1
|
Bousquet E, Fava M, Romestan Z, Gómez-Ortiz F, McCabe EE, Romero AH. Structural chirality and related properties in periodic inorganic solids: review and perspectives. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:163004. [PMID: 39951890 DOI: 10.1088/1361-648x/adb674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Chirality refers to the asymmetry of objects that cannot be superimposed on their mirror image. It is a concept that exists in various scientific fields and has profound consequences. Although these are perhaps most widely recognized within biology, chemistry, and pharmacology, recent advances in chiral phonons, topological systems, crystal enantiomorphic materials, and magneto-chiral materials have brought this topic to the forefront of condensed matter physics research. Our review discusses the symmetry requirements and the features associated with structural chirality in inorganic materials. This allows us to explore the nature of phase transitions in these systems, the coupling between order parameters, and their impact on the material's physical properties. We highlight essential contributions to the field, particularly recent progress in the study of chiral phonons, altermagnetism, magnetochirality between others. Despite the rarity of naturally occurring inorganic chiral crystals, this review also highlights a significant knowledge gap, presenting challenges and opportunities for structural chirality mostly at the fundamental level, e.g. chiral displacive phase transitions, possibilities of tuning and switching structural chirality by external means (electric, magnetic, or strain fields), whether chirality could be an independent order parameter, and whether structural chirality could be quantified, etc. Beyond simply summarizing this field of research, this review aims to inspire further research in materials science by addressing future challenges, encouraging the exploration of chirality beyond traditional boundaries, and seeking the development of innovative materials with superior or new properties.
Collapse
Affiliation(s)
- Eric Bousquet
- Physique Théorique des Matériaux, Q-MAT, Université de Liège, Sart-Tilman B-4000, Belgium
| | - Mauro Fava
- Physique Théorique des Matériaux, Q-MAT, Université de Liège, Sart-Tilman B-4000, Belgium
| | - Zachary Romestan
- Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26505-6315, United States of America
| | - Fernando Gómez-Ortiz
- Physique Théorique des Matériaux, Q-MAT, Université de Liège, Sart-Tilman B-4000, Belgium
| | - Emma E McCabe
- Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Aldo H Romero
- Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26505-6315, United States of America
| |
Collapse
|
2
|
Xie Y, Krasavin AV, Roth DJ, Zayats AV. Unidirectional chiral scattering from single enantiomeric plasmonic nanoparticles. Nat Commun 2025; 16:1125. [PMID: 39875407 PMCID: PMC11775228 DOI: 10.1038/s41467-024-55277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Controlling scattering and routing of chiral light at the nanoscale is important for optical information processing and imaging, quantum technologies as well as optical manipulation. Here, we introduce a concept of rotating chiral dipoles in order to achieve unidirectional chiral scattering. Implementing this concept by engineering multipole excitations in helicoidal plasmonic nanoparticles, we experimentally demonstrate enantio-sensitive and highly-directional forward scattering of circularly polarised light. The intensity of this highly-directional scattering is defined by the mutual relation between the handedness of the incident light and the chirality of the structure. The concept of rotating chiral dipoles offers numerous opportunities for engineering scattering from chiral nanostructures and optical nano-antennas paving the way for innovative designs and applications of chiral light-matter interactions.
Collapse
Affiliation(s)
- Yuanyang Xie
- Department of Physics and London Centre for Nanotechnology, King's College London, London, WS2R 2LS, UK.
| | - Alexey V Krasavin
- Department of Physics and London Centre for Nanotechnology, King's College London, London, WS2R 2LS, UK
| | - Diane J Roth
- Department of Physics and London Centre for Nanotechnology, King's College London, London, WS2R 2LS, UK
| | - Anatoly V Zayats
- Department of Physics and London Centre for Nanotechnology, King's College London, London, WS2R 2LS, UK.
| |
Collapse
|
3
|
Kartouzian A, Cameron RP. Unlocking the hidden dimension: power of chirality in scientific exploration. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230321. [PMID: 39246075 DOI: 10.1098/rsta.2023.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 09/10/2024]
Abstract
In the boundless landscape of scientific exploration, there exists a hidden, yet easily accessible, dimension that has often not only intrigued and puzzled researchers but also provided the key. This dimension is chirality, the property that describes the handedness of objects. The influence of chirality extends across diverse fields of study from the parity violation in electroweak interactions to the extremely large macroscopic systems such as galaxies. In this opinion piece, we will delve into the power of chirality in scientific exploration by examining some examples that, at different scales, demonstrate its role as a key to a better understanding of our world. Our goal is to incite researchers from all fields to seek, implement and utilize chirality in their research. Going this extra mile might be more rewarding than it seems at first glance, in particular with regard to the increasing demand for new functional materials in response to the contemporary scientific and technological challenges we are facing. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
Collapse
Affiliation(s)
- Aras Kartouzian
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4 , Garching bei München 85748, Germany
| | - Robert P Cameron
- SUPA and Department of Physics, University of Strathclyde , Glasgow G4 0NG, UK
| |
Collapse
|
4
|
Razzhivina ME, Rukhlenko ID, Tepliakov NV. Chiral Optical Properties of Möbius Graphene Nanostrips. J Phys Chem Lett 2023; 14:4426-4432. [PMID: 37141489 DOI: 10.1021/acs.jpclett.3c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The advancement of optical technology demands the development of chiral nanostructures with a strong dissymmetry of optical response. Here, we comprehensively analyze the chiral optical properties of circular twisted graphene nanostrips, with a particular emphasis on the case of a Möbius graphene nanostrip. We use the method of coordinate transformation to analytically model the electronic structure and optical spectra of the nanostrips, while employing the cyclic boundary conditions to account for their topology. It is found that the dissymmetry factors of twisted graphene nanostrips can reach 0.01, exceeding the typical dissymmetry factors of small chiral molecules by 1-2 orders of magnitude. The results of this work thus demonstrate that twisted graphene nanostrips of Möbius and similar geometries are highly promising nanostructures for chiral optical applications.
Collapse
Affiliation(s)
- Marina E Razzhivina
- Information Optical Technologies Center, ITMO University, Saint Petersburg 197101, Russia
| | - Ivan D Rukhlenko
- Information Optical Technologies Center, ITMO University, Saint Petersburg 197101, Russia
- School of Physics, Institute of Photonics and Optical Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nikita V Tepliakov
- Department of Materials and The Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Zeng J, Wang J. Interrogating imaginary optical force by the complex Maxwell stress tensor theorem. LIGHT, SCIENCE & APPLICATIONS 2023; 12:20. [PMID: 36627276 PMCID: PMC9832022 DOI: 10.1038/s41377-022-01049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The complex Maxwell stress tensor theorem has been developed to relate the imaginary optical force, reactive strength of canonical momentum and total optical force of a nanoparticle, which is essential to perfect optical force efficiency.
Collapse
Affiliation(s)
- Jinwei Zeng
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Optics Valley Laboratory, Wuhan, 430074, Hubei, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Optics Valley Laboratory, Wuhan, 430074, Hubei, China.
| |
Collapse
|
6
|
Ayuso D, Ordonez AF, Smirnova O. Ultrafast chirality: the road to efficient chiral measurements. Phys Chem Chem Phys 2022; 24:26962-26991. [PMID: 36342056 PMCID: PMC9673685 DOI: 10.1039/d2cp01009g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/20/2022] [Indexed: 08/20/2023]
Abstract
Today we are witnessing the electric-dipole revolution in chiral measurements. Here we reflect on its lessons and outcomes, such as the perspective on chiral measurements using the complementary principles of "chiral reagent" and "chiral observer", the hierarchy of scalar, vectorial and tensorial enantio-sensitive observables, the new properties of the chiro-optical response in the ultrafast and non-linear domains, and the geometrical magnetism associated with the chiral response in photoionization. The electric-dipole revolution is a landmark event. It has opened routes to extremely efficient enantio-discrimination with a family of new methods. These methods are governed by the same principles but work in vastly different regimes - from microwaves to optical light; they address all molecular degrees of freedom - electronic, vibrational and rotational, and use flexible detection schemes, i.e. detecting photons or electrons, making them applicable to different chiral phases, from gases to liquids to amorphous solids. The electric-dipole revolution has also enabled enantio-sensitive manipulation of chiral molecules with light. This manipulation includes exciting and controlling ultrafast helical currents in vibronic states of chiral molecules, enantio-sensitive control of populations in electronic, vibronic and rotational molecular states, and opens the way to efficient enantio-separation and enantio-sensitive trapping of chiral molecules. The word "perspective" has two meanings: an "outlook" and a "point of view". In this perspective article, we have tried to cover both meanings.
Collapse
Affiliation(s)
- David Ayuso
- Max-Born-Institut, 12489 Berlin, Germany
- Imperial College London, SW7 2AZ London, UK.
| | - Andres F Ordonez
- Max-Born-Institut, 12489 Berlin, Germany
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| | - Olga Smirnova
- Max-Born-Institut, 12489 Berlin, Germany
- Technische Universität Berlin, 10623 Berlin, Germany.
| |
Collapse
|
7
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
8
|
Lugasi L, Otis G, Oliel M, Margel S, Mastai Y. Chirality of proteinoid nanoparticles made of lysine and phenylalanine. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liroy Lugasi
- Department of Chemistry Institute of Nanotechnology—Bar‐Ilan University Ramat‐Gan Israel
| | - Gil Otis
- Department of Chemistry Institute of Nanotechnology—Bar‐Ilan University Ramat‐Gan Israel
| | - Matan Oliel
- Department of Chemistry Institute of Nanotechnology—Bar‐Ilan University Ramat‐Gan Israel
| | - Shlomo Margel
- Department of Chemistry Institute of Nanotechnology—Bar‐Ilan University Ramat‐Gan Israel
| | - Yitzhak Mastai
- Department of Chemistry Institute of Nanotechnology—Bar‐Ilan University Ramat‐Gan Israel
| |
Collapse
|
9
|
Aboul-Enein HY, Bounoua N, Rebizi M, Wagdy H. Application of nanoparticles in chiral analysis and chiral separation. Chirality 2021; 33:196-208. [PMID: 33646601 DOI: 10.1002/chir.23303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/07/2022]
Abstract
Chiral molecules in relation to particular biological roles are stereoselective. Enantiomers differ significantly in their biochemical responses in biological environment. Despite the current advancement in drug discovery and pharmaceutical biotechnology, the chiral separation of some racemic mixtures continues to be one of the greatest challenges, because the available techniques are too costly and time consuming for the assessment of therapeutic drugs in the early stages of development worldwide. Various nanoparticles became one of the most investigated and explored nanotechnology-derived nanostructures especially in chirality where several studies are reported to improve enantiomeric separation of different racemic mixtures. The production of surface-modified nanoparticles has contributed to these limitations in terms of sensitivity, accuracy, and enantioselectivity that can be optimized and therefore makes these surface-modified nanoparticles convenient for enantiomeric identification and separation.
Collapse
Affiliation(s)
- Hassan Y Aboul-Enein
- Department of Medicinal and Pharmaceutical Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| | - Nadia Bounoua
- Department of Exact Sciences, National Higher School of Bechar, Bechar, Algeria
| | - Mohamed Rebizi
- Organic Chemistry and Natural Substances Laboratory, University of Zian Achor, Djelfa, Algeria
| | - Hebatallah Wagdy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
10
|
Shao X, Zhang T, Li B, Wu Y, Li S, Wang J, Jiang S. Controllable chiral behavior of type-II core/shell quantum dots adjusted by shell thickness and coordinated ligands. Chirality 2021; 33:167-175. [PMID: 33469961 DOI: 10.1002/chir.23298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
Chiral semiconductor nanomaterials induced by capped chiral ligands are of great interest for both theoretical studies and advanced applications. In this study, CdTe/CdSe quantum dots (QDs), defined as type-II core/shell nanostructure, with the advantage of a good separation of holes and electrons are imparted chirality with L/D-cysteine and L/D-penicillamine molecules. Circular dichroism (CD) at exciton transitions from cysteine- and penicillamine-capped QDs is different in shape and intensity. CD intensities decrease with increasing shell thickness from three monolayers to six monolayers, indicating a decreased hybridization degree between the holes in CdTe core and the electrons in chiral ligands. Elevated cysteine concentration leads to decreased g-factor, probably due to an altered binding mode from tridentate to bidentate. Our observations provide further insights into the understanding of chiral phenomenon as well as optimized design and applications of chiral nanostructures.
Collapse
Affiliation(s)
- Xiao Shao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China.,Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Yue Wu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Siyi Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jingchao Wang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Abstract
Three-dimensional (3D) nanomaterials have been intensively investigated because of their unique properties and wide range of potential applications; however, the ligand-induced chirality in 3D semiconductor nanocrystals has been scarcely studied. In this paper, we report the synthesis of hydrophobic 3D CdSe nanotetrapods (Tps) with a high degree of uniformity in their morphology by using the hot-injection method. The core and arms of Tps are distinct in their crystal structure, thus creating an intracrystal heterojunction. The size of Tps, primarily the length of four arms, is controlled by changing the amount of didecyldimethylammonium bromide and reaction time. Next, enantiopure cysteine ligands were introduced to replace the hydrophobic native stabilizers to prepare chiral l- and d-cysteine-capped CdSe Tps. Importantly, the circular dichroism (CD) line shapes of l/d-cysteine-capped CdSe Tps are assigned to the different excitonic transitions of the core and arms, respectively. In addition, the observed CD activities are found to be sensitive to the size of the CdSe Tps, where the anisotropic g factors have increased and reached the maximum value at a moderate aspect ratio (AR) and a further increase of the AR leads to a decrease of the g factor. Because of charge transfer between the core and arms, we propose a plausible mechanism potentially responsible for the induced CD line shapes in terms of the excitonic states of Tps with two different crystal structures. We believe that chiral 3D nanomaterials with anisotropic morphologies could offer new opportunities for relevant applications.
Collapse
Affiliation(s)
- Xiao Shao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yue Wu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Dinger F, Platt U. Towards an Artificial Carbohydrates Supply on Earth. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
13
|
Zhang J, Huang SY, Lin ZH, Huang JS. Generation of optical chirality patterns with plane waves, evanescent waves and surface plasmon waves. OPTICS EXPRESS 2020; 28:760-772. [PMID: 32118998 DOI: 10.1364/oe.383021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We systematically investigate the generation of optical chirality patterns by applying the superposition of two waves in three scenarios, namely free-space plane waves, evanescent waves of totally reflected light at dielectric interface and propagating surface plasmon waves on a metallic surface. In each scenario, the general analytical solution of the optical chirality pattern is derived for different polarization states and propagating directions of the two waves. The analytical solutions are verified by numerical simulations. Spatially structured optical chirality patterns can be generated in all scenarios if the incident polarization states and propagation directions are correctly chosen. Optical chirality enhancement can be obtained from the constructive interference of free-space circularly polarized light or enhanced evanescent waves of totally reflected light. Surface plasmon waves do not provide enhanced optical chirality unless the near-field intensity enhancement is sufficiently high. The structured optical chirality patterns may find applications in chirality sorting, chiral imaging and circular dichroism spectroscopy.
Collapse
|
14
|
Marichez V, Tassoni A, Cameron RP, Barnett SM, Eichhorn R, Genet C, Hermans TM. Mechanical chiral resolution. SOFT MATTER 2019; 15:4593-4608. [PMID: 31147662 DOI: 10.1039/c9sm00778d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanical interactions of chiral objects with their environment are well-established at the macroscale, like a propeller on a plane or a rudder on a boat. At the colloidal scale and smaller, however, such interactions are often not considered or deemed irrelevant due to Brownian motion. As we will show in this tutorial review, mechanical interactions do have significant effects on chiral objects at all scales, and can be induced using shearing surfaces, collisions with walls or repetitive microstructures, fluid flows, or by applying electrical or optical forces. Achieving chiral resolution by mechanical means is very promising in the field of soft matter and to industry, but has not received much attention so far.
Collapse
Affiliation(s)
- Vincent Marichez
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Shao X, Zhang T, Li B, Zhou M, Ma X, Wang J, Jiang S. Chiroptical Activity of Type II Core/Shell Cu 2S/CdSe Nanocrystals. Inorg Chem 2019; 58:6534-6543. [PMID: 31007027 DOI: 10.1021/acs.inorgchem.9b00769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ligand-induced chirality in core/shell nanocrystals (NCs) has attracted extensive attention because of many valuable potential applications. However, the cause of chirality especially in semiconductor nanomaterials is still under debate despite the creation of chiral type I core/shell structures. Herein, we synthesized a kind of new Cu2S/CdSe core/shell nanostructure to study the underlying reason. Four samples of Cu2S/CdSe were synthesized utilizing successive ion layer adsorption and reaction to vary the thickness of the CdSe shell upon a Cu2S core with 5 nm diameter. The chirality of type II Cu2S/CdSe NCs is imparted by l-/d-cysteine and penicillamine, which could be modulated with an increasing thickness of the CdSe shell. To the best of our knowledge, this is the first report of chiral type II core/shell semiconductor NCs. The hybridization theory can explain the variation trend of g factors with every increase in shell thickness from four monolayers (4 ML) to 7 ML. The results indicate that the chiroptical activity of semiconductor NCs is mainly due to hybridization between the holes in the valence band of NCs and the highest occupied molecular orbitals of the chiral ligands. In addition, Cu2S/CdSe NCs show a better chiroptical intensity in comparison with the type I structure according to previous work. The first design of chiral type II Cu2S/CdSe core/shell NCs and a detailed investigation of chiral variation trend help to give a better understanding of the chiral interaction between ligands and core/shell semiconductor nanostructures.
Collapse
Affiliation(s)
- Xiao Shao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , People's Republic of China.,Tianjin Engineering Research Center of Functional Fine Chemicals , Tianjin 300354 , People's Republic of China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China.,Tianjin Engineering Research Center of Functional Fine Chemicals , Tianjin 300354 , People's Republic of China
| | - Minghao Zhou
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| | - Xiaoyuan Ma
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| | - Jingchao Wang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , People's Republic of China
| |
Collapse
|
16
|
Masteri-Farahani M, Mollatayefeh N. Chiral colloidal CdSe quantum dots functionalized with cysteine molecules: New optical nanosensor for selective detection and measurement of morphine. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Graphene quantum dots functionalized β-cyclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance. J Chromatogr A 2019; 1600:209-218. [PMID: 31047665 DOI: 10.1016/j.chroma.2019.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 10/27/2022]
Abstract
Graphene quantum dots (GQD) functionalized β-cyclodextrin (β-CD) and cellulose silica composites were first prepared and applied in HPLC as chiral stationary phases (CSP) to investigate the effect of GQDs on chiral separation. Through comparing the enantioseparation performance of GQDs functionalized β-CD or cellulose CSPs and unmodified β-CD or cellulose CSPs, we found GQDs enhanced the enantioseparation performance of nature β-CD, β-CD-3,5-dimethylphenylcarbamate derivative and cellulose-3,5-dimethylphenylcarbamate derivative. Molecular modeling was applied to understand and theoretically study the enhancement mechanism of GQDs for enantioseparation. According to molecular simulation results, GQDs provide extra interactions such as hydrophobic, hydrogen bond and π-π interaction when chiral selector interacts with enantiomers, which enhances the chiral recognition ability indirectly. The molecular simulation results showed a good agreement with the experimental results. Our work reveals the enhancement performance of GQDs for chiral separation, it can be expected that GQDs-based chiral composites and chiral GQDs have great prospect in chiral separation and other research fields such as asymmetric synthesis, chiral catalysis, chiral recognition and drug delivery.
Collapse
|
18
|
Abstract
Optical polarization features associated with the fundamental processes of molecular fluorescence and resonance energy transfer are in general studied with reference to plane polarizations. When any of the species involved is chiral, the associated emission processes may exhibit an element of circular polarization-a degree of optical helicity. Although usually a minor effect, some systems can exhibit a sizeable component of circularly polarized luminescence, whose helicity correlates with the enantiomeric form. In studies of multi-component systems, in which initial excitation of a donor species-followed by energy transfer-leads to emission from an acceptor molecule, the handedness of both donor and acceptor may influence output circularity. In systems with an achiral acceptor, a degree of fluorescence circularity may be influenced by the handedness of a chiral donor, but this should not be construed in terms of 'conveying' chirality. Chiral molecules may also play a passive role by inducing helicity in the fluorescence from achiral neighbours, and further tiers of complexity arise if the initial excitation is itself of circular polarization. In all such processes, symmetry principles play a major role in determining a sensitivity to molecular handedness, and their detailed consideration enables a range of new experimental procedures to be identified. Casting the fundamental theory in terms of formal photon-molecule couplings enables the quantum mechanisms involved in all such phenomena to be clearly resolved. The results provide fresh physical insights, and establish connections across a range of indirectly related chiroptical phenomena including induced circular dichroism.
Collapse
Affiliation(s)
- David L Andrews
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
19
|
Gogoi A, Mazumder N, Konwer S, Ranawat H, Chen NT, Zhuo GY. Enantiomeric Recognition and Separation by Chiral Nanoparticles. Molecules 2019; 24:E1007. [PMID: 30871182 PMCID: PMC6470864 DOI: 10.3390/molecules24061007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/12/2022] Open
Abstract
Chiral molecules are stereoselective with regard to specific biological functions. Enantiomers differ considerably in their physiological reactions with the human body. Safeguarding the quality and safety of drugs requires an efficient analytical platform by which to selectively probe chiral compounds to ensure the extraction of single enantiomers. Asymmetric synthesis is a mature approach to the production of single enantiomers; however, it is poorly suited to mass production and allows for only specific enantioselective reactions. Furthermore, it is too expensive and time-consuming for the evaluation of therapeutic drugs in the early stages of development. These limitations have prompted the development of surface-modified nanoparticles using amino acids, chiral organic ligands, or functional groups as chiral selectors applicable to a racemic mixture of chiral molecules. The fact that these combinations can be optimized in terms of sensitivity, specificity, and enantioselectivity makes them ideal for enantiomeric recognition and separation. In chiral resolution, molecules bond selectively to particle surfaces according to homochiral interactions, whereupon an enantiopure compound is extracted from the solution through a simple filtration process. In this review article, we discuss the fabrication of chiral nanoparticles and look at the ways their distinctive surface properties have been adopted in enantiomeric recognition and separation.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, Assam 785001, India.
| | - Nirmal Mazumder
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India.
| | - Harsh Ranawat
- Department of Biophysics, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan.
- Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Rd., Taichung 40447, Taiwan.
| |
Collapse
|
20
|
Baimuratov AS, Pereziabova TP, Tepliakov NV, Leonov MY, Baranov AV, Fedorov AV, Rukhlenko ID. Electric-field-enhanced circular dichroism of helical semiconductor nanoribbons. OPTICS LETTERS 2019; 44:499-502. [PMID: 30702663 DOI: 10.1364/ol.44.000499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
In this Letter, we analyze circular dichroism (CD) enhancement of a helical semiconductor nanoribbon exposed to a weak homogenous electric field. By creating a periodic superlattice for the confined electrons, the electric field splits the electronic sub-bands into minibands and gives rise to critical points in the electronic density of states. We show that the modification of the electronic energy spectrum results in the appearance of new optically active transitions in the CD and absorption spectra, and that the CD signal of the nanoribbon is significantly enhanced at the critical points. The ability to dynamically control the chiroptical response of semiconductor nanoribbons by an external electric field makes them promising for the next-generation nanophotonic devices.
Collapse
|
21
|
Chiral optical tweezers for optically active particles in the T-matrix formalism. Sci Rep 2019; 9:29. [PMID: 30631081 PMCID: PMC6328542 DOI: 10.1038/s41598-018-36434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/13/2018] [Indexed: 11/08/2022] Open
Abstract
Modeling optical tweezers in the T-matrix formalism has been of key importance for accurate and efficient calculations of optical forces and their comparison with experiments. Here we extend this formalism to the modeling of chiral optomechanics and optical tweezers where chiral light is used for optical manipulation and trapping of optically active particles. We first use the Bohren decomposition to deal with the light scattering of chiral light on optically active particles. Thus, we show analytically that all the observables (cross sections, asymmetry parameters) are split into a helicity dependent and independent part and study a practical example of a complex resin particle with inner copper-coated stainless steel helices. Then, we apply this chiral T-matrix framework to optical tweezers where a tightly focused chiral field is used to trap an optically active spherical particle, calculate the chiral behaviour of optical trapping stiffnesses and their size scaling, and extend calculations to chiral nanowires and clusters of astrophysical interest. Such general light scattering framework opens perspectives for modeling optical forces on biological materials where optically active amino acids and carbohydrates are present.
Collapse
|
22
|
Chiral Separation of the Phenylglycinol Enantiomers by Stripping Crystallization. Molecules 2018; 23:molecules23112901. [PMID: 30405042 PMCID: PMC6278477 DOI: 10.3390/molecules23112901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022] Open
Abstract
Stripping crystallization (SC) is introduced in this work for chiral purification of R-phenylglycinol from the enantiomer mixture with an initial concentration ranging from 0.90 to 0.97. As opposed to the solid⁻liquid transformation in melt crystallization, the three-phase transformation occurs in SC at low pressures during the cooling process. SC combines melt crystallization and vaporization to produce a crystalline product and mixture vapor from a mixture melt due to the three-phase transformation. Thermodynamic calculations were applied to determine the operating pressure for the three-phase transformation during the cooling process in the SC experiments. To consider the possible deviations between the calculated and the actual three-phase transformation conditions, the product purity and the recovery ratio of R-phenylglycinol were investigated within a range of operating pressures during the cooling process.
Collapse
|
23
|
Shahrajabian M, Ghasemi F, Hormozi-Nezhad MR. Nanoparticle-based Chemiluminescence for Chiral Discrimination of Thiol-Containing Amino Acids. Sci Rep 2018; 8:14011. [PMID: 30228291 PMCID: PMC6143635 DOI: 10.1038/s41598-018-32416-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
The ability to recognize the molecular chirality of enantiomers is extremely important owing to their critical role in drug development and biochemistry. Convenient discrimination of enantiomers has remained a challenge due to lack of unsophisticated methods. In this work, we have reported a simple strategy for chiral recognition of thiol-containing amino acids including penicillamine (PA), and cysteine (Cys). We have successfully designed a nanoparticle-based chemiluminescence (CL) system based on the reaction between cadmium telluride quantum dots (CdTe QDs) and the enantiomers. The different interactions of CdTe QDs with PA enantiomers or Cys enantiomers led to different CL intensities, resulting in the chiral recognition of these enantiomers. The developed method showed the ability for determination of enantiomeric excess of PA and Cys. It has also obtained an enantioselective concentration range from 1.15 to 9.2 mM for PA. To demonstrate the potential application of this method, the designed platform was applied for the quantification of PA in urine and tablet samples. For the first time, we presented a novel practical application of nanoparticle-based CL system for chiral discrimination.
Collapse
Affiliation(s)
- Maryam Shahrajabian
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - Forough Ghasemi
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - M Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran.
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
24
|
Tepliakov NV, Vovk IA, Baimuratov AS, Leonov MY, Baranov AV, Fedorov AV, Rukhlenko ID. Optical Activity of Semiconductor Gammadions beyond Planar Chirality. J Phys Chem Lett 2018; 9:2941-2945. [PMID: 29767981 DOI: 10.1021/acs.jpclett.8b01334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present rigorous analysis of optical activity of chiral semiconductor gammadions whose chirality in three dimensions is caused by the nonuniformity of thickness in the transverse plane. It is shown that such gammadions not only distinguish between the two circular polarizations upon scattering and reflection of light, like all two-dimensional semiconductor nanostructures with planar chirality do, but also exhibit circular dichroism and circularly polarized luminescence. Chiral semiconductor gammadions whose charge carriers are mostly confined to the arms are found to feature both high dissymmetry of optical response and a constant-sign circular dichroism signal over a wide frequency range. It is also shown that the strength of the gammadion's chiroptical response is determined solely by two geometric factors: the variation range of the gammadion's thickness and the arms' curvature. Our seminal theoretical study is intended to lay the foundation for future applications of semiconductor gammadions in chiral nanophotonics and nanotechnology.
Collapse
Affiliation(s)
- Nikita V Tepliakov
- Information Optical Technologies Centre , ITMO University , Saint Petersburg 197101 , Russia
| | - Ilia A Vovk
- Information Optical Technologies Centre , ITMO University , Saint Petersburg 197101 , Russia
| | - Anvar S Baimuratov
- Information Optical Technologies Centre , ITMO University , Saint Petersburg 197101 , Russia
| | - Mikhail Yu Leonov
- Information Optical Technologies Centre , ITMO University , Saint Petersburg 197101 , Russia
| | - Alexander V Baranov
- Information Optical Technologies Centre , ITMO University , Saint Petersburg 197101 , Russia
| | - Anatoly V Fedorov
- Information Optical Technologies Centre , ITMO University , Saint Petersburg 197101 , Russia
| | - Ivan D Rukhlenko
- Information Optical Technologies Centre , ITMO University , Saint Petersburg 197101 , Russia
| |
Collapse
|
25
|
Occurrence of Chiral Bioactive Compounds in the Aquatic Environment: A Review. Symmetry (Basel) 2017. [DOI: 10.3390/sym9100215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
26
|
Vovk IA, Tepliakov NV, Leonov MY, Baranov AV, Fedorov AV, Rukhlenko ID. Analytical theory of real-argument Laguerre-Gaussian beams beyond the paraxial approximation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2017; 34:1940-1944. [PMID: 29036066 DOI: 10.1364/josaa.34.001940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
We study the propagation of real-argument Laguerre-Gaussian beams beyond the paraxial approximation using the perturbation corrections to the complex-argument Laguerre-Gaussian beams derived earlier by Takenaka et al. [J. Opt. Soc. Am. A2, 826 (1985)JOAOD60740-323210.1364/JOSAA.2.000826]. Each higher-order correction to the amplitude of the real-argument beam (l, m) is represented as a superposition of the same-order corrections to the amplitudes of the complex-argument beams (l, q) with q=0,1,2,…,m. We derive explicit expressions for the electric and magnetic fields of transversely and longitudinally polarized real-argument beams and calculate the chirality densities of these beams up to the fourth order of the smallness parameter. For the first time to the best of our knowledge, we show that essentially achiral Gaussian beams (corresponding to l=m=0) possess nonzero chirality density due to the wavefront curvature. The obtained corrections to the paraxial beams may prove useful for precise laser beam shaping and in studies of optomechanical forces.
Collapse
|
27
|
Chiral Separation in Preparative Scale: A Brief Overview of Membranes as Tools for Enantiomeric Separation. Symmetry (Basel) 2017. [DOI: 10.3390/sym9100206] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
28
|
Purcell-Milton F, Visheratina AK, Kuznetsova VA, Ryan A, Orlova AO, Gun'ko YK. Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots. ACS NANO 2017; 11:9207-9214. [PMID: 28820937 DOI: 10.1021/acsnano.7b04199] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Core/shell quantum dots (QDs) are of high scientific and technological importance as these nanomaterials have found a number of valuable applications. In this paper, we have investigated the dependence of optical activity and photoluminescence upon CdS shell thickness in a range of core-shell structured CdSe/CdS QDs capped with chiral ligands. For our study, five samples of CdSe/CdS were synthesized utilizing successive ion layer adsorption and reaction to vary the thickness of the CdS shell from 0.5 to 2 nm, upon a 2.8 nm diameter CdSe core. Following this, a ligand exchange of the original aliphatic ligands with l- and d-cysteine was carried out, inducing a chiroptical response in these nanostructures. The samples were then characterized using circular dichroism, photoluminescent spectroscopy, and fluorescence lifetime spectroscopy. It has been found that the induced chiroptical response was inversely proportional to the CdS shell thickness and showed a distinct evolution in signal, whereas the photoluminescence of our samples showed a direct relationship to shell thickness. In addition, a detailed study of the influence of annealing time on the optical activity and photoluminescence quantum yield was performed. From our work, we have been able to clearly illustrate the approach and strategies that must be used when designing optimal photoluminescent optically active CdSe/CdS core-shell QDs.
Collapse
Affiliation(s)
- Finn Purcell-Milton
- School of Chemistry and CRANN, University of Dublin , Trinity College, Dublin 2, Ireland
| | | | - Vera A Kuznetsova
- School of Chemistry and CRANN, University of Dublin , Trinity College, Dublin 2, Ireland
- ITMO University , St. Petersburg 197101, Russia
| | - Aisling Ryan
- School of Chemistry and CRANN, University of Dublin , Trinity College, Dublin 2, Ireland
| | | | - Yurii K Gun'ko
- School of Chemistry and CRANN, University of Dublin , Trinity College, Dublin 2, Ireland
- ITMO University , St. Petersburg 197101, Russia
| |
Collapse
|
29
|
Enantiomeric Separation of Tramadol and Its Metabolites: Method Validation and Application to Environmental Samples. Symmetry (Basel) 2017. [DOI: 10.3390/sym9090170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Tepliakov NV, Baimuratov AS, Vovk IA, Leonov MY, Baranov AV, Fedorov AV, Rukhlenko ID. Chiral Optical Properties of Tapered Semiconductor Nanoscrolls. ACS NANO 2017; 11:7508-7515. [PMID: 28696663 DOI: 10.1021/acsnano.7b04032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Large surface-to-volume ratio, one-dimensional quantum confinement, and strong optical activity make chiral nanoscrolls ideal for the detection and sensing of small chiral molecules. Here, we present a simple physical model of chiroptical phenomena in multilayered tapered semiconductor nanoscrolls. Our model is based on a linear transformation of coordinates, which converts nanoscrolls into flat but topologically distorted nanoplatelets whose optical properties can then be treated analytically. As an illustrative application example, we analyze absorption and circular dichroism spectra of CdSe nanoscrolls using an eight-band model of CdSe. We show that the optical activity of the nanoscrolls originates from the chiral distortion of their crystal lattice and determine selection rules for the optically active interband transitions. The results of our study may prove useful for the modeling and design of semiconductor nanoscrolls and nanoscroll-based materials.
Collapse
Affiliation(s)
- Nikita V Tepliakov
- Center of Information Optical Technologies, ITMO University , Saint Petersburg 197101, Russia
| | - Anvar S Baimuratov
- Center of Information Optical Technologies, ITMO University , Saint Petersburg 197101, Russia
| | - Ilia A Vovk
- Center of Information Optical Technologies, ITMO University , Saint Petersburg 197101, Russia
| | - Mikhail Yu Leonov
- Center of Information Optical Technologies, ITMO University , Saint Petersburg 197101, Russia
| | - Alexander V Baranov
- Center of Information Optical Technologies, ITMO University , Saint Petersburg 197101, Russia
| | - Anatoly V Fedorov
- Center of Information Optical Technologies, ITMO University , Saint Petersburg 197101, Russia
| | - Ivan D Rukhlenko
- Center of Information Optical Technologies, ITMO University , Saint Petersburg 197101, Russia
- Monash University , Clayton Campus, Clayton, Victoria 3800, Australia
| |
Collapse
|
31
|
Baimuratov AS, Shlykov AI, Zhu W, Leonov MY, Baranov AV, Fedorov AV, Rukhlenko ID. Excitons in gyrotropic quantum-dot supercrystals. OPTICS LETTERS 2017; 42:2423-2426. [PMID: 28957249 DOI: 10.1364/ol.42.002423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
We use quantum theory of molecular crystals to study collective excitations (excitons) of gyrotropic quantum-dot (QD) supercrystals with complex lattices consisting of two or more sublattices of semiconductor QDs. We illustrate the potentials of our approach by applying it to analytically calculate the linear permittivity tensor of supercrystals with two QDs per unit cell. The spatial dispersions of exciton energy bands and permittivity tensor components are examined in detail for two-dimensional supercrystals with a square lattice, which are relatively easy to fabricate in practice. Our results provide a systematic and versatile framework for the engineering of dispersion properties of gyrotropic QD supercrystals and for the analysis of their absorption and circular dichroism spectra.
Collapse
|
32
|
Zhuo C, Wen Y, Hu S, Sheng T, Fu R, Xue Z, Zhang H, Li H, Yuan J, Chen X, Wu X. Homochiral Metal–Organic Frameworks with Tunable Nanoscale Channel Array and Their Enantioseparation Performance against Chiral Diols. Inorg Chem 2017; 56:6275-6280. [DOI: 10.1021/acs.inorgchem.7b00352] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Zhuo
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yuehong Wen
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Shengmin Hu
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Tianlu Sheng
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Ruibiao Fu
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Zhenzhen Xue
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hao Zhang
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Haoran Li
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jigang Yuan
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xi Chen
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xintao Wu
- State Key Laboratory
of Structural Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
33
|
Baimuratov AS, Tepliakov NV, Gun'Ko YK, Shalkovskiy AG, Baranov AV, Fedorov AV, Rukhlenko ID. Intraband optical activity of semiconductor nanocrystals. Chirality 2017; 29:159-166. [DOI: 10.1002/chir.22685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/26/2016] [Accepted: 01/14/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Anvar S. Baimuratov
- Department of Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| | - Nikita V. Tepliakov
- Department of Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| | - Yurii K. Gun'Ko
- Department of Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
- School of Chemistry and CRANN Institute; Trinity College; Dublin Ireland
| | - Alexey G. Shalkovskiy
- Saint Petersburg; Saint Petersburg State University; Russia
- Institute for Design Problems in Microelectronics of Russian Academy of Sciences; Moscow Russia
| | - Alexander V. Baranov
- Department of Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| | - Anatoly V. Fedorov
- Department of Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
| | - Ivan D. Rukhlenko
- Department of Optical Physics and Modern Natural Science; ITMO University; Saint Petersburg Russia
- Monash University; Clayton Campus; Victoria Australia
| |
Collapse
|
34
|
Vovk IA, Baimuratov AS, Zhu W, Shalkovskiy AG, Baranov AV, Fedorov AV, Rukhlenko ID. Chiral nanoparticles in singular light fields. Sci Rep 2017; 7:45925. [PMID: 28378842 PMCID: PMC5381112 DOI: 10.1038/srep45925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/06/2017] [Indexed: 11/09/2022] Open
Abstract
The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and torques exerted on chiral nanoparticles by Laguerre-Gaussian beams carrying a topological charge. We show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to produce chirality densities that can be 109 times higher than those of transversely polarized beams and that are comparable to the chirality densities of beams polarized circularly. Our results and analytical expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects with the help of highly focussed beams.
Collapse
Affiliation(s)
- Ilia A. Vovk
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Anvar S. Baimuratov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Weiren Zhu
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Monash University, Clayton Campus, Victoria 3800, Australia
| | - Alexey G. Shalkovskiy
- Saint Petersburg State University, 7–9 University Embankment, Saint Petersburg 199034, Russia
- Institute for Design Problems in Microelectronics of Russian Academy of Sciences, Moscow 124365, Russia
| | - Alexander V. Baranov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Anatoly V. Fedorov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
| | - Ivan D. Rukhlenko
- Center of Information Optical Technologies, ITMO University, Saint Petersburg 197101, Russia
- Monash University, Clayton Campus, Victoria 3800, Australia
| |
Collapse
|