1
|
Srivastava PN, Paul P, Mishra S. Protein O-Fucosyltransferase Is Required for the Efficient Invasion of Hepatocytes by Plasmodium berghei Sporozoites. ACS Infect Dis 2024; 10:1116-1125. [PMID: 38421807 DOI: 10.1021/acsinfecdis.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The O-fucosylation of the thrombospondin type I repeat (TSR) domain is important for TSR-containing proteins' optimal folding and stability. However, the importance of Plasmodium O-fucosyltransferase 2 (POFut2) remains unclear due to two different reports. Here, we disrupted the POFut2 gene in Plasmodium berghei and demonstrated that POFut2 KO parasites develop normally in blood and mosquito stages but show reduced infectivity in mice. We found that the reduced infectivity of POFut2 KO sporozoites was due to a diminished level of TRAP that affected the parasite gliding motility and hepatocyte infectivity. Using all-atom MD simulation, we also hypothesize that O-fucosylation impacts the TSR domain's stability more than its heparin binding capacity.
Collapse
Affiliation(s)
- Pratik Narain Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Plabita Paul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Izquierdo L. The glycobiology of plasmodium falciparum: New approaches and recent advances. Biotechnol Adv 2023; 66:108178. [PMID: 37216996 DOI: 10.1016/j.biotechadv.2023.108178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Like any other microorganism, pathogenic protozoan parasites rely heavily on glycoconjugates and glycan binding proteins to protect themselves from the environment and to interact with their diverse hosts. A thorough comprehension of how glycobiology contributes to the survival and virulence of these organisms may reveal unknown aspects of their biology and may open much needed avenues for the design of new strategies against them. In the case of Plasmodium falciparum, which causes the vast majority of malaria cases and deaths, the restricted variety and the simplicity of its glycans seemed to confer limited significance to the role played by glycoconjugates in the parasite. Nonetheless, the last 10 to 15 years of research are revealing a clearer and more defined picture. Thus, the use of new experimental techniques and the results obtained provide new avenues for understanding the biology of the parasite, as well as opportunities for the development of much required new tools against malaria.
Collapse
Affiliation(s)
- Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; CIBER de Enfermedades Infecciosas, Madrid, Spain.
| |
Collapse
|
3
|
Fenollar À, Ros-Lucas A, Pía Alberione M, Martínez-Peinado N, Ramírez M, Ángel Rosales-Motos M, Y. Lee L, Alonso-Padilla J, Izquierdo L. Compounds targeting GPI biosynthesis or N-glycosylation are active against Plasmodium falciparum. Comput Struct Biotechnol J 2022; 20:850-863. [PMID: 35222844 PMCID: PMC8841962 DOI: 10.1016/j.csbj.2022.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
Compounds targeting key steps in GPI biosynthesis abrogate P. falciparum growth. N-glycosylation disruption halts parasite development and induces delayed death. Tunicamycin-induced delayed death is not linked with the synthesis of isoprenoids. In summary, two metabolic pathways are outlined for further drug target exploration.
The emergence of resistance to first-line antimalarials, including artemisinin, the last effective malaria therapy in some regions, stresses the urgent need to develop new effective treatments against this disease. The identification and validation of metabolic pathways that could be targeted for drug development may strongly contribute to accelerate this process. In this study, we use fully characterized specific inhibitors targeting glycan biosynthetic pathways as research tools to analyze their effects on the growth of the malaria parasite Plasmodium falciparum and to validate these metabolic routes as feasible chemotherapeutic targets. Through docking simulations using models predicted by AlphaFold, we also shed new light into the modes of action of some of these inhibitors. Molecules inhibiting N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase (GlcNAc-PI de-N-acetylase, PIGL/GPI12) or the inositol acyltransferase (GWT1), central for glycosylphosphatidylinositol (GPI) biosynthesis, halt the growth of intraerythrocytic asexual parasites during the trophozoite stages of the intraerythrocytic developmental cycle (IDC). Remarkably, the nucleoside antibiotic tunicamycin, which targets UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (ALG7) and N-glycosylation in other organisms, induces a delayed-death effect and inhibits parasite growth during the second IDC after treatment. Our data indicate that tunicamycin induces a specific inhibitory effect, hinting to a more substantial role of the N-glycosylation pathway in P. falciparum intraerythrocytic asexual stages than previously thought. To sum up, our results place GPI biosynthesis and N-glycosylation pathways as metabolic routes with potential to yield much-needed therapeutic targets against the parasite.
Collapse
Affiliation(s)
- Àngel Fenollar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - María Pía Alberione
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Nieves Martínez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Miguel Ángel Rosales-Motos
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Ling Y. Lee
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Corresponding author at: Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
4
|
Goerdeler F, Seeberger PH, Moscovitz O. Unveiling the Sugary Secrets of Plasmodium Parasites. Front Microbiol 2021; 12:712538. [PMID: 34335547 PMCID: PMC8322443 DOI: 10.3389/fmicb.2021.712538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites cause malaria disease, one of the leading global health burdens for humanity, infecting hundreds of millions of people each year. Different glycans on the parasite and the host cell surface play significant roles in both malaria pathogenesis and host defense mechanisms. So far, only small, truncated N- and O-glycans have been identified in Plasmodium species. In contrast, complex glycosylphosphatidylinositol (GPI) glycolipids are highly abundant on the parasite’s cell membrane and are essential for its survival. Moreover, the parasites express lectins that bind and exploit the host cell surface glycans for different aspects of the parasite life cycle, such as adherence, invasion, and evasion of the host immune system. In parallel, the host cell glycocalyx and lectin expression serve as the first line of defense against Plasmodium parasites and directly dictate susceptibility to Plasmodium infection. This review provides an overview of the glycobiology involved in Plasmodium-host interactions and its contribution to malaria pathogenesis. Recent findings are presented and evaluated in the context of potential therapeutic exploitation.
Collapse
Affiliation(s)
- Felix Goerdeler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Oren Moscovitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
5
|
Plasmodium falciparum Apicomplexan-Specific Glucosamine-6-Phosphate N-Acetyltransferase Is Key for Amino Sugar Metabolism and Asexual Blood Stage Development. mBio 2020; 11:mBio.02045-20. [PMID: 33082260 PMCID: PMC7587441 DOI: 10.1128/mbio.02045-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Apicomplexan parasites cause a major burden on global health and economy. The absence of treatments, the emergence of resistances against available therapies, and the parasite’s ability to manipulate host cells and evade immune systems highlight the urgent need to characterize new drug targets to treat infections caused by these parasites. We demonstrate that glucosamine-6-phosphate N-acetyltransferase (GNA1), required for the biosynthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), is essential for P. falciparum asexual blood stage development and that the disruption of the gene encoding this enzyme quickly causes the death of the parasite within a life cycle. The high-resolution crystal structure of the GNA1 ortholog from the apicomplexan parasite C. parvum, used here as a surrogate, highlights significant differences from human GNA1. These divergences can be exploited for the design of specific inhibitors against the malaria parasite. UDP-N-acetylglucosamine (UDP-GlcNAc), the main product of the hexosamine biosynthetic pathway, is an important metabolite in protozoan parasites since its sugar moiety is incorporated into glycosylphosphatidylinositol (GPI) glycolipids and N- and O-linked glycans. Apicomplexan parasites have a hexosamine pathway comparable to other eukaryotic organisms, with the exception of the glucosamine-phosphate N-acetyltransferase (GNA1) enzymatic step that has an independent evolutionary origin and significant differences from nonapicomplexan GNA1s. By using conditional genetic engineering, we demonstrate the requirement of GNA1 for the generation of a pool of UDP-GlcNAc and for the development of intraerythrocytic asexual Plasmodium falciparum parasites. Furthermore, we present the 1.95 Å resolution structure of the GNA1 ortholog from Cryptosporidium parvum, an apicomplexan parasite which is a leading cause of diarrhea in developing countries, as a surrogate for P. falciparum GNA1. The in-depth analysis of the crystal shows the presence of specific residues relevant for GNA1 enzymatic activity that are further investigated by the creation of site-specific mutants. The experiments reveal distinct features in apicomplexan GNA1 enzymes that could be exploitable for the generation of selective inhibitors against these parasites, by targeting the hexosamine pathway. This work underscores the potential of apicomplexan GNA1 as a drug target against malaria.
Collapse
|
6
|
Bandini G, Albuquerque-Wendt A, Hegermann J, Samuelson J, Routier FH. Protein O- and C-Glycosylation pathways in Toxoplasma gondii and Plasmodium falciparum. Parasitology 2019; 146:1755-1766. [PMID: 30773146 PMCID: PMC6939170 DOI: 10.1017/s0031182019000040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Apicomplexan parasites are amongst the most prevalent and morbidity-causing pathogens worldwide. They are responsible for severe diseases in humans and livestock and are thus of great public health and economic importance. Until the sequencing of apicomplexan genomes at the beginning of this century, the occurrence of N- and O-glycoproteins in these parasites was much debated. The synthesis of rudimentary and divergent N-glycans due to lineage-specific gene loss is now well established and has been recently reviewed. Here, we will focus on recent studies that clarified classical O-glycosylation pathways and described new nucleocytosolic glycosylations in Toxoplasma gondii, the causative agents of toxoplasmosis. We will also review the glycosylation of proteins containing thrombospondin type 1 repeats by O-fucosylation and C-mannosylation, newly discovered in Toxoplasma and the malaria parasite Plasmodium falciparum. The functional significance of these post-translational modifications has only started to emerge, but the evidence points towards roles for these protein glycosylation pathways in tissue cyst wall rigidity and persistence in the host, oxygen sensing, and stability of proteins involved in host invasion.
Collapse
Affiliation(s)
- Giulia Bandini
- Department of Molecular and Cell Biology, Boston University, Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Andreia Albuquerque-Wendt
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jan Hegermann
- Hannover Medical School, Electron Microscopy Facility OE8840, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University, Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Françoise H. Routier
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Sanz S, Aquilini E, Tweedell RE, Verma G, Hamerly T, Hritzo B, Tripathi A, Machado M, Churcher TS, Rodrigues JA, Izquierdo L, Dinglasan RR. Protein O-Fucosyltransferase 2 Is Not Essential for Plasmodium berghei Development. Front Cell Infect Microbiol 2019; 9:238. [PMID: 31334132 PMCID: PMC6616114 DOI: 10.3389/fcimb.2019.00238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin type I repeat (TSR) domains are commonly O-fucosylated by protein O-fucosyltransferase 2 (PoFUT2), and this modification is required for optimal folding and secretion of TSR-containing proteins. The human malaria parasite Plasmodium falciparum expresses proteins containing TSR domains, such as the thrombospondin-related anonymous protein (TRAP) and circumsporozoite surface protein (CSP), which are O-fucosylated. TRAP and CSP are present on the surface of sporozoites and play essential roles in mosquito and human host invasion processes during the transmission stages. Here, we have generated PoFUT2 null-mutant P. falciparum and Plasmodium berghei (rodent) malaria parasites and, by phenotyping them throughout their complete life cycle, we show that PoFUT2 disruption does not affect the growth through the mosquito stages for both species. However, contrary to what has been described previously by others, P. berghei PoFUT2 null mutant sporozoites showed no deleterious motility phenotypes and successfully established blood stage infection in mice. This unexpected result indicates that the importance of O-fucosylation of TSR domains may differ between human and RODENT malaria parasites; complicating our understanding of glycosylation modifications in malaria biology.
Collapse
Affiliation(s)
- Silvia Sanz
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Infectious Diseases and Immunology, The University of Florida Emerging Pathogens Institute, Gainesville, FL, United States
| | - Eleonora Aquilini
- Instituto de Medicina Molecular, Unidade de Malária, Universidade de Lisboa, Lisbon, Portugal
| | - Rebecca E Tweedell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Infectious Diseases and Immunology, The University of Florida Emerging Pathogens Institute, Gainesville, FL, United States
| | - Garima Verma
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Infectious Diseases and Immunology, The University of Florida Emerging Pathogens Institute, Gainesville, FL, United States
| | - Timothy Hamerly
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Infectious Diseases and Immunology, The University of Florida Emerging Pathogens Institute, Gainesville, FL, United States
| | - Bernadette Hritzo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Abhai Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Marta Machado
- Instituto de Medicina Molecular, Unidade de Malária, Universidade de Lisboa, Lisbon, Portugal
| | - Thomas S Churcher
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London, United Kingdom
| | - João A Rodrigues
- Instituto de Medicina Molecular, Unidade de Malária, Universidade de Lisboa, Lisbon, Portugal
| | - Luis Izquierdo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Infectious Diseases and Immunology, The University of Florida Emerging Pathogens Institute, Gainesville, FL, United States
| |
Collapse
|
8
|
Aguilar R, Ubillos I, Vidal M, Balanza N, Crespo N, Jiménez A, Nhabomba A, Jairoce C, Dosoo D, Gyan B, Ayestaran A, Sanz H, Campo JJ, Gómez-Pérez GP, Izquierdo L, Dobaño C. Antibody responses to α-Gal in African children vary with age and site and are associated with malaria protection. Sci Rep 2018; 8:9999. [PMID: 29968771 PMCID: PMC6030195 DOI: 10.1038/s41598-018-28325-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/20/2018] [Indexed: 01/12/2023] Open
Abstract
Naturally-acquired antibody responses to malaria parasites are not only directed to protein antigens but also to carbohydrates on the surface of Plasmodium protozoa. Immunoglobulin M responses to α-galactose (α-Gal) (Galα1-3Galβ1-4GlcNAc-R)-containing glycoconjugates have been associated with protection from P. falciparum infection and, as a result, these molecules are under consideration as vaccine targets; however there are limited field studies in endemic populations. We assessed a wide breadth of isotype and subclass antibody response to α-Gal in children from Mozambique (South East Africa) and Ghana (West Africa) by quantitative suspension array technology. We showed that anti-α-Gal IgM, IgG and IgG1–4 levels vary mainly depending on the age of the child, and also differ in magnitude in the two sites. At an individual level, the intensity of malaria exposure to P. falciparum and maternally-transferred antibodies affected the magnitude of α-Gal responses. There was evidence for a possible protective role of anti-α-Gal IgG3 and IgG4 antibodies. However, the most consistent findings were that the magnitude of IgM responses to α-Gal was associated with protection against clinical malaria over a one-year follow up period, especially in the first months of life, while IgG levels correlated with malaria risk.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Núria Balanza
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Núria Crespo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - David Dosoo
- Kintampo Health Research Center, Kintampo, Ghana
| | - Ben Gyan
- Kintampo Health Research Center, Kintampo, Ghana
| | - Aintzane Ayestaran
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Hèctor Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Luis Izquierdo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Goddard-Borger ED, Boddey JA. Implications of Plasmodium glycosylation on vaccine efficacy and design. Future Microbiol 2018; 13:609-612. [DOI: 10.2217/fmb-2017-0284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ethan D Goddard-Borger
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Justin A Boddey
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Cova M, López-Gutiérrez B, Artigas-Jerónimo S, González-Díaz A, Bandini G, Maere S, Carretero-Paulet L, Izquierdo L. The Apicomplexa-specific glucosamine-6-phosphate N-acetyltransferase gene family encodes a key enzyme for glycoconjugate synthesis with potential as therapeutic target. Sci Rep 2018; 8:4005. [PMID: 29507322 PMCID: PMC5838249 DOI: 10.1038/s41598-018-22441-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
Apicomplexa form a phylum of obligate parasitic protozoa of great clinical and veterinary importance. These parasites synthesize glycoconjugates for their survival and infectivity, but the enzymatic steps required to generate the glycosylation precursors are not completely characterized. In particular, glucosamine-phosphate N-acetyltransferase (GNA1) activity, needed to produce the essential UDP-N-acetylglucosamine (UDP-GlcNAc) donor, has not been identified in any Apicomplexa. We scanned the genomes of Plasmodium falciparum and representatives from six additional main lineages of the phylum for proteins containing the Gcn5-related N-acetyltransferase (GNAT) domain. One family of GNAT-domain containing proteins, composed by a P. falciparum sequence and its six apicomplexan orthologs, rescued the growth of a yeast temperature-sensitive GNA1 mutant. Heterologous expression and in vitro assays confirmed the GNA1 enzymatic activity in all lineages. Sequence, phylogenetic and synteny analyses suggest an independent origin of the Apicomplexa-specific GNA1 family, parallel to the evolution of a different GNA1 family in other eukaryotes. The inability to disrupt an otherwise modifiable gene target suggests that the enzyme is essential for P. falciparum growth. The relevance of UDP-GlcNAc for parasite viability, together with the independent evolution and unique sequence features of Apicomplexa GNA1, highlights the potential of this enzyme as a selective therapeutic target against apicomplexans.
Collapse
Affiliation(s)
- Marta Cova
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Borja López-Gutiérrez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sara Artigas-Jerónimo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Aida González-Díaz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, USA
| | - Steven Maere
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, B-9052, Ghent, Belgium
| | - Lorenzo Carretero-Paulet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052, Ghent, Belgium.
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.
- Bioinformatics Institute Ghent, Ghent University, B-9052, Ghent, Belgium.
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts. Nat Commun 2017; 8:561. [PMID: 28916755 PMCID: PMC5601480 DOI: 10.1038/s41467-017-00571-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/11/2017] [Indexed: 01/14/2023] Open
Abstract
O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism. The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.
Collapse
|
12
|
Guo H, Novozhilova NM, Bandini G, Turco SJ, Ferguson MAJ, Beverley SM. Genetic metabolic complementation establishes a requirement for GDP-fucose in Leishmania. J Biol Chem 2017; 292:10696-10708. [PMID: 28465349 PMCID: PMC5481574 DOI: 10.1074/jbc.m117.778480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/01/2017] [Indexed: 01/10/2023] Open
Abstract
To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eventually it must detach for transmission by the next bite. In Leishmania major strain Friedlin, this is controlled by modifications of the stage-specific adhesin lipophosphoglycan (LPG). During differentiation to infective metacyclics, d-arabinopyranose (d-Arap) caps the LPG side-chain galactose residues, blocking interaction with the midgut lectin PpGalec, thereby leading to parasite detachment and transmission. Previously, we characterized two closely related L. major genes (FKP40 and AFKP80) encoding bifunctional proteins with kinase/pyrophosphorylase activities required for salvage and conversion of l-fucose and/or d-Arap into the nucleotide-sugar substrates required by glycosyltransferases. Whereas only AFKP80 yielded GDP-d-Arap from exogenous d-Arap, both proteins were able to salvage l-fucose to GDP-fucose. We now show that Δafkp80− null mutants ablated d-Arap modifications of LPG as predicted, whereas Δfkp40− null mutants resembled wild type (WT). Fucoconjugates had not been reported previously in L. major, but unexpectedly, we were unable to generate fkp40−/afkp80− double mutants, unless one of the A/FKPs was expressed ectopically. To test whether GDP-fucose itself was essential for Leishmania viability, we employed “genetic metabolite complementation.” First, the trypanosome de novo pathway enzymes GDP-mannose dehydratase (GMD) and GDP-fucose synthetase (GMER) were expressed ectopically; from these cells, the Δfkp40−/Δafkp80− double mutant was now readily obtained. As expected, the Δfkp40−/Δafkp80−/+TbGMD-GMER line lacked the capacity to generate GDP-Arap, while synthesizing abundant GDP-fucose. These results establish a requirement for GDP-fucose for L. major viability and predict the existence of an essential fucoconjugate(s).
Collapse
Affiliation(s)
- Hongjie Guo
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Natalia M Novozhilova
- the Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40536, and
| | - Giulia Bandini
- the Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Salvatore J Turco
- the Department of Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky 40536, and
| | - Michael A J Ferguson
- the Division of Biological Chemistry and Drug Discovery, School of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Stephen M Beverley
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110,
| |
Collapse
|
13
|
López-Gutiérrez B, Dinglasan RR, Izquierdo L. Sugar nucleotide quantification by liquid chromatography tandem mass spectrometry reveals a distinct profile in Plasmodium falciparum sexual stage parasites. Biochem J 2017; 474:897-905. [PMID: 28104756 PMCID: PMC5340172 DOI: 10.1042/bcj20161030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties in obtaining sufficient amounts of biological material have hampered the study of specific metabolic pathways in the malaria parasite. Thus, for example, the pools of sugar nucleotides required to fuel glycosylation reactions have never been studied in-depth in well-synchronized asexual parasites or in other stages of its life cycle. These metabolites are of critical importance, especially considering the renewed interest in the presence of N-, O-, and other glycans in key parasite proteins. In this work, we adapted a liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on the use of porous graphitic carbon (PGC) columns and MS-friendly solvents to quantify sugar nucleotides in the malaria parasite. We report the thorough quantification of the pools of these metabolites throughout the intraerythrocytic cycle of P. falciparum The sensitivity of the method enabled, for the first time, the targeted analysis of these glycosylation precursors in gametocytes, the parasite sexual stages that are transmissible to the mosquito vector.
Collapse
Affiliation(s)
- Borja López-Gutiérrez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Rhoel R Dinglasan
- Department of Infectious Diseases & Pathology, The University of Florida Emerging Pathogens Institute, Gainesville, FL 32611, U.S.A
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|