1
|
Macdonald JR, Arnold MS, Luth MR, Cihalova D, Quinn RJ, Winzeler EA, Lee MC, van Dooren GG, Maier AG, Skinner-Adams TS, Andrews KT, Fisher GM. Inner-mitochondrial membrane protein PfMPV17 is linked to P. falciparum in vitro resistance to the indoloquinolizidine alkaloid alstonine. J Antimicrob Chemother 2025:dkaf141. [PMID: 40432501 DOI: 10.1093/jac/dkaf141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND There are an estimated 260 million malaria cases and ∼600 000 deaths annually. Challenges to malaria eradication include the lack of highly effective and broadly applicable vaccines and parasite drug resistance. This is driving the need for new tools, including novel drugs and drug targets. The indoloquinolizidine alkaloid alstonine was previously shown to have in vitro activity against Plasmodium falciparum malaria parasites and a slow-action activity that is different from other slow-action antiplasmodial compounds such as clindamycin. OBJECTIVES To investigate the action of the antiplasmodial compound alstonine by validating a putative resistance mutation and determining whether the activity of alstonine is linked to the mitochondrial electron transport chain. MATERIALS AND METHODS In vitro evolution of resistance was used to generate alstonine-resistant P. falciparum, followed by whole-genome sequencing and CRISPR/Cas9 gene editing of wildtype parasites to validate a putative resistance-associated mutation. Links to mitochondrial function were assessed using oxygen consumption rate measurements and activity of alstonine in P. falciparum expressing the yeast dihydroorotate dehydrogenase. RESULTS P. falciparum parasites were selected with ∼20-fold reduced sensitivity to alstonine compared to wild-type parasites. Whole-genome sequencing of alstonine-resistant P. falciparum sub-clones identified several mutations including a copy number variation and point mutation (A318P) in a gene encoding a putative inner-mitochondrial membrane protein (PfMPV17). Introduction of the A318P mutation into the PfMPV17 gene in wild-type P. falciparum yielded parasites with reduced alstonine sensitivity. While a direct link between alstonine action and mitochondrial respiratory function was not found, a transgenic P. falciparum line resistant to the cytochrome bc1 inhibitor atovaquone and pyrimidine synthesis inhibitor DSM265 had reduced sensitivity to alstonine. CONCLUSIONS These data demonstrate that PfMPV17 is linked to alstonine resistance and suggest that alstonine action is linked to the mitochondria and/or pyrimidine biosynthesis pathways.
Collapse
Affiliation(s)
- J R Macdonald
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - M S Arnold
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - M R Luth
- Department of Pediatrics, University of California, San Diego, USA
| | - D Cihalova
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - R J Quinn
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - E A Winzeler
- Department of Pediatrics, School of Medicine, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA
| | - M C Lee
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - G G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - A G Maier
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - T S Skinner-Adams
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - K T Andrews
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - G M Fisher
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Miyazaki Y, Miyazaki S. Reporter parasite lines: valuable tools for the study of Plasmodium biology. Trends Parasitol 2024; 40:1000-1015. [PMID: 39389901 DOI: 10.1016/j.pt.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
The human malaria parasite Plasmodium falciparum causes the most severe form of malaria in endemic regions and is transmitted via mosquito bites. To better understand the biology of this deadly pathogen, a variety of P. falciparum reporter lines have been generated using transgenic approaches to express reporter proteins, such as fluorescent proteins and luciferases. This review discusses the advances in recently generated P. falciparum transgenic reporter lines, which will aid in the investigation of parasite physiology and the discovery of novel antimalarial drugs. Future prospects for the generation of new and superior human malaria parasite reporter lines are also discussed, and unresolved questions in malaria biology are highlighted to help boost support for the development and implementation of malaria treatments.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Shinya Miyazaki
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.
| |
Collapse
|
3
|
Sun H, Liu BC, He LF, Xiao CJ, Jiang B, Shen L. Dobinin K Displays Antiplasmodial Activity through Disruption of Plasmodium falciparum Mitochondria and Generation of Reactive Oxygen Species. Molecules 2024; 29:4759. [PMID: 39407688 PMCID: PMC11477712 DOI: 10.3390/molecules29194759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Dobinin K is a novel eudesmane sesquiterpenoids compound isolated from the root of Dobinea delavayi and displays potential antiplasmodial activity in vivo. Here, we evaluate the antiplasmodial activity of dobinin K in vitro and study its acting mechanism. The antiplasmodial activity of dobinin K in vitro was evaluated by concentration-, time-dependent, and stage-specific parasite inhibition assay. The potential target of dobinin K on Plasmodium falciparum was predicted by transcriptome analysis. Apoptosis of P. falciparum was detected by Giemsa, Hoechst 33258, and TUNEL staining assay. The reactive oxygen species (ROS) level, oxygen consumption, and mitochondrial membrane potential of P. falciparum were assessed by DCFH-DA, R01, and JC-1 fluorescent dye, respectively. The effect of dobinin K on the mitochondrial electron transport chain (ETC) was investigated by enzyme activity analysis and the binding abilities of dobinin K with different enzymes were learned by molecular docking. Dobinin K inhibited the growth of P. falciparum in a concentration-, time-dependent, and stage-specific manner. The predicted mechanism of dobinin K was related to the redox system of P. falciparum. Dobinin K increased intracellular ROS levels of P. falciparum and induced their apoptosis. After dobinin K treatment, P. falciparum mitochondria lost their function, which was presented as decreased oxygen consumption and depolarization of the membrane potential. Among five dehydrogenases in P. falciparum ETC, dobinin K displayed the best inhibitory power on NDH2 activity. Our findings indicate that the antiplasmodial effect of dobinin K in vitro is mediated by the enhancement of the ROS level in P. falciparum and the disruption of its mitochondrial function.
Collapse
Affiliation(s)
- He Sun
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
| | - Bo-Chao Liu
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
| | - Long-Fei He
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
| | - Chao-Jiang Xiao
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
- Institute of Materia Medica, Dali University, Dali 671000, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
- Institute of Materia Medica, Dali University, Dali 671000, China
| | - Lei Shen
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali 671000, China
- College of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
4
|
Jain A, Sharma R, Gautam L, Shrivastava P, Singh KK, Vyas SP. Biomolecular interactions between Plasmodium and human host: A basis of targeted antimalarial therapy. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:401-419. [PMID: 38519002 DOI: 10.1016/j.pharma.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Malaria is one of the serious health concerns worldwide as it remains a clinical challenge due to the complex life cycle of the malaria parasite and the morphological changes it undergoes during infection. The malaria parasite multiplies rapidly and spreads in the population by changing its alternative hosts. These various morphological stages of the parasite in the human host cause clinical symptoms (anemia, fever, and coma). These symptoms arise due to the preprogrammed biology of the parasite in response to the human pathophysiological response. Thus, complete elimination becomes one of the major health challenges. Although malaria vaccine(s) are available in the market, they still contain to cause high morbidity and mortality. Therefore, an approach for eradication is needed through the exploration of novel molecular targets by tracking the epidemiological changes the parasite adopts. This review focuses on the various novel molecular targets.
Collapse
Affiliation(s)
- Anamika Jain
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India
| | - Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, M.P., 474005, India.
| | - Laxmikant Gautam
- Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228, India
| | - Priya Shrivastava
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Suresh P Vyas
- Drug Delivery and Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, M.P., 470003, India.
| |
Collapse
|
5
|
Mamede L, Fall F, Schoumacher M, Ledoux A, Bugli C, De Tullio P, Quetin-Leclercq J, Govaerts B, Frédérich M. Comparison of extraction methods in vitro Plasmodium falciparum: A 1H NMR and LC-MS joined approach. Biochem Biophys Res Commun 2024; 703:149684. [PMID: 38367514 DOI: 10.1016/j.bbrc.2024.149684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Malaria is a parasitic disease that remains a global concern and the subject of many studies. Metabolomics has emerged as an approach to better comprehend complex pathogens and discover possible drug targets, thus giving new insights that can aid in the development of antimalarial therapies. However, there is no standardized method to extract metabolites from in vitro Plasmodium falciparum intraerythrocytic parasites, the stage that causes malaria. Additionally, most methods are developed with either LC-MS or NMR analysis in mind, and have rarely been evaluated with both tools. In this work, three extraction methods frequently found in the literature were reproduced and samples were analyzed through both LC-MS and 1H NMR, and evaluated in order to reveal which is the most repeatable and consistent through an array of different tools, including chemometrics, peak detection and annotation. The most reliable method in this study proved to be a double extraction with methanol and methanol/water (80:20, v/v). Metabolomic studies in the field should move towards standardization of methodologies and the use of both LC-MS and 1H NMR in order to make data more comparable between studies and facilitate the achievement of biologically interpretable information.
Collapse
Affiliation(s)
- Lúcia Mamede
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Fanta Fall
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Matthieu Schoumacher
- Laboratory of Pharmaceutical Chemistry, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Allison Ledoux
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Céline Bugli
- Statistical Methodology and Computing Service (SMCS/LIDAM), UCLouvain, Louvain-la-Neuve, Belgium
| | - Pascal De Tullio
- Laboratory of Pharmaceutical Chemistry, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Bernadette Govaerts
- Statistical Methodology and Computing Service (SMCS/LIDAM), UCLouvain, Louvain-la-Neuve, Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium.
| |
Collapse
|
6
|
Miyazaki Y, Vos MW, Geurten FJA, Bigeard P, Kroeze H, Yoshioka S, Arisawa M, Inaoka DK, Soulard V, Dechering KJ, Franke-Fayard B, Miyazaki S. A versatile Plasmodium falciparum reporter line expressing NanoLuc enables highly sensitive multi-stage drug assays. Commun Biol 2023; 6:713. [PMID: 37438491 DOI: 10.1038/s42003-023-05078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Transgenic luciferase-expressing Plasmodium falciparum parasites have been widely used for the evaluation of anti-malarial compounds. Here, to screen for anti-malarial drugs effective against multiple stages of the parasite, we generate a P. falciparum reporter parasite that constitutively expresses NanoLuciferase (NanoLuc) throughout its whole life cycle. The NanoLuc-expressing P. falciparum reporter parasite shows a quantitative NanoLuc signal in the asexual blood, gametocyte, mosquito, and liver stages. We also establish assay systems to evaluate the anti-malarial activity of compounds at the asexual blood, gametocyte, and liver stages, and then determine the 50% inhibitory concentration (IC50) value of several anti-malarial compounds. Through the development of this robust high-throughput screening system, we identify an anti-malarial compound that kills the asexual blood stage parasites. Our study highlights the utility of the NanoLuc reporter line, which may advance anti-malarial drug development through the improved screening of compounds targeting the human malarial parasite at multiple stages.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan.
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
| | - Martijn W Vos
- TropIQ Health Sciences, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands
| | - Fiona J A Geurten
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Pierre Bigeard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013, Paris, France
| | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Shohei Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871, Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871, Osaka, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Valerie Soulard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, F-75013, Paris, France
| | - Koen J Dechering
- TropIQ Health Sciences, Transistorweg 5, 6534 AT, Nijmegen, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
- Department of Cellular Architecture Studies, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 852-8523, Nagasaki, Japan.
| |
Collapse
|
7
|
Vyas VK, Shukla T, Sharma M. Medicinal chemistry approaches for the discovery of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. Future Med Chem 2023; 15:1295-1321. [PMID: 37551689 DOI: 10.4155/fmc-2023-0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Malaria is a severe human disease and a global health problem because of drug-resistant strains. Drugs reported to prevent the growth of Plasmodium parasites target various phases of the parasites' life cycle. Antimalarial drugs can inhibit key enzymes that are responsible for the cellular growth and development of parasites. Plasmodium falciparum dihydroorotate dehydrogenase is one such enzyme that is necessary for de novo pyrimidine biosynthesis. This review focuses on various medicinal chemistry approaches used for the discovery and identification of selective P. falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. This comprehensive review discusses recent advances in the selective therapeutic activity of distinct chemical classes of compounds as P. falciparum dihydroorotate dehydrogenase inhibitors and antimalarial drugs.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Tanvi Shukla
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
8
|
Hayward JA, Makota FV, Cihalova D, Leonard RA, Rajendran E, Zwahlen SM, Shuttleworth L, Wiedemann U, Spry C, Saliba KJ, Maier AG, van Dooren GG. A screen of drug-like molecules identifies chemically diverse electron transport chain inhibitors in apicomplexan parasites. PLoS Pathog 2023; 19:e1011517. [PMID: 37471441 PMCID: PMC10403144 DOI: 10.1371/journal.ppat.1011517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.
Collapse
Affiliation(s)
- Jenni A. Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - F. Victor Makota
- Research School of Biology, Australian National University, Canberra, Australia
| | - Daniela Cihalova
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rachel A. Leonard
- Research School of Biology, Australian National University, Canberra, Australia
| | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australia
| | - Soraya M. Zwahlen
- Research School of Biology, Australian National University, Canberra, Australia
| | - Laura Shuttleworth
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ursula Wiedemann
- Research School of Biology, Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, Australian National University, Canberra, Australia
| | - Alexander G. Maier
- Research School of Biology, Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Parkyn Schneider M, Looker O, Rebelo M, Khoury DS, Dixon MWA, Oeuvray C, Crabb BS, McCarthy J, Gilson PR. The delayed bloodstream clearance of Plasmodium falciparum parasites after M5717 treatment is attributable to the inability to modify their red blood cell hosts. Front Cell Infect Microbiol 2023; 13:1211613. [PMID: 37457953 PMCID: PMC10340534 DOI: 10.3389/fcimb.2023.1211613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
M5717 is a promising antimalarial drug under development that acts against multiple stages of the life cycle of Plasmodium parasites by inhibiting the translation elongation factor 2 (PfeEF2), thereby preventing protein synthesis. The parasite clearance profile after drug treatment in preclinical studies in mice, and clinical trials in humans showed a notable delayed clearance phenotype whereby parasite infected red blood cells (iRBCs) persisted in the bloodstream for a significant period before eventual clearance. In a normal P. falciparum infection iRBCs sequester in the deep circulation by cytoadherence, allowing them to avoid surveillance and clearance in the spleen. We found that M5717 blocks parasite modification of their host red blood cells (RBCs) by preventing synthesis of new exported proteins, rather than by directly blocking the export of these proteins into the RBC compartment. Using in vitro models, we demonstrated that M5717 treated ring/trophozoite stage iRBCs became less rigid, and cytoadhered less well compared to untreated iRBCs. This indicates that in vivo persistence of M5717 treated iRBCs in the bloodstream is likely due to reduced cytoadherence and splenic clearance.
Collapse
Affiliation(s)
| | | | - Maria Rebelo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David S. Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | | | | | - Brendan S. Crabb
- Burnet Institute, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | | | - Paul R. Gilson
- Burnet Institute, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Alaithan H, Kumar N, Islam MZ, Liappis AP, Nava VE. Novel Therapeutics for Malaria. Pharmaceutics 2023; 15:1800. [PMID: 37513987 PMCID: PMC10383744 DOI: 10.3390/pharmaceutics15071800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Malaria is a potentially fatal disease caused by protozoan parasites of the genus Plasmodium. It is responsible for significant morbidity and mortality in endemic countries of the tropical and subtropical world, particularly in Africa, Southeast Asia, and South America. It is estimated that 247 million malaria cases and 619,000 deaths occurred in 2021 alone. The World Health Organization's (WHO) global initiative aims to reduce the burden of disease but has been massively challenged by the emergence of parasitic strains resistant to traditional and emerging antimalarial therapy. Therefore, development of new antimalarial drugs with novel mechanisms of action that overcome resistance in a safe and efficacious manner is urgently needed. Based on the evolving understanding of the physiology of Plasmodium, identification of potential targets for drug intervention has been made in recent years, resulting in more than 10 unique potential anti-malaria drugs added to the pipeline for clinical development. This review article will focus on current therapies as well as novel targets and therapeutics against malaria.
Collapse
Affiliation(s)
- Haitham Alaithan
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute of Public Health, George Washington University, Washington, DC 20037, USA
| | - Mohammad Z Islam
- Department of Pathology and Translational Pathology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - Angelike P Liappis
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Medicine, George Washington University, Washington, DC 20037, USA
| | - Victor E Nava
- Veterans Affairs Medical Center, Washington, DC 20422, USA
- Department of Pathology, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
11
|
Challis MP, Devine SM, Creek DJ. Current and emerging target identification methods for novel antimalarials. Int J Parasitol Drugs Drug Resist 2022; 20:135-144. [PMID: 36410177 PMCID: PMC9771836 DOI: 10.1016/j.ijpddr.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New antimalarial compounds with novel mechanisms of action are urgently needed to combat the recent rise in antimalarial drug resistance. Phenotypic high-throughput screens have proven to be a successful method for identifying new compounds, however, do not provide mechanistic information about the molecular target(s) responsible for antimalarial action. Current and emerging target identification methods such as in vitro resistance generation, metabolomics screening, chemoproteomic approaches and biophysical assays measuring protein stability across the whole proteome have successfully identified novel drug targets. This review provides an overview of these techniques, comparing their strengths and weaknesses and how they can be utilised for antimalarial target identification.
Collapse
Affiliation(s)
- Matthew P. Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shane M. Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia,Corresponding author. Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
12
|
Koumpoura C, Nguyen M, Bijani C, Vendier L, Salina EG, Buroni S, Degiacomi G, Cojean S, Loiseau PM, Benoit-Vical F, García-Sosa AT, Baltas M. Design of Anti-infectious Agents from Lawsone in a Three-Component Reaction with Aldehydes and Isocyanides. ACS OMEGA 2022; 7:35635-35655. [PMID: 36249398 PMCID: PMC9558256 DOI: 10.1021/acsomega.2c03421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The first effective synthetic approach to naphthofuroquinones via a reaction involving lawsone, various aldehydes, and three isocyanides under microwave irradiation afforded derivatives in moderate to good yields. In addition, for less-reactive aldehydes, two naphtho-enaminodione quinones were obtained for the first time, as result of condensation between lawsone and isocyanides. X-ray structure determination for 9 and 2D-NMR spectra of 28 confirmed the obtained structures. All compounds were evaluated for their anti-infectious activities against Plasmodium falciparum, Leishmania donovani, and Mycobacterium tuberculosis. Among the naphthofuroquinone series, 17 exhibited comparatively the best activity against P. falciparum (IC50 = 2.5 μM) and M. tuberculosis (MIC = 9 μM) with better (P. falciparum) or equivalent (M. tuberculosis) values to already-known naphthofuroquinone compounds. Among the two naphtho-enaminodione quinones, 28 exhibited a moderate activity against P. falciparum with a good selectivity index (SI > 36) while also a very high potency against L. donovani (IC50 = 3.5 μM and SI > 28), rendering it very competitive to the reference drug miltefosine. All compounds were studied through molecular modeling on their potential targets for P. falciparum, Pfbc1, and PfDHODH, where 17 showed the most favorable interactions.
Collapse
Affiliation(s)
- Christina
L. Koumpoura
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Michel Nguyen
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Christian Bijani
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Laure Vendier
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Elena G. Salina
- Bach
Institute of Biochemistry, Research Center
of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Silvia Buroni
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Giulia Degiacomi
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Sandrine Cojean
- Antiparasite
Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University
Paris-Saclay, Châtenay-Malabry 92290, France
| | - Philippe M. Loiseau
- Antiparasite
Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University
Paris-Saclay, Châtenay-Malabry 92290, France
| | - Françoise Benoit-Vical
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Alfonso T. García-Sosa
- Department
of Molecular Technology, Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Michel Baltas
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| |
Collapse
|
13
|
Butler MM, Waidyarachchi SL, Shao J, Nguyen ST, Ding X, Cardinale SC, Morin LR, Kwasny SM, Ito M, Gezelle J, Jiménez-Díaz MB, Angulo-Barturen I, Jacobs RT, Burrows JN, Aron ZD, Bowlin TL, Desai SA. Optimized Pyridazinone Nutrient Channel Inhibitors Are Potent and Specific Antimalarial Leads. Mol Pharmacol 2022; 102:172-182. [PMID: 35798366 PMCID: PMC9450958 DOI: 10.1124/molpharm.122.000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Human and animal malaria parasites increase their host erythrocyte permeability to a broad range of solutes as mediated by parasite-associated ion channels. Molecular and pharmacological studies have implicated an essential role in parasite nutrient acquisition, but inhibitors suitable for development of antimalarial drugs are missing. Here, we generated a potent and specific drug lead using Plasmodium falciparum, a virulent human pathogen, and derivatives of MBX-2366, a nanomolar affinity pyridazinone inhibitor from a high-throughput screen. As this screening hit lacks the bioavailability and stability needed for in vivo efficacy, we synthesized 315 derivatives to optimize drug-like properties, establish target specificity, and retain potent activity against the parasite-induced permeability. Using a robust, iterative pipeline, we generated MBX-4055, a derivative active against divergent human parasite strains. MBX-4055 has improved oral absorption with acceptable in vivo tolerability and pharmacokinetics. It also has no activity against a battery of 35 human channels and receptors and is refractory to acquired resistance during extended in vitro selection. Single-molecule and single-cell patch-clamp indicate direct action on the plasmodial surface anion channel, a channel linked to parasite-encoded RhopH proteins. These studies identify pyridazinones as novel and tractable antimalarial scaffolds with a defined mechanism of action. SIGNIFICANCE STATEMENT: Because antimalarial drugs are prone to evolving resistance in the virulent human P. falciparum pathogen, new therapies are needed. This study has now developed a novel drug-like series of pyridazinones that target an unexploited parasite anion channel on the host cell surface, display excellent in vitro and in vivo ADME properties, are refractory to acquired resistance, and demonstrate a well defined mechanism of action.
Collapse
Affiliation(s)
- Michelle M Butler
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Samanthi L Waidyarachchi
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Jinfeng Shao
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Son T Nguyen
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Xiaoyuan Ding
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Steven C Cardinale
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Lucas R Morin
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Steven M Kwasny
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Mai Ito
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Jeanine Gezelle
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - María B Jiménez-Díaz
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Iñigo Angulo-Barturen
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Robert T Jacobs
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Jeremy N Burrows
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Zachary D Aron
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Terry L Bowlin
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| | - Sanjay A Desai
- Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
| |
Collapse
|
14
|
Looker O, Dans MG, Bullen HE, Sleebs BE, Crabb BS, Gilson PR. The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in
Plasmodium falciparum
blood stage parasites. Traffic 2022; 23:442-461. [PMID: 36040075 PMCID: PMC9543830 DOI: 10.1111/tra.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current antimalarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria Box of 400 antimalarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs—modifications which are both mediated by parasite‐derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future antimalarial that rapidly inhibits parasite virulence before eliminating parasites from the host.
Collapse
Affiliation(s)
| | - Madeline G. Dans
- Burnet Institute Melbourne Australia
- School of Medicine Deakin University Geelong Australia
| | - Hayley E. Bullen
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| | - Brendan S. Crabb
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
- Department of Immunology and Pathology Monash University Melbourne Australia
| | - Paul R. Gilson
- Burnet Institute Melbourne Australia
- Department of Immunology and Microbiology University of Melbourne Melbourne Australia
| |
Collapse
|
15
|
Bernard MM, Mohanty A, Rajendran V. Title: A Comprehensive Review on Classifying Fast-acting and Slow-acting Antimalarial Agents Based on Time of Action and Target Organelle of Plasmodium sp. Pathog Dis 2022; 80:6589403. [PMID: 35588061 DOI: 10.1093/femspd/ftac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical resistance towards malarial parasites has rendered many antimalarials ineffective, likely due to a lack of understanding of time of action and stage specificity of all life stages. Therefore, to tackle this problem a more incisive comprehensive analysis of the fast and slow-acting profile of antimalarial agents relating to parasite time-kill kinetics and the target organelle on the progression of blood-stage parasites was carried out. It is evident from numerous findings that drugs targeting food vacuole, nuclear components, and endoplasmic reticulum mainly exhibit a fast-killing phenotype within 24h affecting first-cycle activity. Whereas drugs targeting mitochondria, apicoplast, microtubules, parasite invasion and egress exhibit a largely slow-killing phenotype within 96-120h, affecting second-cycle activity with few exemptions as moderately fast-killing. It is essential to understand the susceptibility of drugs on rings, trophozoites, schizonts, merozoites, and the appearance of organelle at each stage of 48h intraerythrocytic parasite cycle. Therefore, these parameters may facilitate the paradigm for understanding the timing of antimalarials action in deciphering its precise mechanism linked with time. Thus, classifying drugs based on the time of killing may promote designing new combination regimens against varied strains of P. falciparum and evaluating potential clinical resistance.
Collapse
Affiliation(s)
- Monika Marie Bernard
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
16
|
Firdaus MER, Muh F, Park JH, Lee SK, Na SH, Park WS, Ha KS, Han JH, Han ET. In-depth biological analysis of alteration in Plasmodium knowlesi-infected red blood cells using a noninvasive optical imaging technique. Parasit Vectors 2022; 15:68. [PMID: 35236400 PMCID: PMC8889714 DOI: 10.1186/s13071-022-05182-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background Imaging techniques are commonly used to understand disease mechanisms and their biological features in the microenvironment of the cell. Many studies have added to our understanding of the biology of the malaria parasite Plasmodium knowlesi from functional in vitro and imaging analysis using serial block-face scanning electron microscopy (SEM). However, sample fixation and metal coating during SEM analysis can alter the parasite membrane. Methods In this study, we used noninvasive diffraction optical tomography (DOT), also known as holotomography, to explore the morphological, biochemical, and mechanical alterations of each stage of P. knowlesi-infected red blood cells (RBCs). Each stage of the parasite was synchronized using Nycodenz and magnetic-activated cell sorting (MACS) for P. knowlesi and P. falciparum, respectively. Holotomography was applied to measure individual three-dimensional refractive index tomograms without metal coating, fixation, or additional dye agent. Results Distinct profiles were found on the surface area and hemoglobin content of the two parasites. The surface area of P. knowlesi-infected RBCs showed significant expansion, while P. falciparum-infected RBCs did not show any changes compared to uninfected RBCs. In terms of hemoglobin consumption, P. falciparum tended to consume hemoglobin more than P. knowlesi. The observed profile of P. knowlesi-infected RBCs generally showed similar results to other studies, proving that this technique is unbiased. Conclusions The observed profile of the surface area and hemoglobin content of malaria infected-RBCs can potentially be used as a diagnostic parameter to distinguish P. knowlesi and P. falciparum infection. In addition, we showed that holotomography could be used to study each Plasmodium species in greater depth, supporting strategies for the development of diagnostic and treatment strategies for malaria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05182-1.
Collapse
Affiliation(s)
- Moh Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | | | - Sung-Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
17
|
Property activity refinement of 2-anilino 4-amino substituted quinazolines as antimalarials with fast acting asexual parasite activity. Bioorg Chem 2021; 117:105359. [PMID: 34689083 DOI: 10.1016/j.bioorg.2021.105359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022]
Abstract
Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.
Collapse
|
18
|
Ullah I, Sharma R, Mete A, Biagini GA, Wetzel DM, Horrocks PD. The relative rate of kill of the MMV Malaria Box compounds provides links to the mode of antimalarial action and highlights scaffolds of medicinal chemistry interest. J Antimicrob Chemother 2021; 75:362-370. [PMID: 31665424 DOI: 10.1093/jac/dkz443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Rapid rate-of-kill (RoK) is a key parameter in the target candidate profile 1 (TCP1) for the next-generation antimalarial drugs for uncomplicated malaria, termed Single Encounter Radical Cure and Prophylaxis (SERCaP). TCP1 aims to rapidly eliminate the initial parasite burden, ideally as fast as artesunate, but minimally as fast as chloroquine. Here we explore whether the relative RoK of the Medicine for Malaria Venture (MMV) Malaria Box compounds is linked to their mode of action (MoA) and identify scaffolds of medicinal chemistry interest. METHODS We used a bioluminescence relative RoK (BRRoK) assay over 6 and 48 h, with exposure to equipotent IC50 concentrations, to compare the cytocidal effects of Malaria Box compounds with those of benchmark antimalarials. RESULTS BRRoK assay data demonstrate the following relative RoKs, from fast to slow: inhibitors of PfATP4>parasite haemoglobin catabolism>dihydrofolate reductase-thymidylate synthase (DHFR-TS)>dihydroorotate dehydrogenase (DHODH)>bc1 complex. Core-scaffold clustering analyses revealed intrinsic rapid cytocidal action for diamino-glycerols and 2-(aminomethyl)phenol, but slow action for 2-phenylbenz-imidazoles, 8-hydroxyquinolines and triazolopyrimidines. CONCLUSIONS This study provides proof of principle that a compound's RoK is related to its MoA and that the target's intrinsic RoK is also modified by factors affecting a drug's access to it. Our findings highlight that as we use medicinal chemistry to improve potency, we can also improve the RoK for some scaffolds. Our BRRoK assay provides the necessary throughput for drug discovery and a critical decision-making tool to support development campaigns. Finally, two scaffolds, diamino-glycerols and 2-phenylbenzimidazoles, exhibit fast cytocidal action, inviting medicinal chemistry improvements towards TCP1 candidates.
Collapse
Affiliation(s)
- Imran Ullah
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Raman Sharma
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Antonio Mete
- Medsyndesign Ltd, Advanced Technology Innovation Centre, 5 Oakwood Drive, Loughborough, UK
| | - Giancarlo A Biagini
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Dawn M Wetzel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Paul D Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
19
|
Clark MA, Kanjee U, Rangel GW, Chery L, Mascarenhas A, Gomes E, Rathod PK, Brugnara C, Ferreira MU, Duraisingh MT. Plasmodium vivax infection compromises reticulocyte stability. Nat Commun 2021; 12:1629. [PMID: 33712609 PMCID: PMC7955053 DOI: 10.1038/s41467-021-21886-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
The structural integrity of the host red blood cell (RBC) is crucial for propagation of Plasmodium spp. during the disease-causing blood stage of malaria infection. To assess the stability of Plasmodium vivax-infected reticulocytes, we developed a flow cytometry-based assay to measure osmotic stability within characteristically heterogeneous reticulocyte and P. vivax-infected samples. We find that erythroid osmotic stability decreases during erythropoiesis and reticulocyte maturation. Of enucleated RBCs, young reticulocytes which are preferentially infected by P. vivax, are the most osmotically stable. P. vivax infection however decreases reticulocyte stability to levels close to those of RBC disorders that cause hemolytic anemia, and to a significantly greater degree than P. falciparum destabilizes normocytes. Finally, we find that P. vivax new permeability pathways contribute to the decreased osmotic stability of infected-reticulocytes. These results reveal a vulnerability of P. vivax-infected reticulocytes that could be manipulated to allow in vitro culture and develop novel therapeutics. During Plasmodium intra-erythrocytic developmental, parasites compromise the structural integrity of host red-blood cells. Here, Clark et al. develop a flow cytometric osmotic stability assay to show that P. vivax infection destabilizes host reticulocytes, which are less stable than P. falciparum-infected normocytes.
Collapse
Affiliation(s)
- Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Laura Chery
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Anjali Mascarenhas
- Malaria Evolution in South Asia (MESA)-International Centers of Excellence in Malaria Research (ICEMR), Goa Medical College, Bambolim, Goa, India
| | - Edwin Gomes
- Malaria Evolution in South Asia (MESA)-International Centers of Excellence in Malaria Research (ICEMR), Goa Medical College, Bambolim, Goa, India
| | | | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
20
|
Al Audhah N, Suhartono E, Sardjono TW, Fitri LE. Duration of Storage Reduced Erythrocytes Profiles and Plasmodium Viability in Donor Blood. J Blood Med 2021; 12:87-99. [PMID: 33654448 PMCID: PMC7910220 DOI: 10.2147/jbm.s276069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Malaria screening for blood derived from any donors prior to transfusions is a standard procedure that should be performed; but, in fact, it is not routinely conducted. In case of the blood is infected with Plasmodium spp., the survival of parasites may be depending on, or even influencing, the profile of red blood cells (RBCs). METHODS This observational longitudinal study was conducted upon 55 bags of donor blood that randomly selected. Malaria infections were detected using Rapid Diagnostic Test/RDT with thin and thick blood smear confirmation. The changes of Plasmodium spp. viability and RBCs profiles, as well as other hematological parameters, were observed from the results of routine hematological examinations which were performed on days 1,7,14 and 21 of storage. RESULTS Among 55 blood samples, there were 17 and 38 bags, respectively, positive and negative for malaria, then used for analysis as the case and control groups. There were significant decreasing values (p<0.05) of all routine blood examination parameters of donor blood, started from days 1, 7, 14, 21, and 28. There were no differences in decreasing profiles between those infected and non-infected donor blood (p>0.05). On days 21 and 28 none of the positive samples still contained parasites. CONCLUSION Erythrocytes profiles of donor blood significantly decreased with the duration of storage, but were not influenced by the presence of Plasmodium spp.
Collapse
Affiliation(s)
- Nelly Al Audhah
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Parasitology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Eko Suhartono
- Department of Chemistry/Biochemistry, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Teguh Wahju Sardjono
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
21
|
Shibeshi MA, Kifle ZD, Atnafie SA. Antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery. Infect Drug Resist 2020; 13:4047-4060. [PMID: 33204122 PMCID: PMC7666977 DOI: 10.2147/idr.s279433] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria is among the most devastating and widespread tropical parasitic diseases in which most prevalent in developing countries. Antimalarial drug resistance is the ability of a parasite strain to survive and/or to multiply despite the administration and absorption of medicine given in doses equal to or higher than those usually recommended. Among the factors which facilitate the emergence of resistance to existing antimalarial drugs: the parasite mutation rate, the overall parasite load, the strength of drug selected, the treatment compliance, poor adherence to malaria treatment guideline, improper dosing, poor pharmacokinetic properties, fake drugs lead to inadequate drug exposure on parasites, and poor-quality antimalarial may aid and abet resistance. Malaria vaccines can be categorized into three categories: pre-erythrocytic, blood-stage, and transmission-blocking vaccines. Molecular markers of antimalarial drug resistance are used to screen for the emergence of resistance and assess its spread. It provides information about the parasite genetics associated with resistance, either single nucleotide polymorphisms or gene copy number variations which are associated with decreased susceptibility of parasites to antimalarial drugs. Glucose transporter PfHT1, kinases (Plasmodium kinome), food vacuole, apicoplast, cysteine proteases, and aminopeptidases are the novel targets for the development of new antimalarial drugs. Therefore, this review summarizes the antimalarial drug resistance and novel targets of antimalarial drugs.
Collapse
Affiliation(s)
- Melkamu Adigo Shibeshi
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Seyfe Asrade Atnafie
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
22
|
Belete TM. Recent Progress in the Development of New Antimalarial Drugs with Novel Targets. Drug Des Devel Ther 2020; 14:3875-3889. [PMID: 33061294 PMCID: PMC7519860 DOI: 10.2147/dddt.s265602] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Malaria is a major global health problem that causes significant mortality and morbidity annually. The therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains, which causes a major obstacle to malaria control. To prevent a potential public health emergency, there is an urgent need for new antimalarial drugs, with single-dose cures, broad therapeutic potential, and novel mechanism of action. Antimalarial drug development can follow several approaches ranging from modifications of existing agents to the design of novel agents that act against novel targets. Modern advancement in the biology of the parasite and the availability of the different genomic techniques provide a wide range of novel targets in the development of new therapy. Several promising targets for drug intervention have been revealed in recent years. Therefore, this review focuses on the progress made on the latest scientific and technological advances in the discovery and development of novel antimalarial agents. Among the most interesting antimalarial target proteins currently studied are proteases, protein kinases, Plasmodium sugar transporter inhibitor, aquaporin-3 inhibitor, choline transport inhibitor, dihydroorotate dehydrogenase inhibitor, isoprenoid biosynthesis inhibitor, farnesyltransferase inhibitor and enzymes are involved in lipid metabolism and DNA replication. This review summarizes the novel molecular targets and their inhibitors for antimalarial drug development approaches.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
23
|
Rawat R, Verma SM. High-throughput virtual screening approach involving pharmacophore mapping, ADME filtering, molecular docking and MM-GBSA to identify new dual target inhibitors of PfDHODH and PfCytbc1 complex to combat drug resistant malaria. J Biomol Struct Dyn 2020; 39:5148-5159. [PMID: 32579074 DOI: 10.1080/07391102.2020.1784288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Emerging cases of drug resistance against Artemisinin combination therapies which are the current and the last line of defense against malaria makes the situation very alarming. Due to the liability of single-target drugs to be more prone to drug resistance, the trend of development of dual or multi-target inhibitors is emerging. Recently, a malaria box molecule, MMV007571 which is a well known new permeability pathways inhibitor was investigated to be also multi-targeting Plasmodium falciparum dihydroorotate dehydrogenase and cytochrome bc1 complex. The aspiration behind this study was to use the information of its pharmacophoric features essential for binding as two of its new targets. In this regard, high throughput virtual screening involving pharmacophore mapping, ADME filtering, molecular docking, and MM-GBSA calculations were carried out. This approach has lead to the identification of two new hits namely DT00V1902 and DT00V1922 which binds with -37.85 and -24.65 kcal/mol of more stable ΔG Bind energy at two targets than the lead molecule, MMV007571. The screened compounds are indicated to be carry improvement in binding potential and pharmacokinetic characters as per in silico studies. The authors propose that DT00V1902 and DT00V1922 can be forwarded for experimental validation and clinical studies for antimalarial chemotherapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Rawat
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Saurabh M Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
24
|
Tibon NS, Ng CH, Cheong SL. Current progress in antimalarial pharmacotherapy and multi-target drug discovery. Eur J Med Chem 2019; 188:111983. [PMID: 31911292 DOI: 10.1016/j.ejmech.2019.111983] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Discovery and development of antimalarial drugs have long been dominated by single-target therapy. Continuous effort has been made to explore and identify different targets in malaria parasite crucial for the malaria treatment. The single-target drug therapy was initially successful, but it was later supplanted by combination therapy with multiple drugs to overcome drug resistance. Emergence of resistant strains even against the combination therapy has warranted a review of current antimalarial pharmacotherapy. This has led to the development of the new concept of covalent biotherapy, in which two or more pharmacophores are chemically bound to produce hybrid antimalarial drugs with multi-target functionalities. Herein, the review initially details the current pharmacotherapy for malaria as well as the conventional and novel targets of importance identified in the malaria parasite. Then, the rationale of multi-targeted therapy for malaria, approaches taken to develop the multi-target antimalarial hybrids, and the examples of hybrid molecules are comprehensively enumerated and discussed.
Collapse
Affiliation(s)
- Natasha Stella Tibon
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chew Hee Ng
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Rawat R, Verma SM. An exclusive computational insight toward molecular mechanism of MMV007571, a multitarget inhibitor of Plasmodium falciparum. J Biomol Struct Dyn 2019; 38:5362-5373. [PMID: 31790334 DOI: 10.1080/07391102.2019.1700165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recently, two Malaria Box molecules namely MMV007571 and MMV020439 well known inhibitors of New Permeability Pathway (NPP) function also showed a secondary phenotype of inhibition of enzyme Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) and cytochrome bc1 complex in metabolic profile assays. Intricacies of their binding at the newly identified targets was need of the hour which motivated us to study their binding using molecular docking and dynamics simulations approach. Interestingly, molecular docking results of both MMV007571 and MMV020439 showed good binding affinity toward the Qo site of cytochrome bc1 complex while only MMV007571 illustrated notable binding characterstics for PfDHODH. Molecular Dynamics (MD) simulations when carried out for native-PfDHODH, PfDHODH-MMV007571 and PfDHODH-Genz667348 models (100 ns each) demonstrated the role of inhibitors over the N-terminus domain which experienced conformational transition from an open state (22 Å) to closed state (16 Å) in the protein-inhibitor models. Dynamics also indicated that the loop domain near cofactor flavin mononucleotide (FMN) attained more felxibility which further lead to its poor binding and may contribute to inhibition of the oxidation (catalytic) process. Moreover, the pharmacophoric features of MMV007571 was justified and may serve as a template for the design of novel series of more potent multitarget inhibitors against Plasmodium falciparum.AbbreviationsÅAngstromACTsArtemisinin combination therapiescyt bc1cytochrome bc1 complexhhour(s)KKelvinµMmicromolarMMVMedicine for malaria ventureNLucNanoluciferasenMnanomolarNPPNew permeation pathwayPDBProtein data bankPfDHODHPlasmodium falciparum dihydroorotate dehydrogenasePOPC1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholineRBCRed blood corpusclesRMSDRoot-mean-square deviationSPStandard precisionvdWvan der WaalsXPExtra precisionyDHODHYeast dihydroorotate dehydrogenaseCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Rawat
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Saurabh M Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
26
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
27
|
Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, Boyle MJ, Wilson DW. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev 2019; 43:223-238. [PMID: 30753425 PMCID: PMC6524681 DOI: 10.1093/femsre/fuz005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium spp. parasites that cause malaria disease remain a significant global-health burden. With the spread of parasites resistant to artemisinin combination therapies in Southeast Asia, there is a growing need to develop new antimalarials with novel targets. Invasion of the red blood cell by Plasmodium merozoites is essential for parasite survival and proliferation, thus representing an attractive target for therapeutic development. Red blood cell invasion requires a co-ordinated series of protein/protein interactions, protease cleavage events, intracellular signals, organelle release and engagement of an actin-myosin motor, which provide many potential targets for drug development. As these steps occur in the bloodstream, they are directly susceptible and exposed to drugs. A number of invasion inhibitors against a diverse range of parasite proteins involved in these different processes of invasion have been identified, with several showing potential to be optimised for improved drug-like properties. In this review, we discuss red blood cell invasion as a drug target and highlight a number of approaches for developing antimalarials with invasion inhibitory activity to use in future combination therapies.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Deakin University, School of Medicine, Waurn Ponds, Victoria, Australia 3216
| | - Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia 3004
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Central Clinical School and Department of Microbiology, Monash University 3004.,Department of Medicine, University of Melbourne, Australia 3052
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Victoria, Australia 3004.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia 4006
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005.,Burnet Institute, Melbourne, Victoria, Australia 3004
| |
Collapse
|
28
|
Kennedy K, Cobbold SA, Hanssen E, Birnbaum J, Spillman NJ, McHugh E, Brown H, Tilley L, Spielmann T, McConville MJ, Ralph SA. Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLoS Biol 2019; 17:e3000376. [PMID: 31318858 PMCID: PMC6667170 DOI: 10.1371/journal.pbio.3000376] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/30/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Apicomplexan parasites possess a plastid organelle called the apicoplast. Inhibitors that selectively target apicoplast housekeeping functions, including DNA replication and protein translation, are lethal for the parasite, and several (doxycycline, clindamycin, and azithromycin) are in clinical use as antimalarials. A major limitation of such drugs is that treated parasites only arrest one intraerythrocytic development cycle (approximately 48 hours) after treatment commences, a phenotype known as the ‘delayed death’ effect. The molecular basis of delayed death is a long-standing mystery in parasitology, and establishing the mechanism would aid rational clinical implementation of apicoplast-targeted drugs. Parasites undergoing delayed death transmit defective apicoplasts to their daughter cells and cannot produce the sole, blood-stage essential metabolic product of the apicoplast: the isoprenoid precursor isopentenyl-pyrophosphate. How the isoprenoid precursor depletion kills the parasite remains unknown. We investigated the requirements for the range of isoprenoids in the human malaria parasite Plasmodium falciparum and characterised the molecular and morphological phenotype of parasites experiencing delayed death. Metabolomic profiling reveals disruption of digestive vacuole function in the absence of apicoplast derived isoprenoids. Three-dimensional electron microscopy reveals digestive vacuole fragmentation and the accumulation of cytostomal invaginations, characteristics common in digestive vacuole disruption. We show that digestive vacuole disruption results from a defect in the trafficking of vesicles to the digestive vacuole. The loss of prenylation of vesicular trafficking proteins abrogates their membrane attachment and function and prevents the parasite from feeding. Our data show that the proximate cause of delayed death is an interruption of protein prenylation and consequent cellular trafficking defects. After treatment with drugs that target apicoplast functions, malaria parasites are initially superficially healthy and go on to infect new erythrocytes. This cell biology study shows that the parasites subsequently die in their second cycle due to trafficking defects caused by depletion of prenyl groups.
Collapse
Affiliation(s)
- Kit Kennedy
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Simon A. Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Eric Hanssen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, Victoria, Australia
| | - Jakob Birnbaum
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Natalie J. Spillman
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Emma McHugh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Hannah Brown
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
29
|
Gilson PR, Kumarasingha R, Thompson J, Zhang X, Penington JS, Kalhor R, Bullen HE, Lehane AM, Dans MG, de Koning-Ward TF, Holien JK, Soares da Costa TP, Hulett MD, Buskes MJ, Crabb BS, Kirk K, Papenfuss AT, Cowman AF, Abbott BM. A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4. Sci Rep 2019; 9:10292. [PMID: 31311978 PMCID: PMC6635429 DOI: 10.1038/s41598-019-46500-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
We developed a novel series of antimalarial compounds based on a 4-cyano-3-methylisoquinoline. Our lead compound MB14 achieved modest inhibition of the growth in vitro of the human malaria parasite, Plasmodium falciparum. To identify its biological target we selected for parasites resistant to MB14. Genome sequencing revealed that all resistant parasites bore a single point S374R mutation in the sodium (Na+) efflux transporter PfATP4. There are many compounds known to inhibit PfATP4 and some are under preclinical development. MB14 was shown to inhibit Na+ dependent ATPase activity in parasite membranes, consistent with the compound targeting PfATP4 directly. PfATP4 inhibitors cause swelling and lysis of infected erythrocytes, attributed to the accumulation of Na+ inside the intracellular parasites and the resultant parasite swelling. We show here that inhibitor-induced lysis of infected erythrocytes is dependent upon the parasite protein RhopH2, a component of the new permeability pathways that are induced by the parasite in the erythrocyte membrane. These pathways mediate the influx of Na+ into the infected erythrocyte and their suppression via RhopH2 knockdown limits the accumulation of Na+ within the parasite hence protecting the infected erythrocyte from lysis. This study reveals a role for the parasite-induced new permeability pathways in the mechanism of action of PfATP4 inhibitors.
Collapse
Affiliation(s)
- Paul R Gilson
- Burnet Institute, Melbourne, Victoria, 3004, Australia. .,Monash University, Melbourne, Victoria, 3800, Australia.
| | | | - Jennifer Thompson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Xinxin Zhang
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | | | - Robabeh Kalhor
- La Trobe University, Melbourne, Victoria, 3086, Australia
| | | | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, 3004, Australia.,School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | | | - Jessica K Holien
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, 3065, Australia
| | | | - Mark D Hulett
- La Trobe University, Melbourne, Victoria, 3086, Australia
| | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria, 3004, Australia.,Monash University, Melbourne, Victoria, 3800, Australia.,University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | |
Collapse
|
30
|
Cobbold SA, McConville MJ. Determining the Mode of Action of Antimalarial Drugs Using Time-Resolved LC-MS-Based Metabolite Profiling. Methods Mol Biol 2019; 1859:225-239. [PMID: 30421232 DOI: 10.1007/978-1-4939-8757-3_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Methods for assessing the mode of action of new antimalarial compounds identified in high throughput phenotypic screens are needed to triage and facilitate lead compound development and to anticipate potential resistance mechanisms that might emerge. Here we describe a mass spectrometry-based approach for detecting metabolic changes in asexual erythrocytic stages of Plasmodium falciparum induced by antimalarial compounds. Time-resolved or concentration-resolved measurements are used to discriminate between putative targets of the compound and nonspecific and/or downstream secondary metabolic effects. These protocols can also be coupled with 13C-stable-isotope tracing experiments under nonequilibrative (or nonstationary) conditions to measure metabolic dynamics following drug exposure. Time-resolved 13C-labeling studies greatly increase confidence in target assignment and provide a more comprehensive understanding of the metabolic perturbations induced by small molecule inhibitors. The protocol provides details on the experimental design, Plasmodium falciparum culture, sample preparation, analytical approaches, and data analysis used in either targeted (pathway focused) or untargeted (all detected metabolites) analysis of drug-induced metabolic perturbations.
Collapse
Affiliation(s)
- Simon A Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
31
|
Skinner-Adams TS, Fisher GM, Riches AG, Hutt OE, Jarvis KE, Wilson T, von Itzstein M, Chopra P, Antonova-Koch Y, Meister S, Winzeler EA, Clarke M, Fidock DA, Burrows JN, Ryan JH, Andrews KT. Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone. Commun Biol 2019; 2:166. [PMID: 31069275 PMCID: PMC6499835 DOI: 10.1038/s42003-019-0397-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
Atovaquone-proguanil (Malarone®) is used for malaria prophylaxis and treatment. While the cytochrome bc1-inhibitor atovaquone has potent activity, proguanil's action is attributed to its cyclization-metabolite, cycloguanil. Evidence suggests that proguanil has limited intrinsic activity, associated with mitochondrial-function. Here we demonstrate that proguanil, and cyclization-blocked analogue tBuPG, have potent, but slow-acting, in vitro anti-plasmodial activity. Activity is folate-metabolism and isoprenoid biosynthesis-independent. In yeast dihydroorotate dehydrogenase-expressing parasites, proguanil and tBuPG slow-action remains, while bc1-inhibitor activity switches from comparatively fast to slow-acting. Like proguanil, tBuPG has activity against P. berghei liver-stage parasites. Both analogues act synergistically with bc1-inhibitors against blood-stages in vitro, however cycloguanil antagonizes activity. Together, these data suggest that proguanil is a potent slow-acting anti-plasmodial agent, that bc1 is essential to parasite survival independent of dihydroorotate dehydrogenase-activity, that Malarone® is a triple-drug combination that includes antagonistic partners and that a cyclization-blocked proguanil may be a superior combination partner for bc1-inhibitors in vivo.
Collapse
Affiliation(s)
- Tina S. Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| | - Gillian M. Fisher
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| | - Andrew G. Riches
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Oliver E. Hutt
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Karen E. Jarvis
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Tony Wilson
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, QLD 4222 Australia
| | - Pradeep Chopra
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, QLD 4222 Australia
| | - Yevgeniya Antonova-Koch
- School of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
- Present Address: California Institute for Biomedical Research (Calibr), La Jolla, CA 92037 USA
| | - Stephan Meister
- School of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
- Present Address: Beckman Coulter Life Sciences in Indianapolis, Indianapolis, IN 46268 USA
| | | | - Mary Clarke
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| | - David A. Fidock
- Department of Microbiology and Immunology, and Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032 USA
| | - Jeremy N. Burrows
- Medicines for Malaria Venture (MMV), Route de Pré Bois 20, Geneva, 1215 Switzerland
| | - John H. Ryan
- Commonwealth Scientific and Industrial Research Organization, Biomedical Manufacturing, Clayton, VIC 3168 Australia
| | - Katherine T. Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111 Australia
| |
Collapse
|
32
|
To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. Int J Parasitol 2019; 49:153-163. [DOI: 10.1016/j.ijpara.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
|
33
|
Charnaud SC, Jonsdottir TK, Sanders PR, Bullen HE, Dickerman BK, Kouskousis B, Palmer CS, Pietrzak HM, Laumaea AE, Erazo AB, McHugh E, Tilley L, Crabb BS, Gilson PR. Spatial organization of protein export in malaria parasite blood stages. Traffic 2018; 19:605-623. [DOI: 10.1111/tra.12577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Affiliation(s)
| | - Thorey K. Jonsdottir
- Burnet Institute; Melbourne Australia
- Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne Australia
| | | | | | | | - Betty Kouskousis
- Burnet Institute; Melbourne Australia
- Monash Micro Imaging, Monash University; Melbourne Australia
| | - Catherine S. Palmer
- Burnet Institute; Melbourne Australia
- Monash Micro Imaging, Monash University; Melbourne Australia
| | | | | | | | - Emma McHugh
- Department of Biochemistry and Molecular Biology, University of Melbourne; Melbourne Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne; Melbourne Australia
| | - Brendan S. Crabb
- Burnet Institute; Melbourne Australia
- Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne Australia
- Department of Microbiology, Monash University; Melbourne Australia
| | - Paul R. Gilson
- Burnet Institute; Melbourne Australia
- Department of Microbiology, Monash University; Melbourne Australia
| |
Collapse
|
34
|
Ross LS, Lafuente-Monasterio MJ, Sakata-Kato T, Mandt REK, Gamo FJ, Wirth DF, Lukens AK. Identification of Collateral Sensitivity to Dihydroorotate Dehydrogenase Inhibitors in Plasmodium falciparum. ACS Infect Dis 2018; 4:508-515. [PMID: 29336544 PMCID: PMC5899019 DOI: 10.1021/acsinfecdis.7b00217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Drug
resistance has been reported for every antimalarial in use highlighting
the need for new strategies to protect the efficacy of therapeutics
in development. We have previously shown that resistance can be suppressed
with a population biology trap: by identifying situations where resistance
to one compound confers hypersensitivity to another (collateral sensitivity),
we can design combination therapies that not only kill the parasite
but also guide its evolution away from resistance. We applied this
concept to the Plasmodium falciparum dihydroorotate
dehydrogenase (PfDHODH) enzyme, a well validated
antimalarial target with inhibitors in the development pipeline. Here,
we report a high-throughput screen to identify compounds specifically
active against PfDHODH resistant mutants. We additionally
perform extensive cross-resistance profiling allowing us to identify
compound pairs demonstrating the potential for mutually incompatible
resistance. These combinations represent promising starting points
for exploiting collateral sensitivity to extend the useful lifespan
of new antimalarial therapeutics.
Collapse
Affiliation(s)
- Leila Saxby Ross
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Maria José Lafuente-Monasterio
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Tomoyo Sakata-Kato
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Rebecca E. K. Mandt
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, 28760, Madrid, Spain
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
- Infectious Disease and Microbiome Program, The Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Amanda K. Lukens
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
- Infectious Disease and Microbiome Program, The Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
35
|
Counihan NA, Chisholm SA, Bullen HE, Srivastava A, Sanders PR, Jonsdottir TK, Weiss GE, Ghosh S, Crabb BS, Creek DJ, Gilson PR, de Koning-Ward TF. Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. eLife 2017; 6. [PMID: 28252383 PMCID: PMC5365316 DOI: 10.7554/elife.23217] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/26/2017] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival.
Collapse
Affiliation(s)
| | | | | | - Anubhav Srivastava
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Thorey K Jonsdottir
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | | | - Sreejoyee Ghosh
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Monash University, Melbourne, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, Australia.,Monash University, Melbourne, Australia
| | | |
Collapse
|