1
|
Marta A, Marques-Couto P, Vaz-Pereira S, Costa J, Cabral D, Estrela-Silva S, Franca M, Marques JH, Menéres MJ, Lemos C, Melo Beirão J, Soares CA, Carvalho AL, Marques JP. Clinical and genetic landscape of IRD in Portugal: pooled data from the nationwide IRD-PT registry. NPJ Genom Med 2025; 10:11. [PMID: 39939324 PMCID: PMC11821859 DOI: 10.1038/s41525-025-00475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
This study aims to characterize the clinical spectrum and genetic landscape of IRDs in Portugal. Multicentre, cross-sectional, cohort study comprising consecutive patients with a clinical diagnosis of IRD and available genetic results, enroled in the IRD-PT registry (retina.com.pt). Among the 1369 patients enroled from 1125 families, the most frequently observed phenotype was non-syndromic retinitis pigmentosa (40.8%). A genetically confirmed diagnosis was achieved in 72.3% of families. Consanguinity was observed in one-fifth of cases, contributing to a higher frequency of homozygous variants within this cohort. Disease-causing genotypes were distributed across 136 different genes, with ABCA4 (13.0%), EYS (10.0%) and USH2A (6.9%) being the most frequently mutated genes. Overall, these results from a nationwide cohort significantly advance our understanding of the clinical and genetic spectrum of IRDs in Portugal, laying the groundwork for future studies to identify patients eligible for targeted therapies and to describe the natural history of these diseases.
Collapse
Affiliation(s)
- Ana Marta
- Department of Ophthalmology, Unidade Local de Saúde de Santo António, EPE (ULSSA), Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Pedro Marques-Couto
- Department of Ophthalmology, Unidade Local de Saúde de São João, EPE (ULSSJ), Porto, Portugal
| | - Sara Vaz-Pereira
- Department of Ophthalmology, Unidade Local de Saúde de Santa Maria (ULSSM), Lisboa, Portugal
- Department of Ophthalmology, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - José Costa
- Department of Ophthalmology, Unidade Local de Saúde de Braga (ULSB), Braga, Portugal
| | - Diogo Cabral
- Department of Ophthalmology, Unidade Local de Saúde de Almada-Seixal, EPE (ULSAS), Lisboa, Portugal
| | - Sérgio Estrela-Silva
- Department of Ophthalmology, Unidade Local de Saúde de São João, EPE (ULSSJ), Porto, Portugal
| | - Maria Franca
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Department of Ophthalmology, Unidade Local de Saúde de Coimbra, EPE (ULSC), Coimbra, Portugal
| | - João Heitor Marques
- Department of Ophthalmology, Unidade Local de Saúde de Santo António, EPE (ULSSA), Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Maria João Menéres
- Department of Ophthalmology, Unidade Local de Saúde de Santo António, EPE (ULSSA), Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Carolina Lemos
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
- Department of Ophthalmology, Unidade Local de Saúde de Coimbra, EPE (ULSC), Coimbra, Portugal
| | - João Melo Beirão
- Department of Ophthalmology, Unidade Local de Saúde de Santo António, EPE (ULSSA), Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Porto, Portugal
| | - Célia Azevedo Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Medical Genetics Department, Centro de Genética Médica Jacinto Magalhães, Unidade Local de Saúde de Santo António, EPE (ULSSA), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Medical Science Department, Universidade de Aveiro, Aveiro, Portugal
| | - Ana Luísa Carvalho
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Medical Genetics Unit, Hospital Pediátrico, Unidade Local de Saúde de Coimbra, EPE, Coimbra, Portugal
- University Clinic of Genetics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Pedro Marques
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
- Department of Ophthalmology, Unidade Local de Saúde de Coimbra, EPE (ULSC), Coimbra, Portugal.
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
| |
Collapse
|
2
|
Soares RM, Carvalho AL, Simão S, Soares CA, Raimundo M, Alves CH, Ambrósio AF, Murta J, Saraiva J, Silva R, Marques JP. Eyes Shut Homolog-Associated Retinal Degeneration: Natural History, Genetic Landscape, and Phenotypic Spectrum. Ophthalmol Retina 2023:S2468-6530(23)00054-4. [PMID: 36764454 DOI: 10.1016/j.oret.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE To describe the natural history, genetic landscape, and phenotypic spectrum of Eyes shut homolog (EYS)-associated retinal degeneration (EYS-RD). DESIGN Retrospective, single-center cohort study complemented by a cross-sectional examination. SUBJECTS Patients with biallelic EYS variants were recruited at an inherited RD referral center in Portugal. METHODS Every patient underwent a cross-sectional examination comprising a comprehensive ophthalmic examination including best-corrected visual acuity (BCVA), dilated slit-lamp anterior segment, and fundus biomicroscopy; ultrawide-field color fundus photography and fundus autofluorescence imaging; and spectral domain-OCT. In the setting of a retinitis pigmentosa (RP) diagnosis, every patient was classified as typical or atypical RP according to imaging criteria. Baseline demographics, age at onset of symptoms, family history, history of consanguinity, symptoms, age at diagnosis, BCVA at baseline and throughout follow-up, and EYS variants were collected from each individual patient file. MAIN OUTCOME MEASURES Clinical/demographic, genetic, multimodal imaging data, and BCVA variation were compared between typical and atypical RP. Additionally, BCVA variation during follow-up was used as an endpoint to describe EYS-RD natural history. RESULTS Fifty-eight patients (59% men; mean age 52 ± 14 years) from 48 White families of Portuguese ancestry were included. Twenty distinct EYS variants were identified, 8 of which are novel. In 32.8% of patients, onset of symptoms was in early adulthood (21-30 years). A clinical diagnosis of RP was established in 57 patients and cone-rod dystrophy in 1 patient. Regarding RP, 75.0% of the patients were graded as typical and 25.0% as atypical. Atypical EYS-RP commonly presents with inferior crescent-shaped macular atrophy with superior midperipheral sparing. In EYS-RD, a negative correlation was found between age and BCVA (r = -0.50; P < 0.001), with an average loss of 1.45 letters per year. When stratifying for RP phenotype, lower average loss of letters per year (P < 0.001), higher BCVA (P < 0.001), and larger ellipsoid zone widths (P < 0.001) were found in atypical RP. CONCLUSIONS This study expands the genetic spectrum of EYS-RD by reporting 8 novel variants. A high frequency of atypical phenotypes was identified. These patients have better BCVA and larger ellipsoidal zone widths, thus presenting an overall better prognosis. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Ricardo Machado Soares
- Department of Ophthalmology, Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNGE), Gaia, Portugal
| | - Ana Luísa Carvalho
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Medical Genetics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Sílvia Simão
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Célia Azevedo Soares
- Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, Porto, Portugal; Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Miguel Raimundo
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - C Henrique Alves
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra (UC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - António Francisco Ambrósio
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra (UC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Joaquim Murta
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Jorge Saraiva
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Rufino Silva
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - João Pedro Marques
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.
| |
Collapse
|
3
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
4
|
Biswas P, Villanueva AL, Soto-Hermida A, Duncan JL, Matsui H, Borooah S, Kurmanov B, Richard G, Khan SY, Branham K, Huang B, Suk J, Bakall B, Goldberg JL, Gabriel L, Khan NW, Raghavendra PB, Zhou J, Devalaraja S, Huynh A, Alapati A, Zawaydeh Q, Weleber RG, Heckenlively JR, Hejtmancik JF, Riazuddin S, Sieving PA, Riazuddin SA, Frazer KA, Ayyagari R. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet 2021; 17:e1009848. [PMID: 34662339 PMCID: PMC8589175 DOI: 10.1371/journal.pgen.1009848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/12/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Adda L. Villanueva
- Retina and Genomics Institute, Yucatán, México
- Laboratoire de Diagnostic Moleculaire, Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada
| | - Angel Soto-Hermida
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Jacque L. Duncan
- Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Berzhan Kurmanov
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | | | - Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kari Branham
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Bonnie Huang
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - John Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Benjamin Bakall
- Ophthalmology, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, United States of America
| | - Jeffrey L. Goldberg
- Byers Eye Institute, Stanford, Palo Alto, California, United States of America
| | - Luis Gabriel
- Genetics and Ophthalmology, Genelabor, Goiânia, Brazil
| | - Naheed W. Khan
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Pongali B. Raghavendra
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
- School of Regenerative Medicine, Manipal University, Bengaluru, Karnataka, India
| | - Jason Zhou
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Sindhu Devalaraja
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Andrew Huynh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Akhila Alapati
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Qais Zawaydeh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Richard G. Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John R. Heckenlively
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Paul A. Sieving
- National Eye Institute, Bethesda, Maryland, United States of America
- Ophthalmology & Vision Science, UC Davis Medical Center, California, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly A. Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, Rady Children’s Hospital, Division of Genome Information Sciences, San Diego, California, United States of America
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
5
|
EYS-Associated Sector Retinitis Pigmentosa. Graefes Arch Clin Exp Ophthalmol 2021; 260:1405-1413. [PMID: 34568954 DOI: 10.1007/s00417-021-05411-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Sector retinitis pigmentosa (RP) is a rare form of rod-cone degeneration typically associated with mutations in the RHO gene. We describe six unrelated patients presenting with this atypical phenotype in association with biallelic mutations in EYS gene. METHODS Multinational, multicentre cross-sectional case series. Patients with biallelic disease-causing variants in EYS and a clinical diagnosis of sector RP were recruited from specialized centres in Portugal and Brazil. All patients underwent a comprehensive ophthalmologic examination complemented by deep phenotyping. Peripheral blood samples were collected from all probands and available relatives for genetic analysis. Genetic counselling was provided to all subjects. RESULTS Seven disease-causing variants (4 pathogenic; 3 likely pathogenic) were identified in 6 unrelated female patients. Best-corrected visual acuity ranged from 75 to 85 ETDRS letters. All eyes showed bilateral and symmetrical areas of outer retinal atrophy distributed along the inferior vascular arcades and extending temporally and/or nasally in a crescent-shaped pattern. On fundus autofluorescence (AF), a foveal-sparing curvilinear band of hyperAF encroaching the optic nerve head and extending temporally was seen in 4 patients. The remaining 2 presented bilateral and symmetrical patches of hypoAF inside crescent-shaped areas of hyperAF along the inferior temporal vascular arcade. Visual field testing revealed superior visual field defects of varying extents, always in close association with the fundus AF findings. CONCLUSIONS Even though EYS has only recently been listed as a cause of the sector RP phenotype, we believe that this presentation is not infrequent and should be considered an important differential for sector RP.
Collapse
|
6
|
Nassisi M, Smirnov VM, Solis Hernandez C, Mohand‐Saïd S, Condroyer C, Antonio A, Kühlewein L, Kempf M, Kohl S, Wissinger B, Nasser F, Ragi SD, Wang N, Sparrow JR, Greenstein VC, Michalakis S, Mahroo OA, Ba‐Abbad R, Michaelides M, Webster AR, Degli Esposti S, Saffren B, Capasso J, Levin A, Hauswirth WW, Dhaenens C, Defoort‐Dhellemmes S, Tsang SH, Zrenner E, Sahel J, Petersen‐Jones SM, Zeitz C, Audo I. CNGB1-related rod-cone dystrophy: A mutation review and update. Hum Mutat 2021; 42:641-666. [PMID: 33847019 PMCID: PMC8218941 DOI: 10.1002/humu.24205] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Cyclic nucleotide-gated channel β1 (CNGB1) encodes the 240-kDa β subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Ophthalmological Unit, Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Vasily M. Smirnov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Exploration de la vision et Neuro‐Ophthalmologie, CHU de LilleLilleFrance
- Faculté de MédecineUniversité de LilleLilleFrance
| | - Cyntia Solis Hernandez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Saddek Mohand‐Saïd
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
| | - Christel Condroyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Aline Antonio
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Laura Kühlewein
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Melanie Kempf
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Fadi Nasser
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Sara D. Ragi
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | - Nan‐Kai Wang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Ophthalmology, Chang Gung Memorial HospitalLinkou Medical CenterTaoyuanTaiwan
| | - Janet R. Sparrow
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | | | | | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Rola Ba‐Abbad
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Michel Michaelides
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Simona Degli Esposti
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Brooke Saffren
- Philadelphia College of Osteopathic MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Alex Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, Pediatric Genetics, Golisano Children's HospitalUniversity of RochesterRochesterNew YorkUSA
| | | | - Claire‐Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172‐LilNCog‐Lille Neuroscience & CognitionLilleFrance
| | | | - Stephen H. Tsang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma LaboratoryNew YorkNew YorkUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Eberhart Zrenner
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Jose‐Alain Sahel
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Department of OphthalmologyThe University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Fondation Ophtalmologique Adolphe de RothschildParisFrance
| | - Simon M. Petersen‐Jones
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Christina Zeitz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Isabelle Audo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- University College London Institute of OphthalmologyLondonUK
| |
Collapse
|
7
|
Jaffal L, Joumaa H, Mrad Z, Zeitz C, Audo I, El Shamieh S. The genetics of rod-cone dystrophy in Arab countries: a systematic review. Eur J Hum Genet 2021; 29:897-910. [PMID: 33188265 PMCID: PMC8187393 DOI: 10.1038/s41431-020-00754-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Since a substantial difference in the prevalence of genetic causes of rod-cone dystrophy (RCD) was found among different populations, we conducted a systematic review of the genetic findings associated with RCD in Arab countries. Of the 816 articles retrieved from PubMed, 31 studies conducted on 407 participants from 11 countries were reviewed. Next-generation sequencing (NGS) was the most commonly used technique (68%). Autosomal recessive pattern was the most common pattern of inheritance (97%) and half of the known genes associated with RCD (32/63) were identified. In the Kingdom of Saudi Arabia, in addition to RP1 (20%) and TULP1 (20%), gene defects in EYS (8%) and CRB1 (7%) were also prevalently mutated. In North Africa, the main gene defects were in MERTK (18%) and RLBP1 (18%). Considering all countries, RP1 and TULP1 remained the most prevalently mutated. Variants in TULP1, RP1, EYS, MERTK, and RLBP1 were the most prevalent, possibly because of founder effects. On the other hand, only ten Individuals were found to have dominant or X-linked RCD. This is the first time a catalog of RCD genetic variations has been established in subjects from the Arabi countries. Although the last decade has seen significant interest, expertise, and an increase in RCD scientific publication, much work needs to be conducted.
Collapse
Affiliation(s)
- Lama Jaffal
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Debbieh, 1107 2809, Lebanon
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Hawraa Joumaa
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Zamzam Mrad
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh, 1700, Lebanon
| | - Christina Zeitz
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, 75012, France
| | - Isabelle Audo
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, 75012, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, 28 rue de Charenton, F-75012, Paris, France
- University College London Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Said El Shamieh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, 1107 2809, Lebanon.
| |
Collapse
|
8
|
Clinical and genetic investigations of three Moroccan families with retinitis pigmentosa phenotypes. Mol Vis 2021; 27:17-25. [PMID: 33633436 PMCID: PMC7883928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose Progressive inherited retinal dystrophies, characterized by degeneration of rod photoreceptors and then cone photoreceptors, are known as retinitis pigmentosa (RP), for which 89 genes have been identified. Today, only five Moroccan families with RP with a genetic diagnosis have been reported, justifying our investment in providing further clinical and genetic investigations of families with RP in Morocco. Methods The clinical diagnosis based on a combination of a history of night blindness, abnormal rod or rod-cone responses in electroretinography (ERG), and constricted visual field or difficulty perceiving side objects identified three Moroccan families with an RP phenotype. Probands of these families underwent whole exome sequencing (WES), and candidate variants were evaluated for their segregation within family members. Results All patients had a history of night blindness and unrecordable rod and cone ERG traces. In addition, one patient had cystoid macular edema, and another had discrete autofluorescence abnormalities, in addition to ellipsoid zone disorganization and narrowed retinal vessels. WES sequencing revealed heterozygous compound mutations in CRB1:c.1690G>T//c.1913C>T and in ABCA4:c.5908C>T//c.6148G>C and a homozygous PDE6B splice mutation c.1920+2T>C. Conclusions We provide the first description of Moroccan patients with the RP phenotype harboring pathogenic mutations in the CRB1 and ABCA4 genes and the second description of an individual with RP with a PDE6B mutation, associated with cystoid macular edema. These data contribute to expand the genetic diagnosis of RP phenotypes in Morocco.
Collapse
|
9
|
Genetic and Clinical Findings in an Ethnically Diverse Cohort with Retinitis Pigmentosa Associated with Pathogenic Variants in CERKL. Genes (Basel) 2020; 11:genes11121497. [PMID: 33322828 PMCID: PMC7763961 DOI: 10.3390/genes11121497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Autosomal recessive retinitis pigmentosa is caused by mutations in over 40 genes, one of which is the ceramide kinase-like gene (CERKL). We present a case series of six patients from six unrelated families diagnosed with inherited retinal dystrophies (IRD) and with two variants in CERKL recruited from a multi-ethnic British population. A retrospective review of clinical data in these patients was performed and included colour fundus photography, fundus autofluorescence (AF) imaging, spectral domain–optical coherence tomography (SD–OCT), visual fields and electroretinogram (ERG) assessment where available. Three female and three male patients were included. Age at onset ranged from 7 years old to 45 years, with three presenting in their 20s and two presenting in their 40s. All but one had central visual loss as one of their main presenting symptoms. Four patients had features of retinitis pigmentosa with significant variation in severity and extent of disease, and two patients had no pigment deposition with only macular involvement clinically. Seven variants in CERKL were identified, of which three are novel. The inherited retinopathies associated with the CERKL gene vary in age at presentation and in degree of severity, but generally are characterised by a central visual impairment early on.
Collapse
|
10
|
Al-khuzaei S, Broadgate S, Halford S, Jolly JK, Shanks M, Clouston P, Downes SM. Novel Pathogenic Sequence Variants in NR2E3 and Clinical Findings in Three Patients. Genes (Basel) 2020; 11:E1288. [PMID: 33138239 PMCID: PMC7716234 DOI: 10.3390/genes11111288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
A retrospective review of the clinical records of patients seen at the Oxford Eye Hospital identified as having NR2E3 mutations was performed. The data included symptoms, best-corrected visual acuity, multimodal retinal imaging, visual fields and electrophysiology testing. Three participants were identified with biallelic NR2E3 pathogenic sequence variants detected using a targeted NGS gene panel, two of which were novel. Participant I was a Nepalese male aged 68 years, and participants II and III were white Caucasian females aged 69 and 10 years old, respectively. All three had childhood onset nyctalopia, a progressive decrease in central vision, and visual field loss. Patients I and III had photopsia, patient II had photosensitivity and patient III also had photophobia. Visual acuities in patients I and II were preserved even into the seventh decade, with the worst visual acuity measured at 6/36. Visual field constriction was severe in participant I, less so in II, and fields were full to bright targets targets in participant III. Electrophysiology testing in all three demonstrated loss of rod function. The three patients share some of the typical distinctive features of NR2E3 retinopathies, as well as a novel clinical observation of foveal ellipsoid thickening.
Collapse
Affiliation(s)
- Saoud Al-khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Jasleen K. Jolly
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Morag Shanks
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; (M.S.); (P.C.)
| | - Penny Clouston
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; (M.S.); (P.C.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| |
Collapse
|
11
|
Sun W, Li S, Xiao X, Wang P, Zhang Q. Genotypes and phenotypes of genes associated with achromatopsia: A reference for clinical genetic testing. Mol Vis 2020; 26:588-602. [PMID: 32913385 PMCID: PMC7479066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/20/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Achromatopsia is a congenital autosomal recessive cone disorder, and it has been found to be associated with six genes. However, pathogenic variants in these six genes have been identified in patients with various retinal dystrophies with the exception of achromatopsia. Thus, this study aims to investigate the contribution of these genes in hereditary retinal diseases and the potential genotype-phenotype correlations. METHODS Biallelic variants in six achromatopsia-related genes, namely, CNGA3, CNGB3, GNAT2, ATF6, PDE6C, and PDE6H, were analyzed based on data obtained from 7,195 probands with different eye conditions. A systematic genotype-phenotype analysis of these genes was performed based on these data, along with the data reported in the literature. RESULTS Biallelic potential pathogenic variants (PPVs) in five of the six genes were identified in 119 probands with genetic eye diseases. The variants in CNGA3 were the most common and accounted for 81.5% (97/119). Of the 119 probands, 62.2% (74/119) have cone-rod dystrophy, whereas only 25.2% (30/119) have achromatopsia. No biallelic pathogenic variants in these genes were identified in patients with rod-dominant degeneration. A systematic review of genotypes and phenotypes revealed certain characteristics of each of the six genes, providing clues for the pathogenicity evaluation of the variants of the genes. CONCLUSIONS PPVs in the six genes were identified in various inherited retinal degeneration diseases, most of which are cone-dominant diseases but no rod-dominant diseases based on the data from a cohort of 7,195 probands with different eye conditions. The systematic genotype-phenotype analysis of these genes will be useful in drafting guidelines for the clinical genetic diagnostic application for the investigated genes.
Collapse
|
12
|
Abstract
We report the molecular basis of the largest Tunisian cohort with inherited retinal dystrophies (IRD) reported to date, identify disease-causing pathogenic variants and describe genotype-phenotype correlations. A subset of 26 families from a cohort of 73 families with clinical diagnosis of autosomal recessive IRD (AR-IRD) excluding Usher syndrome was analyzed by whole exome sequencing and autozygosity mapping. Causative pathogenic variants were identified in 50 families (68.4%), 42% of which were novel. The most prevalent pathogenic variants were observed in ABCA4 (14%) and RPE65, CRB1 and CERKL (8% each). 26 variants (8 novel and 18 known) in 19 genes were identified in 26 families (14 missense substitutions, 5 deletions, 4 nonsense pathogenic variants and 3 splice site variants), with further allelic heterogeneity arising from different pathogenic variants in the same gene. The most common phenotype in our cohort is retinitis pigmentosa (23%) and cone rod dystrophy (23%) followed by Leber congenital amaurosis (19.2%). We report the association of new disease phenotypes. This research was carried out in Tunisian patients with IRD in order to delineate the genetic population architecture.
Collapse
|
13
|
El Matri L, Falfoul Y, El Matri K, El Euch I, Ghali H, Habibi I, Hassairi A, Chaker N, Schorderet D, Chebil A. Posterior staphylomas in non-highly myopic eyes with retinitis pigmentosa. Int Ophthalmol 2020; 40:2159-2168. [PMID: 32358734 DOI: 10.1007/s10792-020-01396-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/20/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Our aim was to highlight the presence and the frequency of posterior staphyloma (PS) in non-highly myopic retinitis pigmentosa (RP) patients and to study the relationship between PS and choroidal thickness (CT). METHODS This was a retrospective case-control study of 77 eyes (39 patients) with RP, axial length inferior to 26 mm and clinically preserved macular area. All patients underwent fundus photography, A- and B-scan ocular ultrasonography, fundus autofluorescence (FAF) and swept source optical coherence tomography (SS-OCT). PS was defined by an outward bowing of the sclera on SS-OCT and B-scans. The relationship between the PS and SS-OCT layers thicknesses was determined. RESULTS Over 77 RP eyes of 39 patients studied, a PS was identified in 17 eyes (22%) of nine patients. Fifteen eyes had a narrow macular staphyloma (NMS), and two eyes had a wide macular staphyloma (WMS). Mean age in this group was 34.2 years (range 19-53 years), mean axial length was 23.60 ± 0.61 mm and mean CT was 185.7 ± 71 um versus 259.7 um in eyes without PS. The staphyloma edges corresponded to area of outer retina loss on SS-OCT and were larger than the hyperautofluorescent ring on FAF. We found a significant association between PS and CT in our RP patients (p = 0.003). The mean CT was significantly thinner in PS eyes compared to eyes without staphyloma. There was no significant association between PS and with visual acuity, years of progression, retinal thickness nor FAF findings. CONCLUSIONS PS was present in 22% of non-highly myopic eyes with RP. Narrow macular staphyloma was the most common type observed in our series. A marked thinning of the choroid was noted in PS eyes when compared to RP eyes without PS, as well as the outer retina degeneration.
Collapse
Affiliation(s)
- Leila El Matri
- Oculogenetic Laboratory LR14SP01, Tunis El Manar University, Tunis, Tunisia.,B Department, Hedi Rais Institute of Ophthalmology, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Yousra Falfoul
- Oculogenetic Laboratory LR14SP01, Tunis El Manar University, Tunis, Tunisia. .,B Department, Hedi Rais Institute of Ophthalmology, Faculty of Medicine of Tunis, Tunis, Tunisia.
| | - Khaled El Matri
- Oculogenetic Laboratory LR14SP01, Tunis El Manar University, Tunis, Tunisia.,B Department, Hedi Rais Institute of Ophthalmology, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Issam El Euch
- Oculogenetic Laboratory LR14SP01, Tunis El Manar University, Tunis, Tunisia
| | - Hela Ghali
- Department of Family and Community Medicine, Faculty of Medicine Ibn El Jazzar, Sousse, Tunisia
| | - Imen Habibi
- IRO-Institute for Research in Ophthalmology, Sion, Switzerland
| | - Asma Hassairi
- Oculogenetic Laboratory LR14SP01, Tunis El Manar University, Tunis, Tunisia.,B Department, Hedi Rais Institute of Ophthalmology, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Nibrass Chaker
- Oculogenetic Laboratory LR14SP01, Tunis El Manar University, Tunis, Tunisia.,B Department, Hedi Rais Institute of Ophthalmology, Faculty of Medicine of Tunis, Tunis, Tunisia
| | | | - Ahmed Chebil
- Oculogenetic Laboratory LR14SP01, Tunis El Manar University, Tunis, Tunisia.,B Department, Hedi Rais Institute of Ophthalmology, Faculty of Medicine of Tunis, Tunis, Tunisia
| |
Collapse
|
14
|
Jiman OA, Taylor RL, Lenassi E, Smith JC, Douzgou S, Ellingford JM, Barton S, Hardcastle C, Fletcher T, Campbell C, Ashworth J, Biswas S, Ramsden SC, Manson FD, Black GC. Diagnostic yield of panel-based genetic testing in syndromic inherited retinal disease. Eur J Hum Genet 2020; 28:576-586. [PMID: 31836858 PMCID: PMC7171123 DOI: 10.1038/s41431-019-0548-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/22/2023] Open
Abstract
Thirty percent of all inherited retinal disease (IRD) is accounted for by conditions with extra-ocular features. This study aimed to establish the genetic diagnostic pick-up rate for IRD patients with one or more extra-ocular features undergoing panel-based screening in a clinical setting. One hundred and six participants, tested on a gene panel which contained both isolated and syndromic IRD genes, were retrospectively ascertained from the Manchester Genomic Diagnostics Laboratory database spanning 6 years (2012-2017). Phenotypic features were extracted from the clinical notes and classified according to Human Phenotype Ontology; all identified genetic variants were interpreted in accordance to the American College of Medical Genetics and Genomics guidelines. Overall, 49% (n = 52) of patients received a probable genetic diagnosis. A further 6% (n = 6) had a single disease-associated variant in an autosomal recessive disease-relevant gene. Fifty-two percent (n = 55) of patients had a clinical diagnosis at the time of testing. Of these, 71% (n = 39) received a probable genetic diagnosis. By contrast, for those without a provisional clinical diagnosis (n = 51), only 25% (n = 13) received a probable genetic diagnosis. The clinical diagnosis of Usher (n = 33) and Bardet-Biedl syndrome (n = 10) was confirmed in 67% (n = 22) and 80% (n = 8), respectively. The testing diagnostic rate in patients with clinically diagnosed multisystemic IRD conditions was significantly higher than those without one (71% versus 25%; p value < 0.001). The lower pick-up rate in patients without a clinical diagnosis suggests that panel-based approaches are unlikely to be the most effective means of achieving a molecular diagnosis for this group. Here, we suggest that genome-wide approaches (whole exome or genome) are more appropriate.
Collapse
Affiliation(s)
- Omamah A Jiman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rachel L Taylor
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Eva Lenassi
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Jill Clayton Smith
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Sofia Douzgou
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Jamie M Ellingford
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Stephanie Barton
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Claire Hardcastle
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Tracy Fletcher
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Christopher Campbell
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Jane Ashworth
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Susmito Biswas
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Simon C Ramsden
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Forbes D Manson
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
| | - Graeme C Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK.
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK.
| |
Collapse
|
15
|
Magliyah M, Saifaldein AA, Schatz P. Late presentation of RPE65 retinopathy in three siblings. Doc Ophthalmol 2020; 140:289-297. [PMID: 31925606 PMCID: PMC7205780 DOI: 10.1007/s10633-019-09745-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/30/2019] [Indexed: 11/23/2022]
Abstract
Purpose Gene therapy for RPE65 retinopathy has been recently approved. The purpose of this study was to assess retinal structure and function in 3 siblings presenting with late-stage RPE65 retinopathy and to assess the unmet need for such therapy in Saudi Arabia. Methods Search of the retinal dystrophy registry at King Khaled Eye Specialist Hospital and clinical examination including multimodal retinal imaging, full-field electroretinography (ERG), dark adapted full-field stimulus sensitivity thresholds, and molecular genetic testing in 3 patients. Results Nine (9) patients were identified with biallelic RPE65 mutations, corresponding to a prevalence rate of 9/187 = 5% among early onset retinal dystrophies. Of these, 3 siblings (2 male and 1 female) with RPE65 retinopathy were assessed in detail, because of an unusual, late presentation. They were all over 30 years old at the time of their most recent visits and had non-recordable ERGs. The 2 male siblings presented with poor vision and paracentral loss of the inner segment ellipsoid (ISe) and focal attenuation of the outer nuclear layer (ONL) in the macula. On the other hand, the female sibling presented with 20/100 vision with preserved foveal ISe and intact ONL throughout the macula and significantly lower light sensitivity thresholds compared to her male siblings. A homozygous missense p.Arg91Trp mutation in RPE65 was identified in all. All patients were eligible for gene therapy, demonstrating a central retinal thickness of more than 100 microns on repeated examinations. Conclusions RPE65 retinopathy seems to be relatively common on the Arabian peninsula, and in addition it may be underdiagnosed. To the best of our knowledge, this is the first detailed presentation, including multimodal retinal imaging and electrophysiological assessment, of such patients from this region. Patients with late presentation of RPE65 retinopathy may be eligible for gene therapy, in terms of remaining retinal function and structural preservation. The therapeutic window of such therapy remains to be determined. Electronic supplementary material The online version of this article (10.1007/s10633-019-09745-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Moustafa Magliyah
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,Ophthalmology Department, Prince Mohammed Medical City, Aljouf, Saudi Arabia
| | | | - Patrik Schatz
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia. .,Department of Ophthalmology, Clinical Sciences, Skane University Hospital, Lund University, Lund, Sweden.
| |
Collapse
|
16
|
Identification of a CNGB1 Frameshift Mutation in a Han Chinese Family with Retinitis Pigmentosa. Optom Vis Sci 2019; 95:1155-1161. [PMID: 30451805 DOI: 10.1097/opx.0000000000001305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SIGNIFICANCE Retinitis pigmentosa (RP) is a severe hereditary retinal disorder characterized by progressive degeneration of rod and cone photoreceptors. This study identified a novel frameshift mutation, c.385delC, p.(L129WfsTer148), in the cyclic nucleotide-gated channel beta 1 (CNGB1) gene of a consanguineous Han Chinese family with autosomal recessive RP (arRP). This expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling. PURPOSE The present study sought to identify potential pathogenetic gene mutations in a five-generation consanguineous Han Chinese family with RP. METHODS Two members of a five-generation consanguineous Han Chinese pedigree with arRP and 100 normal individuals were enrolled in this study. Exome sequencing was performed on the 70-year-old male proband from a consanguineous family to screen potential pathogenic mutations according to the American College of Medical Genetics and Genomics for the interpretation of sequence variants. Sanger sequencing was performed on the proband, the proband's unaffected son, and 100 normal individuals to verify the disease-causing mutation. RESULTS A novel frameshift mutation, c.385delC, p.(L129WfsTer148), with homozygous status in the CNGB1 gene was identified in the proband of the family with arRP, and the mutation with heterozygous status was carried by the asymptomatic son. CONCLUSIONS The c.385delC (p.(L129WfsTer148)) mutation in the CNGB1 gene screened by exome sequencing is probably responsible for the RP phenotype in this family. The result expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling.
Collapse
|
17
|
Azab B, Barham R, Ali D, Dardas Z, Rashdan L, Bijawi M, Maswadi R, Awidi A, Jafar H, Abu-Ameerh M, Al-Bdour M, Amr S, Awidi A. Novel CERKL variant in consanguineous Jordanian pedigrees with inherited retinal dystrophies. Can J Ophthalmol 2019; 54:51-59. [DOI: 10.1016/j.jcjo.2018.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/02/2023]
|
18
|
Liang J, She X, Chen J, Zhai Y, Liu Y, Zheng K, Gong Y, Zhu H, Luo X, Sun X. Identification of novel PROM1 mutations responsible for autosomal recessive maculopathy with rod-cone dystrophy. Graefes Arch Clin Exp Ophthalmol 2018; 257:619-628. [PMID: 30588538 DOI: 10.1007/s00417-018-04206-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To characterize two patients with macular and rod-cone dystrophy and identify the genetic basis for disease. METHOD Ophthalmic examinations were performed for the family and the peripheral blood samples were collected for whole exome sequencing. The mutated sequences of PROM1 gene were cloned and expressed in cultured cell lines after transient transfection followed by analysis with confocal microscopy and bridge-PCR. RESULT We reported that two patients, brothers in a family, were diagnosed with macular and rod-cone dystrophy. Phenotypically, both patients experience progressive visual impairment and nyctalopia. The fundus examination showed macular and choroid dystrophy with pigment deposits in the macular region. Functionally, photoreceptor response to electrophysiological stimulation was significantly compromised with more severe decline in rods. Genetic analysis by whole exome sequencing revealed two novel compound heterogeneous point mutations in PROM1 gene that co-segregate with patients in an autosomal recessive manner. Specifically, the c.C1902G(p.Y634X) nonsense mutation results in a truncated, labile, and mislocalized protein, while the c.C1682+3A>G intronic mutation disrupts messenger RNA splicing. CONCLUSION Our findings have identified two novel deleterious mutations in PROM1 gene that are associated with hereditary macular and rod-cone dystrophy in human.
Collapse
Affiliation(s)
- Jian Liang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.,Shanghai Key Laboratory of Fundus Diseases, 100 Haining Road, Shanghai, 200080, China
| | - Xiangjun She
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yuanqi Zhai
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, 200080, China
| | - Yang Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Kairong Zheng
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yuanyuan Gong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, 200080, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China. .,Shanghai Key Laboratory of Fundus Diseases, 100 Haining Road, Shanghai, 200080, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, 200080, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.,Shanghai Key Laboratory of Fundus Diseases, 100 Haining Road, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, 100 Haining Road, Shanghai, 200080, China
| |
Collapse
|
19
|
Messchaert M, Haer-Wigman L, Khan MI, Cremers FPM, Collin RWJ. EYS mutation update: In silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum Mutat 2017; 39:177-186. [PMID: 29159838 DOI: 10.1002/humu.23371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 01/22/2023]
Abstract
Mutations in Eyes shut homolog (EYS) are one of the most common causes of autosomal recessive (ar) retinitis pigmentosa (RP), a progressive blinding disorder. The exact function of the EYS protein and the pathogenic mechanisms underlying EYS-associated RP are still poorly understood, which hampers the interpretation of the causality of many EYS variants discovered to date. We collected all reported EYS variants present in 377 arRP index cases published before June 2017, and uploaded them in the Leiden Open Variation Database (www.LOVD.nl/EYS). We also describe 36 additional index cases, carrying 26 novel variants. Of the 297 unique EYS variants identified, almost half (n = 130) are predicted to result in premature truncation of the EYS protein. Classification of all variants using the American College of Medical Genetics and Genomics guidelines revealed that the predicted pathogenicity of these variants cover the complete spectrum ranging from likely benign to pathogenic, although especially missense variants largely fall in the category of uncertain significance. Besides the identification of likely benign alleles previously reported as being probably pathogenic, our comprehensive analysis underscores the need of functional assays to assess the causality of EYS variants, in order to improve molecular diagnostics and counseling of patients with EYS-associated RP.
Collapse
Affiliation(s)
- Muriël Messchaert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muhammad I Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|