Edoardo Zaccaria
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Jan Tommassen
- c Department of Molecular Microbiology and Institute of Biomembranes , Utrecht University , Utrecht , The Netherlands
| | - Jerry M Wells
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Hilde E Smith
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Astrid de Greeff
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| |
Collapse
|
8
|
Clinically feasible method for assessing leukocyte rheology in whole blood. Heart Vessels 2019; 35:268-277. [PMID: 31444563 PMCID: PMC6981318 DOI: 10.1007/s00380-019-01486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022]
Abstract
This study reports a novel method for assessment of leukocyte rheological activation with a new designed microchannel array chip to mimic the human microvascular network for microchannel array flow analysis (MCFAN). Study subjects were 79 healthy volunteers and 42 patients with type 2 diabetes mellitus (DM) and 36 patients with acute coronary syndrome (ACS). Using the anticoagulants heparin and ethylene-diamine-tetraacetic acid (EDTA)-2Na which inhibits platelets and leukocytes by chelating Ca2+, we were able to quantify leukocyte rheological activation by the subtraction of passage time of blood treated with both heparin and EDTA-2Na from that of blood treated with heparin only. We confirmed that passage times of whole blood with heparin + EDTA-2Na were always shorter than those of whole blood with only heparin in healthy subjects and patients with DM or ACS under suction pressures of − 30 cmH2O. There was a significant correlation between delta whole blood passage time {(heparin tube) − (EDTA-2Na + heparin)} and serum levels of myeloperoxidase and adhesive leukocyte number, respectively, even in blood from patients with DM or ACS, who suffered from inflammation. In conclusion we have developed a clinically feasible method for assessing leukocyte rheological activation in whole blood in ex vivo.
Collapse
|
9
|
Lin L, Xu L, Lv W, Han L, Xiang Y, Fu L, Jin M, Zhou R, Chen H, Zhang A. An NLRP3 inflammasome-triggered cytokine storm contributes to Streptococcal toxic shock-like syndrome (STSLS). PLoS Pathog 2019; 15:e1007795. [PMID: 31170267 PMCID: PMC6553798 DOI: 10.1371/journal.ppat.1007795] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/28/2019] [Indexed: 02/01/2023] Open
Abstract
Infection with the Streptococcus suis (S. suis) epidemic strain can cause Streptococcal toxic shock-like syndrome (STSLS), which is characterized by a cytokine storm, dysfunction of multiple organs and a high incidence of mortality despite adequate treatment. Despite some progress concerning the contribution of the inflammatory response to STSLS, the precise mechanism underlying STSLS development remains elusive. Here, we use a murine model to demonstrate that caspase-1 activity is critical for STSLS development. Furthermore, we show that inflammasome activation by S. suis is mainly dependent on NLRP3 but not on NLRP1, AIM2 or NLRC4. The important role of NLRP3 activation in STSLS is further confirmed in vivo with the NLRP3 inhibitor MCC950 and nlrp3-knockout mice. By comparison of WT strain with isogenic strains with mutation of various virulence genes for inflammasome activation, Suilysin is essential for inflammasome activation, which is dependent on the membrane perforation activity to cause cytosolic K+ efflux. Moreover, the mutant strain msly (P353L) expressing mutagenic SLY without hemolytic activity was unable to activate the inflammasome and does not cause STSLS. In summary, we demonstrate that the high membrane perforation activity of the epidemic strain induces a high level of NLRP3 inflammasome activation, which is essential for the development of the cytokine storm and multi-organ dysfunction in STSLS and suggests NLRP3 inflammasome as an attractive target for the treatment of STSLS.
Collapse
Affiliation(s)
- Lan Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Lei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Weihua Lv
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| |
Collapse
|
10
|
Nguyen BN, Peterson BN, Portnoy DA. Listeriolysin O: A phagosome-specific cytolysin revisited. Cell Microbiol 2019; 21:e12988. [PMID: 30511471 DOI: 10.1111/cmi.12988] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
Listeriolysin O (LLO) is an essential determinant of Listeria monocytogenes pathogenesis that mediates the escape of L. monocytogenes from host cell vacuoles, thereby allowing replication in the cytosol without causing appreciable cell death. As a member of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins, LLO is unique in that it is secreted by a facultative intracellular pathogen, whereas all other CDCs are produced by pathogens that are largely extracellular. Replacement of LLO with other CDCs results in strains that are extremely cytotoxic and 10,000-fold less virulent in mice. LLO has structural and regulatory features that allow it to function intracellularly without causing cell death, most of which map to a unique N-terminal region of LLO referred to as the proline, glutamic acid, serine, threonine (PEST)-like sequence. Yet, while LLO has unique properties required for its intracellular site of action, extracellular LLO, like other CDCs, affects cells in a myriad of ways. Because all CDCs form pores in cholesterol-containing membranes that lead to rapid Ca2+ influx and K+ efflux, they consequently trigger a wide range of host cell responses, including mitogen-activated protein kinase activation, histone modification, and caspase-1 activation. There is no debate that extracellular LLO, like all other CDCs, can stimulate multiple cellular activities, but the primary question we wish to address in this perspective is whether these activities contribute to L. monocytogenes pathogenesis.
Collapse
Affiliation(s)
- Brittney N Nguyen
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California
| | - Bret N Peterson
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, California
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California
| |
Collapse
|
11
|
Ca2+ signals triggered by bacterial pathogens and microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1838-1845. [DOI: 10.1016/j.bbamcr.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
|
12
|
Zhang W, Wang H, Wang B, Zhang Y, Hu Y, Ma B, Wang J. Replacing the 238th aspartic acid with an arginine impaired the oligomerization activity and inflammation-inducing property of pyolysin. Virulence 2018; 9:1112-1125. [PMID: 30067143 PMCID: PMC6086297 DOI: 10.1080/21505594.2018.1491256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Trueperella pyogenes (T. pyogenes) is an important opportunistic pathogen. Pyolysin (PLO) importantly contributes to the pathogenicity of T. pyogenes. However, the relationship between the structure and function and the virulence of PLO is not well documented. In the current study, recombinant PLO (rPLO) and three rPLO mutants were prepared. rPLO D238R, a mutant with the 238th aspartic acid replaced with an arginine, showed impairment in oligomerization activity on cholesterol-containing liposome and pore-forming activity on sheep red blood cell membrane. Further study employing the prepared mutants confirmed that the pore-forming activity of PLO is essential for inducing excessive inflammation responses in mice by upregulating the expression levels of IL-1β, TNF-α, and IL-6. By contrast, rPLO P499F, another mutant with impaired cell membrane binding capacity, elicited an inflammation response that was dependent on pathogen-associated molecular pattern (PAMP) activity, given that the mutant significantly upregulated the expression of IL-10 in macrophages and in mice, whereas rPLO did not. Results indicated that domain 1 of the PLO molecule plays an important role in maintaining pore-forming activity. Moreover, the PLO pore-forming activity and not PAMP activity is responsible for the inflammation-inducing effect of PLO. The results of this study provided new information for research field on the structure, function, and virulence of PLO. Abbreviations: T. pyogenes: Trueperella pyogenes; PLO: Pyolysin; rPLO: recombinant PLO; PAMP: pathogen-associated molecular pattern; CDCs: cholesterol-dependent cytolysins; PLY: pneumolysin; NLRP3: NLR family pyrin domain containing protein 3; PRRs: pattern recognition receptors; Asp: aspartic acid; TLR4: Toll-like receptor 4; Arg: arginine; Asn: asparagine; IPTG: Isopropyl-β-d-thiogalactoside; PBS: phosphate-buffered saline; sRBCs: sheep red blood cells; TEM: Transmission electron microscopy; RBCM: red blood cell membrane; SDS-PAGE: sodium dodecyl sulfate–polyacrylamide gel electrophoresis; NC membrane: nitrocellulose membrane; SDS-AGE: dodecyl sulfate agarose gel electrophoresis; MDBK cells: Madin–Darby bovine kidney cells; RPMI-1640 medium: Roswell Park Memorial Institute-1640 medium; FBS: fetal bovine serum; BMDMs: bone marrow-derived macrophages; TNF-α: tumor necrosis factor α; IL-1β: interleukin-1β; IFN-γ: interferon-γ; TGF-β: transforming growth factor-β; ELISA: enzyme-linked immunosorbent assay
Collapse
Affiliation(s)
- Wenlong Zhang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Haili Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Bing Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Yue Zhang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Yunhao Hu
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Bo Ma
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| | - Junwei Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , PR China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , PR China
| |
Collapse
|
13
|
Anderson R, Feldman C. Review manuscript: Mechanisms of platelet activation by the pneumococcus and the role of platelets in community-acquired pneumonia. J Infect 2017; 75:473-485. [PMID: 28943342 DOI: 10.1016/j.jinf.2017.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
Abstract
There is increasing recognition of the involvement of platelets in orchestrating inflammatory responses, driving the activation of neutrophils, monocytes and vascular endothelium, which, if poorly controlled, may lead to microvascular dysfunction. Importantly, hyperreactivity of platelets has been implicated in the pathogenesis of myocardial injury and the associated particularly high prevalence of acute cardiovascular events in patients with severe community-acquired pneumonia (CAP), of which Streptococcus pneumoniae (pneumococcus) is the most commonly encountered aetiologic agent. In this context, it is noteworthy that a number of studies have documented various mechanisms by which the pneumococcus may directly promote platelet aggregation and activation. The major contributors to platelet activation include several different types of pneumococcal adhesin, the pore-forming toxin, pneumolysin, and possibly pathogen-derived hydrogen peroxide, which collectively represent a major focus of the current review. This is followed by an overview of the limited experimental studies together with a larger series of clinical studies mainly focused on all-cause CAP, which have provided evidence in support of associations between alterations in circulating platelet counts, most commonly thrombocytopenia, and a poor clinical outcome. The final section of the review covers, albeit briefly, systemic biomarkers of platelet activation which may have prognostic potential.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Anderson R, Feldman C. Pneumolysin as a potential therapeutic target in severe pneumococcal disease. J Infect 2017; 74:527-544. [PMID: 28322888 DOI: 10.1016/j.jinf.2017.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Abstract
Acute pulmonary and cardiac injury remain significant causes of morbidity and mortality in those afflicted with severe pneumococcal disease, with the risk for early mortality often persisting several years beyond clinical recovery. Although remaining to be firmly established in the clinical setting, a considerable body of evidence, mostly derived from murine models of experimental infection, has implicated the pneumococcal, cholesterol-binding, pore-forming toxin, pneumolysin (Ply), in the pathogenesis of lung and myocardial dysfunction. Topics covered in this review include the burden of pneumococcal disease, risk factors, virulence determinants of the pneumococcus, complications of severe disease, antibiotic and adjuvant therapies, as well as the structure of Ply and the role of the toxin in disease pathogenesis. Given the increasing recognition of the clinical potential of Ply-neutralisation strategies, the remaining sections of the review are focused on updates of the types, benefits and limitations of currently available therapies which may attenuate, directly and/or indirectly, the injurious actions of Ply. These include recently described experimental therapies such as various phytochemicals and lipids, and a second group of more conventional agents the members of which remain the subject of ongoing clinical evaluation. This latter group, which is covered more extensively, encompasses macrolides, statins, corticosteroids, and platelet-targeted therapies, particularly aspirin.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Nel JG, Durandt C, Theron AJ, Tintinger GR, Pool R, Richards GA, Mitchell TJ, Feldman C, Anderson R. Pneumolysin mediates heterotypic aggregation of neutrophils and platelets in vitro. J Infect 2017; 74:599-608. [PMID: 28267572 DOI: 10.1016/j.jinf.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Platelets orchestrate the inflammatory activities of neutrophils, possibly contributing to pulmonary and myocardial damage during severe pneumococcal infection. This study tested the hypothesis that the pneumococcal toxin, pneumolysin (Ply), activates production of platelet-activating factor (PAF) and thromboxane A2 (TxA2) by neutrophils, these bioactive lipids being potential mediators of neutrophil:platelet (NP) networking. METHODS The effects of recombinant Ply (10-80 ng mL-1) on the production of PAF and TxA2 by isolated neutrophils were measured using ELISA procedures, and NP aggregation by flow cytometry. RESULTS Exposure of neutrophils to Ply induced production of PAF and, to a lesser extent, TxA2, achieving statistical significance at ≥20 ng mL-1 of the toxin. In the case of NP interactions, Ply promoted heterotypic aggregation which was dependent on upregulation of P-selectin (CD62P) and activation of protease-activated receptor 1 (PAR1), attaining statistical significance at ≥10 ng mL-1 of the toxin, but did not involve either PAF or TxA2. CONCLUSION Ply induces synthesis of PAF and TxA2, by human neutrophils, neither of which appears to contribute to the formation of NP heterotypic aggregates in vitro, a process which is seemingly dependent on CD62P and PAR1. These pro-inflammatory activities of Ply may contribute to the pathogenesis of pulmonary and myocardial injury during severe pneumococcal infection.
Collapse
Affiliation(s)
- Jan G Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Unit for Stem Cell Research, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Annette J Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Gregory R Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Roger Pool
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Guy A Richards
- Department of Critical Care, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Institute for Cellular and Molecular Medicine, South African Medical Research Council Unit for Stem Cell Research, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|