1
|
Agoni C, Fernández-Díaz R, Timmons PB, Adelfio A, Gómez H, Shields DC. Molecular Modelling in Bioactive Peptide Discovery and Characterisation. Biomolecules 2025; 15:524. [PMID: 40305228 PMCID: PMC12025251 DOI: 10.3390/biom15040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Molecular modelling is a vital tool in the discovery and characterisation of bioactive peptides, providing insights into their structural properties and interactions with biological targets. Many models predicting bioactive peptide function or structure rely on their intrinsic properties, including the influence of amino acid composition, sequence, and chain length, which impact stability, folding, aggregation, and target interaction. Homology modelling predicts peptide structures based on known templates. Peptide-protein interactions can be explored using molecular docking techniques, but there are challenges related to the inherent flexibility of peptides, which can be addressed by more computationally intensive approaches that consider their movement over time, called molecular dynamics (MD). Virtual screening of many peptides, usually against a single target, enables rapid identification of potential bioactive peptides from large libraries, typically using docking approaches. The integration of artificial intelligence (AI) has transformed peptide discovery by leveraging large amounts of data. AlphaFold is a general protein structure prediction tool based on deep learning that has greatly improved the predictions of peptide conformations and interactions, in addition to providing estimates of model accuracy at each residue which greatly guide interpretation. Peptide function and structure prediction are being further enhanced using Protein Language Models (PLMs), which are large deep-learning-derived statistical models that learn computer representations useful to identify fundamental patterns of proteins. Recent methodological developments are discussed in the context of canonical peptides, as well as those with modifications and cyclisations. In designing potential peptide therapeutics, the main outstanding challenge for these methods is the incorporation of diverse non-canonical amino acids and cyclisations.
Collapse
Affiliation(s)
- Clement Agoni
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, D04 C1P Dublin, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Raúl Fernández-Díaz
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- IBM Research, D15 HN66 Dublin, Ireland
| | | | - Alessandro Adelfio
- Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland; (P.B.T.); (A.A.); (H.G.)
| | - Hansel Gómez
- Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland; (P.B.T.); (A.A.); (H.G.)
| | - Denis C. Shields
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, D04 C1P Dublin, Ireland
| |
Collapse
|
2
|
Nithin C, Fornari RP, Pilla SP, Wroblewski K, Zalewski M, Madaj R, Kolinski A, Macnar JM, Kmiecik S. Exploring protein functions from structural flexibility using CABS-flex modeling. Protein Sci 2024; 33:e5090. [PMID: 39194135 PMCID: PMC11350595 DOI: 10.1002/pro.5090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 08/29/2024]
Abstract
Understanding protein function often necessitates characterizing the flexibility of protein structures. However, simulating protein flexibility poses significant challenges due to the complex dynamics of protein systems, requiring extensive computational resources and accurate modeling techniques. In response to these challenges, the CABS-flex method has been developed as an efficient modeling tool that combines coarse-grained simulations with all-atom detail. Available both as a web server and a standalone package, CABS-flex is dedicated to a wide range of users. The web server version offers an accessible interface for straightforward tasks, while the standalone command-line program is designed for advanced users, providing additional features, analytical tools, and support for handling large systems. This paper examines the application of CABS-flex across various structure-function studies, facilitating investigations into the interplay among protein structure, dynamics, and function in diverse research fields. We present an overview of the current status of the CABS-flex methodology, highlighting its recent advancements, practical applications, and forthcoming challenges.
Collapse
Affiliation(s)
- Chandran Nithin
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Rocco Peter Fornari
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Smita P. Pilla
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Karol Wroblewski
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Mateusz Zalewski
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Rafał Madaj
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Andrzej Kolinski
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Joanna M. Macnar
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
- Present address:
Ryvu TherapeuticsCracowPoland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| |
Collapse
|
3
|
Ji J, Carpentier B, Chakraborty A, Nangia S. An Affordable Topography-Based Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) Scale. J Chem Theory Comput 2024; 20:1656-1672. [PMID: 37018141 PMCID: PMC10902853 DOI: 10.1021/acs.jctc.3c00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 04/06/2023]
Abstract
The hydropathy of proteins or quantitative assessment of protein-water interactions has been a topic of interest for decades. Most hydropathy scales use a residue-based or atom-based approach to assign fixed numerical values to the 20 amino acids and categorize them as hydrophilic, hydroneutral, or hydrophobic. These scales overlook the protein's nanoscale topography, such as bumps, crevices, cavities, clefts, pockets, and channels, in calculating the hydropathy of the residues. Some recent studies have included protein topography in determining hydrophobic patches on protein surfaces, but these methods do not provide a hydropathy scale. To overcome the limitations in the existing methods, we have developed a Protocol for Assigning a Residue's Character on the Hydropathy (PARCH) scale that adopts a holistic approach to assigning the hydropathy of a residue. The parch scale evaluates the collective response of the water molecules in the protein's first hydration shell to increasing temperatures. We performed the parch analysis of a set of well-studied proteins that include the following─enzymes, immune proteins, and integral membrane proteins, as well as fungal and virus capsid proteins. Since the parch scale evaluates every residue based on its location, a residue may have very different parch values inside a crevice versus a surface bump. Thus, a residue can have a range of parch values (or hydropathies) dictated by the local geometry. The parch scale calculations are computationally inexpensive and can compare hydropathies of different proteins. The parch analysis can affordably and reliably aid in designing nanostructured surfaces, identifying hydrophilic and hydrophobic patches, and drug discovery.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Arindam Chakraborty
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
4
|
Varshan I, Sankar S. Molecular Docking Analysis of Hydroxyclavicol and Eugenol From Betel Leaves Against Outer Membrane Protein (OmpH) of Dialister pneumosintes. Cureus 2024; 16:e53809. [PMID: 38465032 PMCID: PMC10924148 DOI: 10.7759/cureus.53809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Dialister pneumosintes is an obligate anaerobic non-spore-forming Gram-negative bacilli. As a part of polymicrobial film, the activated virulence factor causes oral diseases like gingivitis and periodontitis. Decreased susceptibility of clinical strains of D. pneumosintes to different antibiotics including piperacillin and metronidazole raises concerns. There has been significant interest in the utility of plant phytocompounds as potent antibacterial agents. Aim The study aimed to look at the potential of two phytocompounds, eugenol and hydroxychavicol, for their ability to inhibit outer membrane protein (OmpH) of D. pneumosintes using computational tools. Results The study showed effective inhibition of the OmpH of D. pneumosintes by both eugenol and hydroxychavicol. The high probability to be active (Pa) value indicated the probability of true positive for the tested compounds for their predicted biological activity. There was strong reciprocity between the drug-likeliness and its binding affinity for the target protein, indicating an inhibitory nature. Conclusion The tested phytocompounds hydroxychavicol and eugenol showed potential inhibition of the OmpH protein of D. pneumosintes indicating its potential use as inhibitory compounds of the pathogen and future directions for the treatment of periodontitis and gingivitis.
Collapse
Affiliation(s)
- Ilamaran Varshan
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Patel KN, Chavda D, Manna M. Molecular Docking of Intrinsically Disordered Proteins: Challenges and Strategies. Methods Mol Biol 2024; 2780:165-201. [PMID: 38987470 DOI: 10.1007/978-1-0716-3985-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Intrinsically disordered proteins (IDPs) are a novel class of proteins that have established a significant importance and attention within a very short period of time. These proteins are essentially characterized by their inherent structural disorder, encoded mainly by their amino acid sequences. The profound abundance of IDPs and intrinsically disordered regions (IDRs) in the biological world delineates their deep-rooted functionality. IDPs and IDRs convey such extensive functionality through their unique dynamic nature, which enables them to carry out huge number of multifaceted biomolecular interactions and make them "interaction hub" of the cellular systems. Additionally, with such widespread functions, their misfunctioning is also intimately associated with multiple diseases. Thus, understanding the dynamic heterogeneity of various IDPs along with their interactions with respective binding partners is an important field with immense potentials in biomolecular research. In this context, molecular docking-based computational approaches have proven to be remarkable in case of ordered proteins. Molecular docking methods essentially model the biomolecular interactions in both structural and energetic terms and use this information to characterize the putative interactions between the two participant molecules. However, direct applications of the conventional docking methods to study IDPs are largely limited by their structural heterogeneity and demands for unique IDP-centric strategies. Thus, in this chapter, we have presented an overview of current methodologies for successful docking operations involving IDPs and IDRs. These specialized methods majorly include the ensemble-based and fragment-based approaches with their own benefits and limitations. More recently, artificial intelligence and machine learning-assisted approaches are also used to significantly reduce the complexity and computational burden associated with various docking applications. Thus, this chapter aims to provide a comprehensive summary of major challenges and recent advancements of molecular docking approaches in the IDP field for their better utilization and greater applicability.Asp (D).
Collapse
Affiliation(s)
- Keyur N Patel
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dhruvil Chavda
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
6
|
Challapa-Mamani MR, Tomás-Alvarado E, Espinoza-Baigorria A, León-Figueroa DA, Sah R, Rodriguez-Morales AJ, Barboza JJ. Molecular Docking and Molecular Dynamics Simulations in Related to Leishmania donovani: An Update and Literature Review. Trop Med Infect Dis 2023; 8:457. [PMID: 37888585 PMCID: PMC10610989 DOI: 10.3390/tropicalmed8100457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Leishmaniasis, a disease caused by Leishmania parasites and transmitted via sandflies, presents in two main forms: cutaneous and visceral, the latter being more severe. With 0.7 to 1 million new cases each year, primarily in Brazil, diagnosing remains challenging due to diverse disease manifestations. Traditionally, the identification of Leishmania species is inferred from clinical and epidemiological data. Advances in disease management depend on technological progress and the improvement of parasite identification programs. Current treatments, despite the high incidence, show limited efficacy due to factors like cost, toxicity, and lengthy regimens causing poor adherence and resistance development. Diagnostic techniques have improved but a significant gap remains between scientific progress and application in endemic areas. Complete genomic sequence knowledge of Leishmania allows for the identification of therapeutic targets. With the aid of computational tools, testing, searching, and detecting affinity in molecular docking are optimized, and strategies that assess advantages among different options are developed. The review focuses on the use of molecular docking and molecular dynamics (MD) simulation for drug development. It also discusses the limitations and advancements of current treatments, emphasizing the importance of new techniques in improving disease management.
Collapse
Affiliation(s)
- Mabel R. Challapa-Mamani
- Escuela de Medicina, Universidad Cesar Vallejo, Trujillo 13007, Peru;
- Sociedad Científica de Estudiantes de Medicina de la Universidad César Vallejo, Trujillo 13007, Peru
| | - Eduardo Tomás-Alvarado
- Hospital General Regional 17, Instituto Mexicano del Seguro Social, Cancún 75533, Mexico;
| | | | | | - Ranjit Sah
- Department of Clinical Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu 44600, Nepal;
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima 150152, Peru;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 350000, Lebanon
| | | |
Collapse
|
7
|
Puławski W, Koliński A, Koliński M. Integrative modeling of diverse protein-peptide systems using CABS-dock. PLoS Comput Biol 2023; 19:e1011275. [PMID: 37405984 DOI: 10.1371/journal.pcbi.1011275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
The CABS model can be applied to a wide range of protein-protein and protein-peptide molecular modeling tasks, such as simulating folding pathways, predicting structures, docking, and analyzing the structural dynamics of molecular complexes. In this work, we use the CABS-dock tool in two diverse modeling tasks: 1) predicting the structures of amyloid protofilaments and 2) identifying cleavage sites in the peptide substrates of proteolytic enzymes. In the first case, simulations of the simultaneous docking of amyloidogenic peptides indicated that the CABS model can accurately predict the structures of amyloid protofilaments which have an in-register parallel architecture. Scoring based on a combination of symmetry criteria and estimated interaction energy values for bound monomers enables the identification of protofilament models that closely match their experimental structures for 5 out of 6 analyzed systems. For the second task, it has been shown that CABS-dock coarse-grained docking simulations can be used to identify the positions of cleavage sites in the peptide substrates of proteolytic enzymes. The cleavage site position was correctly identified for 12 out of 15 analyzed peptides. When combined with sequence-based methods, these docking simulations may lead to an efficient way of predicting cleavage sites in degraded proteins. The method also provides the atomic structures of enzyme-substrate complexes, which can give insights into enzyme-substrate interactions that are crucial for the design of new potent inhibitors.
Collapse
Affiliation(s)
- Wojciech Puławski
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Jakhmola S, Sk MF, Chatterjee A, Jain K, Kar P, Jha HC. A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Comput Biol Med 2022; 148:105856. [PMID: 35863244 DOI: 10.1016/j.compbiomed.2022.105856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) can be induced upon successful presentation of myelin antigens by MHC I/II. Antigenic similarity between the myelin and viral proteins may worsen the immunological responses. METHODOLOGY Antigenic regions within myelin proteins; PLP1, MBP, MOG, and MAG were analyzed using SVMTrip and EMBOSS. Homology search identified sequence similarity between the predicted host epitopes and viral proteins. NetMHCpan predicted MHC I/II binding followed by peptide-protein docking through the HPEPDOCK server. Thereafter we analyzed conformational flexibility and stability of 15 protein-peptide complexes based on high docking scores. The binding free energy was calculated using conventional (MD) and Gaussian accelerated molecular dynamics simulation. RESULTS PLP1, MBP, MAG and MOG contained numerous antigenic epitopes. MBP and MOG epitopes had sequence similarity to HHV-6 BALF5; EBNA1 and CMV glycoprotein M (gM), and EBV LMP2B, gp350/220; HHV-8 ORFs respectively. Many herpes virus proteins like tegument, envelope glycoproteins, and ORFs of EBV, CMV, HHV-6, and HHV-8 demonstrated sequence similarity with MAG and PLP1. Some antigenic peptides were also linear B-cell epitopes and influenced cytokine production by T-cell. MHC I allele HLA-B*57:01 bound to PLP1 peptide and HLA-A*68:02 bound to a MAG peptide strongly. MHC II alleles HLA-DRB1*04:05 and HLA-DR1*01:01 associated with MAG- and MOG-derived peptides, respectively, demonstrating high HPEPDOCK scores. MD simulations established stable binding of certain peptides with the MHC namely HLA-B*51:01-MBP(DYKSAHKGFKGVDAQGTLSKIFKL), HLA-B*57:01-PLP1(PDKFVGITYALTVVWLLVFACSAVPVYIYF), HLA-DR1*01:01-MOG(VEDPFYWVSPGVLVLLAVLPVLLLQITVGLVFLCLQYR) and HLA-DRB1*04:05-MAG(TWVQVSLLHFVPTREA). CONCLUSIONS Cross-reactivity between self-antigens and pathogen derived immunodominant epitopes may induce MS. Our study supported the role of specific MHC alleles as a contributing MS risk factor.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Akash Chatterjee
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
9
|
Multiscale Modeling of Amyloid Fibrils Formed by Aggregating Peptides Derived from the Amyloidogenic Fragment of the A-Chain of Insulin. Int J Mol Sci 2021; 22:ijms222212325. [PMID: 34830214 PMCID: PMC8621111 DOI: 10.3390/ijms222212325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
Computational prediction of molecular structures of amyloid fibrils remains an exceedingly challenging task. In this work, we propose a multi-scale modeling procedure for the structure prediction of amyloid fibrils formed by the association of ACC1-13 aggregation-prone peptides derived from the N-terminal region of insulin’s A-chain. First, a large number of protofilament models composed of five copies of interacting ACC1-13 peptides were predicted by application of CABS-dock coarse-grained (CG) docking simulations. Next, the models were reconstructed to all-atom (AA) representations and refined during molecular dynamics (MD) simulations in explicit solvent. The top-scored protofilament models, selected using symmetry criteria, were used for the assembly of long fibril structures. Finally, the amyloid fibril models resulting from the AA MD simulations were compared with atomic force microscopy (AFM) imaging experimental data. The obtained results indicate that the proposed multi-scale modeling procedure is capable of predicting protofilaments with high accuracy and may be applied for structure prediction and analysis of other amyloid fibrils.
Collapse
|
10
|
Kurcinski M, Kmiecik S, Zalewski M, Kolinski A. Protein-Protein Docking with Large-Scale Backbone Flexibility Using Coarse-Grained Monte-Carlo Simulations. Int J Mol Sci 2021; 22:7341. [PMID: 34298961 PMCID: PMC8306105 DOI: 10.3390/ijms22147341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022] Open
Abstract
Most of the protein-protein docking methods treat proteins as almost rigid objects. Only the side-chains flexibility is usually taken into account. The few approaches enabling docking with a flexible backbone typically work in two steps, in which the search for protein-protein orientations and structure flexibility are simulated separately. In this work, we propose a new straightforward approach for docking sampling. It consists of a single simulation step during which a protein undergoes large-scale backbone rearrangements, rotations, and translations. Simultaneously, the other protein exhibits small backbone fluctuations. Such extensive sampling was possible using the CABS coarse-grained protein model and Replica Exchange Monte Carlo dynamics at a reasonable computational cost. In our proof-of-concept simulations of 62 protein-protein complexes, we obtained acceptable quality models for a significant number of cases.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland; (M.Z.); (A.K.)
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland; (M.Z.); (A.K.)
| | | | | |
Collapse
|
11
|
Molecular Dynamics Scoring of Protein-Peptide Models Derived from Coarse-Grained Docking. Molecules 2021; 26:molecules26113293. [PMID: 34070778 PMCID: PMC8197827 DOI: 10.3390/molecules26113293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
One of the major challenges in the computational prediction of protein-peptide complexes is the scoring of predicted models. Usually, it is very difficult to find the most accurate solutions out of the vast number of sometimes very different and potentially plausible predictions. In this work, we tested the protocol for Molecular Dynamics (MD)-based scoring of protein-peptide complex models obtained from coarse-grained (CG) docking simulations. In the first step of the scoring procedure, all models generated by CABS-dock were reconstructed starting from their original C-alpha trace representations to all-atom (AA) structures. The second step included geometry optimization of the reconstructed complexes followed by model scoring based on receptor-ligand interaction energy estimated from short MD simulations in explicit water. We used two well-known AA MD force fields, CHARMM and AMBER, and a CG MARTINI force field. Scoring results for 66 different protein-peptide complexes show that the proposed MD-based scoring approach can be used to identify protein-peptide models of high accuracy. The results also indicate that the scoring accuracy may be significantly affected by the quality of the reconstructed protein receptor structures.
Collapse
|
12
|
Perez JJ, Perez RA, Perez A. Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering. Front Mol Biosci 2021; 8:681617. [PMID: 34095231 PMCID: PMC8173110 DOI: 10.3389/fmolb.2021.681617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions (PPIs) mediate a large number of important regulatory pathways. Their modulation represents an important strategy for discovering novel therapeutic agents. However, the features of PPI binding surfaces make the use of structure-based drug discovery methods very challenging. Among the diverse approaches used in the literature to tackle the problem, linear peptides have demonstrated to be a suitable methodology to discover PPI disruptors. Unfortunately, the poor pharmacokinetic properties of linear peptides prevent their direct use as drugs. However, they can be used as models to design enzyme resistant analogs including, cyclic peptides, peptide surrogates or peptidomimetics. Small molecules have a narrower set of targets they can bind to, but the screening technology based on virtual docking is robust and well tested, adding to the computational tools used to disrupt PPI. We review computational approaches used to understand and modulate PPI and highlight applications in a few case studies involved in physiological processes such as cell growth, apoptosis and intercellular communication.
Collapse
Affiliation(s)
- Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat, Spain
| | - Alberto Perez
- The Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Dehbashi M, Hojati Z, Motovali-Bashi M, Ganjalikhani-Hakemi M, Shimosaka A, Cho WC. Computational study for suppression of CD25/IL-2 interaction. Biol Chem 2021; 402:167-178. [PMID: 33544473 DOI: 10.1515/hsz-2020-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/05/2023]
Abstract
Cancer recurrence presents a huge challenge in cancer patient management. Immune escape is a key mechanism of cancer progression and metastatic dissemination. CD25 is expressed in regulatory T (Treg) cells including tumor-infiltrating Treg cells (TI-Tregs). These cells specially activate and reinforce immune escape mechanism of cancers. The suppression of CD25/IL-2 interaction would be useful against Treg cells activation and ultimately immune escape of cancer. Here, software, web servers and databases were used, at which in silico designed small interfering RNAs (siRNAs), de novo designed peptides and virtual screened small molecules against CD25 were introduced for the prospect of eliminating cancer immune escape and obtaining successful treatment. We obtained siRNAs with low off-target effects. Further, small molecules based on the binding homology search in ligand and receptor similarity were introduced. Finally, the critical amino acids on CD25 were targeted by a de novo designed peptide with disulfide bond. Hence we introduced computational-based antagonists to lay a foundation for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Islamic Republic of Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Islamic Republic of Iran
| | - Majid Motovali-Bashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Islamic Republic of Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Islamic Republic of Iran
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, HKSAR, China
| |
Collapse
|
14
|
Bluntzer MTJ, O'Connell J, Baker TS, Michel J, Hulme AN. Designing stapled peptides to inhibit
protein‐protein
interactions: An analysis of successes in a rapidly changing field. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Julien Michel
- EaStChem School of Chemistry The University of Edinburgh Edinburgh UK
| | - Alison N. Hulme
- EaStChem School of Chemistry The University of Edinburgh Edinburgh UK
| |
Collapse
|
15
|
Kurcinski M, Pawel Ciemny M, Oleniecki T, Kuriata A, Badaczewska-Dawid AE, Kolinski A, Kmiecik S. CABS-dock standalone: a toolbox for flexible protein-peptide docking. Bioinformatics 2020; 35:4170-4172. [PMID: 30865258 PMCID: PMC6792116 DOI: 10.1093/bioinformatics/btz185] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Accepted: 03/12/2019] [Indexed: 12/02/2022] Open
Abstract
Summary CABS-dock standalone is a multiplatform Python package for protein–peptide docking with backbone flexibility. The main feature of the CABS-dock method is its ability to simulate significant backbone flexibility of the entire protein–peptide system in a reasonable computational time. In the default mode, the package runs a simulation of fully flexible peptide searching for a binding site on the surface of a flexible protein receptor. The flexibility level of the molecules may be defined by the user. Furthermore, the CABS-dock standalone application provides users with full control over the docking simulation from the initial setup to the analysis of results. The standalone version is an upgrade of the original web server implementation—it introduces a number of customizable options, provides support for large-sized systems and offers a framework for deeper analysis of docking results. Availability and implementation CABS-dock standalone is distributed under the MIT licence, which is free for academic and non-profit users. It is implemented in Python and Fortran. The CABS-dock standalone source code, wiki with documentation and examples of use and installation instructions for Linux, macOS and Windows are available in the CABS-dock standalone repository at https://bitbucket.org/lcbio/cabsdock.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Maciej Pawel Ciemny
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.,Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Tymoteusz Oleniecki
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Aleksander Kuriata
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Andrzej Kolinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Badaczewska-Dawid AE, Kmiecik S, Koliński M. Docking of peptides to GPCRs using a combination of CABS-dock with FlexPepDock refinement. Brief Bioinform 2020; 22:5855394. [PMID: 32520310 PMCID: PMC8138832 DOI: 10.1093/bib/bbaa109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
The structural description of peptide ligands bound to G protein-coupled receptors (GPCRs) is important for the discovery of new drugs and deeper understanding of the molecular mechanisms of life. Here we describe a three-stage protocol for the molecular docking of peptides to GPCRs using a set of different programs: (1) CABS-dock for docking fully flexible peptides; (2) PD2 method for the reconstruction of atomistic structures from C-alpha traces provided by CABS-dock and (3) Rosetta FlexPepDock for the refinement of protein–peptide complex structures and model scoring. We evaluated the proposed protocol on the set of seven different GPCR–peptide complexes (including one containing a cyclic peptide), for which crystallographic structures are available. We show that CABS-dock produces high resolution models in the sets of top-scored models. These sets of models, after reconstruction to all-atom representation, can be further improved by Rosetta high-resolution refinement and/or minimization, leading in most of the cases to sub-Angstrom accuracy in terms of interface root-mean-square-deviation measure.
Collapse
Affiliation(s)
| | | | - Michał Koliński
- Corresponding author: Michał Koliński, Bioinformatics Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland. Tel: (+48) 22 849 93 58; Fax: (+48) 22 668 55 32; E-mail:
| |
Collapse
|
17
|
Docking interactions determine early cleavage events in insulin proteolysis by pepsin: Experiment and simulation. Int J Biol Macromol 2020; 149:1151-1160. [PMID: 32001282 DOI: 10.1016/j.ijbiomac.2020.01.253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022]
Abstract
In silico modelling of cascade enzymatic proteolysis is an exceedingly complex and challenging task. Here, we study partial proteolysis of insulin by pepsin: a process leading to the release of a highly amyloidogenic two chain 'H-fragment'. The H-fragment retains several cleavage sites for pepsin. However, under favorable conditions H-monomers rapidly self-assemble into proteolysis-resistant amyloid fibrils whose composition provides snapshots of early and intermediate stages of the proteolysis. In this work, we report a remarkable agreement of experimentally determined and simulation-predicted cleavage sites on different stages of the proteolysis. Prediction of cleavage sites was based on the comprehensive analysis of the docking interactions from direct simulation of coupled folding and binding of insulin (or its cleaved derivatives) to pepsin. The most frequent interactions were found to be between the pepsin's active site, or its direct vicinity, and the experimentally determined insulin cleavage sites, which suggest that the docking interactions govern the proteolytic process.
Collapse
|
18
|
Kurcinski M, Badaczewska‐Dawid A, Kolinski M, Kolinski A, Kmiecik S. Flexible docking of peptides to proteins using CABS-dock. Protein Sci 2020; 29:211-222. [PMID: 31682301 PMCID: PMC6933849 DOI: 10.1002/pro.3771] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Molecular docking of peptides to proteins can be a useful tool in the exploration of the possible peptide binding sites and poses. CABS-dock is a method for protein-peptide docking that features significant conformational flexibility of both the peptide and the protein molecules during the peptide search for a binding site. The CABS-dock has been made available as a web server and a standalone package. The web server is an easy to use tool with a simple web interface. The standalone package is a command-line program dedicated to professional users. It offers a number of advanced features, analysis tools and support for large-sized systems. In this article, we outline the current status of the CABS-dock method, its recent developments, applications, and challenges ahead.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Faculty of Chemistry, Biological and Chemical Research CenterUniversity of WarsawWarsawPoland
| | | | - Michal Kolinski
- Bioinformatics Laboratory, Mossakowski Medical Research CentrePolish Academy of SciencesWarsawPoland
| | - Andrzej Kolinski
- Faculty of Chemistry, Biological and Chemical Research CenterUniversity of WarsawWarsawPoland
| | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research CenterUniversity of WarsawWarsawPoland
| |
Collapse
|
19
|
Protocols for All-Atom Reconstruction and High-Resolution Refinement of Protein-Peptide Complex Structures. Methods Mol Biol 2020; 2165:273-287. [PMID: 32621231 DOI: 10.1007/978-1-0716-0708-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Structural characterizations of protein-peptide complexes may require further improvements. These may include reconstruction of missing atoms and/or structure optimization leading to higher accuracy models. In this work, we describe a workflow that generates accurate structural models of peptide-protein complexes starting from protein-peptide models in C-alpha representation generated using CABS-dock molecular docking. First, protein-peptide models are reconstructed from their C-alpha traces to all-atom representation using MODELLER. Next, they are refined using Rosetta FlexPepDock. The described workflow allows for reliable all-atom reconstruction of CABS-dock models and their further improvement to high-resolution models.
Collapse
|
20
|
Blaszczyk M, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S. Protein-peptide docking using CABS-dock and contact information. Brief Bioinform 2019; 20:2299-2305. [PMID: 30247502 PMCID: PMC6954405 DOI: 10.1093/bib/bby080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
CABS-dock is a computational method for protein-peptide molecular docking that does not require predefinition of the binding site. The peptide is treated as fully flexible, while the protein backbone undergoes small fluctuations and, optionally, large-scale rearrangements. Here, we present a specific CABS-dock protocol that enhances the docking procedure using fragmentary information about protein-peptide contacts. The contact information is used to narrow down the search for the binding peptide pose to the proximity of the binding site. We used information on a single-chosen and randomly chosen native protein-peptide contact to validate the protocol on the peptiDB benchmark. The contact information significantly improved CABS-dock performance. The protocol has been made available as a new feature of the CABS-dock web server (at http://biocomp.chem.uw.edu.pl/CABSdock/). SHORT ABSTRACT CABS-dock is a tool for flexible docking of peptides to proteins. In this article, we present a protocol for CABS-dock docking driven by information about protein-peptide contact(s). Using information on individual protein-peptide contacts allows to improve the accuracy of CABS-dock docking.
Collapse
|
21
|
Molecular Docking Analysis of 120 Potential HPV Therapeutic Epitopes Using a New Analytical Method. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
From biomedicinal to in silico models and back to therapeutics: a review on the advancement of peptidic modeling. Future Med Chem 2019; 11:2313-2331. [PMID: 31581914 DOI: 10.4155/fmc-2018-0365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bioactive peptides participate in numerous metabolic functions of living organisms and have emerged as potential therapeutics on a diverse range of diseases. Albeit peptide design does not go without challenges, overwhelming advancements on in silico methodologies have increased the scope of peptide-based drug design and discovery to an unprecedented amount. Within an in silico model versus an experimental validation scenario, this review aims to summarize and discuss how different in silico techniques contribute at present to the design of peptide-based molecules. Published in silico results from 2014 to 2018 were selected and discriminated in major methodological groups, allowing a transversal analysis, promoting a landscape vision and asserting its increasing value in drug design.
Collapse
|
23
|
Kuriata A, Gierut AM, Oleniecki T, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S. CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res 2019; 46:W338-W343. [PMID: 29762700 PMCID: PMC6031000 DOI: 10.1093/nar/gky356] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Classical simulations of protein flexibility remain computationally expensive, especially for large proteins. A few years ago, we developed a fast method for predicting protein structure fluctuations that uses a single protein model as the input. The method has been made available as the CABS-flex web server and applied in numerous studies of protein structure-function relationships. Here, we present a major update of the CABS-flex web server to version 2.0. The new features include: extension of the method to significantly larger and multimeric proteins, customizable distance restraints and simulation parameters, contact maps and a new, enhanced web server interface. CABS-flex 2.0 is freely available at http://biocomp.chem.uw.edu.pl/CABSflex2.
Collapse
Affiliation(s)
- Aleksander Kuriata
- University of Warsaw, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Aleksandra Maria Gierut
- University of Warsaw, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.,Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Tymoteusz Oleniecki
- University of Warsaw, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Maciej Pawel Ciemny
- University of Warsaw, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.,Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Andrzej Kolinski
- University of Warsaw, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Mateusz Kurcinski
- University of Warsaw, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- University of Warsaw, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications. Int J Mol Sci 2019; 20:ijms20153774. [PMID: 31375023 PMCID: PMC6696403 DOI: 10.3390/ijms20153774] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Molecular dynamics simulations have emerged as a powerful tool to study biological systems at varied length and timescales. The conventional all-atom molecular dynamics simulations are being used by the wider scientific community in routine to capture the conformational dynamics and local motions. In addition, recent developments in coarse-grained models have opened the way to study the macromolecular complexes for time scales up to milliseconds. In this review, we have discussed the principle, applicability and recent development in coarse-grained models for biological systems. The potential of coarse-grained simulation has been reviewed through state-of-the-art examples of protein folding and structure prediction, self-assembly of complexes, membrane systems and carbohydrates fiber models. The multiscale simulation approaches have also been discussed in the context of their emerging role in unravelling hierarchical level information of biosystems. We conclude this review with the future scope of coarse-grained simulations as a constantly evolving tool to capture the dynamics of biosystems.
Collapse
|
25
|
Ding F, Peng W. Probing the local conformational flexibility in receptor recognition: mechanistic insight from an atomic-scale investigation. RSC Adv 2019; 9:13968-13980. [PMID: 35519308 PMCID: PMC9064033 DOI: 10.1039/c9ra01906e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Inherent protein conformational flexibility is important for biomolecular recognition, but this critical property is often neglected in several studies. This event can lead to large deviations in the research results. In the current contribution, we disclose the effects of the local conformational flexibility on receptor recognition by using an atomic-scale computational method. The results indicated that both static and dynamic reaction modes have noticeable differences, and these originated from the structural features of the protein molecules. Dynamic interaction results displayed that the structural stability and conformational flexibility of the proteins had a significant influence on the recognition processes. This point related closely to the characteristics of the flexible loop regions where bixin located within the protein structures. The energy decomposition analyses and circular dichroism results validated the rationality of the recognition studies. More importantly, the conformational and energy changes of some residues around the bixin binding domain were found to be vital to biological reactions. These microscopic findings clarified the nature of the phenomenon that the local conformational flexibility could intervene in receptor recognition. Obviously, this report may provide biophysical evidence for the exploration of the structure-function relationships of the biological receptors in the human body.
Collapse
Affiliation(s)
- Fei Ding
- School of Environmental Science and Engineering, Chang'an University Xi'an 710064 China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University No. 126 Yanta Road, Yanta District Xi'an 710064 China
| | - Wei Peng
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China +86-29-87092367 +86-29-87092367
- Department of Chemistry, China Agricultural University Beijing 100193 China
| |
Collapse
|
26
|
Kurcinski M, Oleniecki T, Ciemny MP, Kuriata A, Kolinski A, Kmiecik S. CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics 2019; 35:694-695. [PMID: 30101282 PMCID: PMC6379018 DOI: 10.1093/bioinformatics/bty685] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/02/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022] Open
Abstract
SUMMARY CABS-flex standalone is a Python package for fast simulations of protein structure flexibility. The package combines simulations of protein dynamics using CABS coarse-grained protein model with the reconstruction of selected models to all-atom representation and analysis of modeling results. CABS-flex standalone is designed to allow for command-line access to the CABS computations and complete control over simulation process. CABS-flex standalone is equipped with features such as: modeling of multimeric and large-size protein systems, contact map visualizations, analysis of similarities to the reference structure and configurable modeling protocol. For instance, the user may modify the simulation parameters, distance restraints, structural clustering scheme or all-atom reconstruction parameters. With these features CABS-flex standalone can be easily incorporated into other methodologies of structural biology. AVAILABILITY AND IMPLEMENTATION CABS-flex standalone is distributed under the MIT license, which is free for academic and non-profit users. It is implemented in Python. CABS-flex source code, wiki with examples of use and installation instructions for Linux, macOS and Windows are available from the CABS-flex standalone repository at https://bitbucket.org/lcbio/cabsflex.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Tymoteusz Oleniecki
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Maciej Pawel Ciemny
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Aleksander Kuriata
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andrzej Kolinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Ciemny MP, Badaczewska-Dawid AE, Pikuzinska M, Kolinski A, Kmiecik S. Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based Statistical Force Fields. Int J Mol Sci 2019; 20:E606. [PMID: 30708941 PMCID: PMC6386871 DOI: 10.3390/ijms20030606] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022] Open
Abstract
The description of protein disordered states is important for understanding protein folding mechanisms and their functions. In this short review, we briefly describe a simulation approach to modeling protein interactions, which involve disordered peptide partners or intrinsically disordered protein regions, and unfolded states of globular proteins. It is based on the CABS coarse-grained protein model that uses a Monte Carlo (MC) sampling scheme and a knowledge-based statistical force field. We review several case studies showing that description of protein disordered states resulting from CABS simulations is consistent with experimental data. The case studies comprise investigations of protein⁻peptide binding and protein folding processes. The CABS model has been recently made available as the simulation engine of multiscale modeling tools enabling studies of protein⁻peptide docking and protein flexibility. Those tools offer customization of the modeling process, driving the conformational search using distance restraints, reconstruction of selected models to all-atom resolution, and simulation of large protein systems in a reasonable computational time. Therefore, CABS can be combined in integrative modeling pipelines incorporating experimental data and other modeling tools of various resolution.
Collapse
Affiliation(s)
- Maciej Pawel Ciemny
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | | | - Monika Pikuzinska
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Andrzej Kolinski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
28
|
On identifying collective displacements in apo-proteins that reveal eventual binding pathways. PLoS Comput Biol 2019; 15:e1006665. [PMID: 30645590 PMCID: PMC6333327 DOI: 10.1371/journal.pcbi.1006665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023] Open
Abstract
Binding of small molecules to proteins often involves large conformational changes in the latter, which open up pathways to the binding site. Observing and pinpointing these rare events in large scale, all-atom, computations of specific protein-ligand complexes, is expensive and to a great extent serendipitous. Further, relevant collective variables which characterise specific binding or un-binding scenarios are still difficult to identify despite the large body of work on the subject. Here, we show that possible primary and secondary binding pathways can be discovered from short simulations of the apo-protein without waiting for an actual binding event to occur. We use a projection formalism, introduced earlier to study deformation in solids, to analyse local atomic displacements into two mutually orthogonal subspaces—those which are “affine” i.e. expressible as a homogeneous deformation of the native structure, and those which are not. The susceptibility to non-affine displacements among the various residues in the apo- protein is then shown to correlate with typical binding pathways and sites crucial for allosteric modifications. We validate our observation with all-atom computations of three proteins, T4-Lysozyme, Src kinase and Cytochrome P450. Designing drugs which target specific proteins involved in diseases consumes a lot of time and effort in the pharmaceutical industry. In recent times, in silico design of drugs using all-atom molecular modelling has started to provide crucial inputs. Even so, discovery of binding pathways of small molecules both at the primary binding site, as well as sites for allosteric control, is time consuming and often fortuitous. We provide here a framework within which critical conformational changes likely to occur during binding are quantified from statistical analysis of configurations of proteins in their apo, or inactive form, greatly simplifying identification of target residues. We illustrate this idea by analysing ligand binding pathways for three proteins T4- Lysozyme, P450 and Src kinase, which are active respectively in the immune system, metabolism and cancer.
Collapse
|
29
|
Blaszczyk M, Gront D, Kmiecik S, Kurcinski M, Kolinski M, Ciemny MP, Ziolkowska K, Panek M, Kolinski A. Protein Structure Prediction Using Coarse-Grained Models. SPRINGER SERIES ON BIO- AND NEUROSYSTEMS 2019. [DOI: 10.1007/978-3-319-95843-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models. Int J Mol Sci 2018; 19:ijms19113496. [PMID: 30404229 PMCID: PMC6274762 DOI: 10.3390/ijms19113496] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Fluctuations of protein three-dimensional structures and large-scale conformational transitions are crucial for the biological function of proteins and their complexes. Experimental studies of such phenomena remain very challenging and therefore molecular modeling can be a good alternative or a valuable supporting tool for the investigation of large molecular systems and long-time events. In this minireview, we present two alternative approaches to the coarse-grained (CG) modeling of dynamic properties of protein systems. We discuss two CG representations of polypeptide chains used for Monte Carlo dynamics simulations of protein local dynamics and conformational transitions, and highly simplified structure-based elastic network models of protein flexibility. In contrast to classical all-atom molecular dynamics, the modeling strategies discussed here allow the quite accurate modeling of much larger systems and longer-time dynamic phenomena. We briefly describe the main features of these models and outline some of their applications, including modeling of near-native structure fluctuations, sampling of large regions of the protein conformational space, or possible support for the structure prediction of large proteins and their complexes.
Collapse
|
31
|
The oncoprotein HBXIP promotes human breast cancer growth through down-regulating p53 via miR-18b/MDM2 and pAKT/MDM2 pathways. Acta Pharmacol Sin 2018; 39:1787-1796. [PMID: 30181579 DOI: 10.1038/s41401-018-0034-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Mammalian hepatitis B X-interacting protein (HBXIP) is an 18-kDa protein that regulates a large number of transcription factors such as TF-IID, E2F1, SP1, STAT3, c-Myc, and LXR by serving as an oncogenic transcription coactivator and plays an important role in the development of breast cancer. We previously showed that HBXIP as an oncoprotein could enhance the promoter activity of MDM2 through coactivating p53, promoting the MDM2 transcription in breast cancer. In this study we investigated the molecular mechanisms underlying the modulation of MDM2/p53 interaction by HBXIP in human breast cancer MCF-7 cells in vitro and in vivo. We showed that HBXIP could up-regulate MDM2 through inducing DNA methylation of miR-18b, thus suppressing the miR-18b expression, leading to the attenuation of p53 in breast cancer cells. In addition, HBXIP could promote the phosphorylation of MDM2 by increasing the level of pAKT and bind to pMDM2, subsequently enhancing the interaction between MDM2 and p53 for the down-regulation of p53 in breast cancer cells. In MCF-7 breast cancer xenograft nude mice, we also observed that overexpression of HBXIP promoted breast cancer growth through the miR-18b/MDM2 and pAKT/MDM2 pathways. In conclusion, oncoprotein HBXIP suppresses miR-18b to elevate MDM2 and activates pAKT to phosphorylate MDM2 for enhancing the interaction between MDM2 and p53, leading to p53 degradation in promotion of breast cancer growth. Our findings shed light on a novel mechanism of p53 down-regulation during the development of breast cancer.
Collapse
|
32
|
Al Akeel R, Mateen A, Syed R, Alqahtani MS, Alqahtani AS. Alanine rich peptide from Populus trichocarpa inhibit growth of Staphylococcus aureus via targetting its extracellular domain of Sensor Histidine Kinase YycGex protein. Microb Pathog 2018; 121:115-122. [PMID: 29758266 DOI: 10.1016/j.micpath.2018.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/23/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Due to growing concern towards microbial resistance, ongoing search for developing novel bioactive compounds such as peptides is on rise. The aim of this study was to evaluate antimicrobial effect of Populus trichocarpa extract, chemically identify the active peptide fraction and finds its target in Staphylococcus aureus. METHODS In this study the active fraction of P. trichocarpa crude extract was purified and characterized using MS/MS. This peptide PT13 antimicrobial activity was confirmed by in-vitro agar based disk diffusion and in-vivo infection model of G. mellonella. The proteomic expression analysis of S. aureus under influence of PT13 was studied using LTQ-Orbitrap-MS in-solution digestion and identity of target protein was acquired with their quantified expression using label-free approach of Progenesis QI software. Docking study was performed with peptide PT13 and its target YycG protein using CABS-dock. RESULTS The active fraction PT13 sequence was identified as KVPVAAAAAAAAAVVASSMVVAAAK, with 25 amino acid including 13 alanine having M/Z 2194.2469. PT13 was uniformly inhibited growth S. aureus SA91 and MIC was determined 16 μg/mL for SA91 S. aureus strain. Sensor histidine kinase (YycG) was most significant target found differentially expressed under influence of PT13. G. mellonella larvae were killed rapidly due to S aureus infection, whereas death in protected group was insignificant in compare to control. The docking models showed ten docking models with RMSD value 1.89 for cluster 1 and RMSD value 3.95 for cluster 2 which is predicted to be high quality model. CONCLUSION Alanine rich peptide could be useful in constructing as antimicrobial peptide for targeting extracellular Domain of Sensor Histidine Kinase YycG from S. aureus used in the study.
Collapse
Affiliation(s)
- Raid Al Akeel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia
| | - Ayesha Mateen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mohammed S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Ciemny M, Kurcinski M, Kamel K, Kolinski A, Alam N, Schueler-Furman O, Kmiecik S. Protein-peptide docking: opportunities and challenges. Drug Discov Today 2018; 23:1530-1537. [PMID: 29733895 DOI: 10.1016/j.drudis.2018.05.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
Peptides have recently attracted much attention as promising drug candidates. Rational design of peptide-derived therapeutics usually requires structural characterization of the underlying protein-peptide interaction. Given that experimental characterization can be difficult, reliable computational tools are needed. In recent years, a variety of approaches have been developed for 'protein-peptide docking', that is, predicting the structure of the protein-peptide complex, starting from the protein structure and the peptide sequence, including variable degrees of information about the peptide binding site and/or conformation. In this review, we provide an overview of protein-peptide docking methods and outline their capabilities, limitations, and applications in structure-based drug design. Key challenges are also briefly discussed, such as modeling of large-scale conformational changes upon binding, scoring of predicted models, and optimal inclusion of varied types of experimental data and theoretical predictions into an integrative modeling process.
Collapse
Affiliation(s)
- Maciej Ciemny
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Mateusz Kurcinski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Karol Kamel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Andrzej Kolinski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Nawsad Alam
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
34
|
Yadahalli S, Li J, Lane DP, Gosavi S, Verma CS. Characterizing the conformational landscape of MDM2-binding p53 peptides using Molecular Dynamics simulations. Sci Rep 2017; 7:15600. [PMID: 29142290 PMCID: PMC5688104 DOI: 10.1038/s41598-017-15930-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
The conformational landscapes of p53 peptide variants and phage derived peptide (12/1) variants, all known to bind to MDM2, are studied using hamiltonian replica exchange molecular dynamics simulations. Complementing earlier observations, the current study suggests that the p53 peptides largely follow the ‘conformational selection’ paradigm in their recognition of and complexation by MDM2 while the 12/1 peptides likely undergo some element of conformational selection but are mostly driven by ‘binding induced folding’. This hypothesis is further supported by pulling simulations that pull the peptides away from their bound states with MDM2. This data extends the earlier mechanisms proposed to rationalize the entropically driven binding of the p53 set and the enthalpically driven binding of the 12/1 set. Using our hypothesis, we suggest mutations to the 12/1 peptide that increase its helicity in simulations and may, in turn, shift the binding towards conformational selection. In summary, understanding the conformational landscapes of the MDM2-binding peptides may suggest new peptide designs with bespoke binding mechanisms.
Collapse
Affiliation(s)
- Shilpa Yadahalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India.,Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Manipal University, Madhav Nagar, Manipal, 576104, India.,p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648, Singapore
| | - Jianguo Li
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, #06-00, Singapore, 168751, Singapore
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore, 138648, Singapore
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore. .,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 11758, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
35
|
Meshach Paul D, Chadah T, Senthilkumar B, Sethumadhavan R, Rajasekaran R. Structural distortions due to missense mutations in human formylglycine-generating enzyme leading to multiple sulfatase deficiency. J Biomol Struct Dyn 2017; 36:3575-3585. [PMID: 29048999 DOI: 10.1080/07391102.2017.1394220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major candidate for multiple sulfatase deficiency is a defective formylglycine-generating enzyme (FGE). Though adequately produced, mutations in FGE stall the activation of sulfatases and prevent their activity. Missense mutations, viz. E130D, S155P, A177P, W179S, C218Y, R224W, N259I, P266L, A279V, C336R, R345C, A348P, R349Q and R349W associated with multiple sulfatase deficiency are yet to be computationally studied. Aforementioned mutants were initially screened through ws-SNPs&GO3D program. Mutant R345C acquired the highest score, and hence was studied in detail. Discrete molecular dynamics explored structural distortions due to amino acid substitution. Therein, comparative analyses of wild type and mutant were carried out. Changes in structural contours were observed between wild type and mutant. Mutant had low conformational fluctuation, high atomic mobility and more compactness than wild type. Moreover, free energy landscape showed mutant to vary in terms of its conformational space as compared to wild type. Subsequently, wild type and mutant were subjected to single-model analyses. Mutant had lesser intra molecular interactions than wild type suggesting variations pertaining to its secondary structure. Furthermore, simulated thermal denaturation showed dissimilar pattern of hydrogen bond dilution. Effects of these variations were observed as changes in elements of secondary structure. Docking studies of mutant revealed less favourable binding energy towards its substrate as compared to wild type. Therefore, theoretical explanations for structural distortions of mutant R345C leading to multiple sulfatase deficiency were revealed. The protocol of the study could be useful to examine the effectiveness of pharmacological chaperones prior to experimental studies.
Collapse
Key Words
- , sulfatase-modifying factor
- ARSB, aryl sulfatase B
- AUC, area under the curve
- DMD, discrete molecular dynamics
- FEL, free energy landscape
- FGE, formylglycine-generating enzyme
- FGly, formylglycine
- LSD, lysosomal storage disorder
- MCC, Mathew’s correlation coeffecient
- MD, molecular dynamics
- MSD, multiple sulfatase defeciency
- PCA, principal component analysis
- PDB, Protein Data Bank
- PIC, protein interaction calculator
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMSD, root mean square deviation
- RMSF, root mean square fluctuation
- RoG, radius of gyration
- SVM-3D, support vector machine-3D
- discrete molecular dynamics
- free energy landscape
- genetic disorder
- lysosomal storage disorder
- misfolding
- multiple sulfatase
Collapse
Affiliation(s)
- D Meshach Paul
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - Tania Chadah
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - B Senthilkumar
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - Rao Sethumadhavan
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - R Rajasekaran
- a Department of Biotechnology, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| |
Collapse
|
36
|
Krüger DM, Glas A, Bier D, Pospiech N, Wallraven K, Dietrich L, Ottmann C, Koch O, Hennig S, Grossmann TN. Structure-Based Design of Non-natural Macrocyclic Peptides That Inhibit Protein-Protein Interactions. J Med Chem 2017; 60:8982-8988. [PMID: 29028171 PMCID: PMC5682607 DOI: 10.1021/acs.jmedchem.7b01221] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Macrocyclic
peptides can interfere with challenging biomolecular
targets including protein–protein interactions. Whereas there
are various approaches that facilitate the identification of peptide-derived
ligands, their evolution into higher affinity binders remains a major
hurdle. We report a virtual screen based on molecular docking that
allows the affinity maturation of macrocyclic peptides taking non-natural
amino acids into consideration. These macrocycles bear large and flexible
substituents that usually complicate the use of docking approaches.
A virtual library containing more than 1400 structures was screened
against the target focusing on docking poses with the core structure
resembling a known bioactive conformation. Based on this screen, a
macrocyclic peptide 22 involving two non-natural amino
acids was evolved showing increased target affinity and biological
activity. Predicted binding modes were verified by X-ray crystallography.
The presented workflow allows the screening of large macrocyclic peptides
with diverse modifications thereby expanding the accessible chemical
space and reducing synthetic efforts.
Collapse
Affiliation(s)
- Dennis M Krüger
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - David Bier
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Department of Chemistry, University of Duisburg-Essen , Universitätstr. 7, 45141 Essen, Germany
| | - Nicole Pospiech
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Kerstin Wallraven
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Laura Dietrich
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Christian Ottmann
- Department of Chemistry, University of Duisburg-Essen , Universitätstr. 7, 45141 Essen, Germany.,Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology , Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Oliver Koch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society , Otto-Hahn-Str. 15, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University , Otto-Hahn-Str. 6, 44227 Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam , De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
37
|
Fanfone D, Despretz N, Stanicki D, Rubio-Magnieto J, Fossépré M, Surin M, Rorive S, Salmon I, Vander Elst L, Laurent S, Muller RN, Saussez S, Burtea C. Toward a new and noninvasive diagnostic method of papillary thyroid cancer by using peptide vectorized contrast agents targeted to galectin-1. Med Oncol 2017; 34:184. [PMID: 28986753 DOI: 10.1007/s12032-017-1042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 11/24/2022]
Abstract
The incidence of papillary thyroid cancer has increased these last decades due to a better detection. High prevalence of nodules combined with the low incidence of thyroid cancers constitutes an important diagnostic challenge. We propose to develop an alternative diagnostic method to reduce the number of useless and painful thyroidectomies using a vectorized contrast agent for magnetic resonance imaging. Galectin-1 (gal-1), a protein overexpressed in well-differentiated thyroid cancer, has been targeted with a randomized linear 12-mer peptide library using the phage display technique. Selected peptides have been conjugated to ultrasmall superparamagnetic particles of iron oxide (USPIO). Peptides and their corresponding contrast agents have been tested in vitro for their specific binding and toxicity. Two peptides (P1 and P7) were selected according to their affinity toward gal-1. Their binding has been revealed by immunohistochemistry on human thyroid cancer biopsies, and they were co-localized with gal-1 by immunofluorescence on TPC-1 cell line. Both peptides induce a decrease in TPC-1 cells' adhesion to gal-1 immobilized on culture plates. After coupling to USPIO, the peptides preserved their affinity toward gal-1. Their specific binding has been corroborated by co-localization with gal-1 expressed by TPC-1 cells and by their ability to compete with anti-gal-1 antibody. The peptides and their USPIO derivatives produce no toxicity in HepaRG cells as determined by MTT assay. The vectorized contrast agents are potential imaging probes for thyroid cancer diagnosis. Moreover, the two gal-1-targeted peptides prevent cancer cell adhesion by interacting with the carbohydrate-recognition domain of gal-1.
Collapse
Affiliation(s)
- Deborah Fanfone
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Nadège Despretz
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Jenifer Rubio-Magnieto
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons, Avenue Victor Maistriau, 19, 7000, Mons, Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons, Avenue Victor Maistriau, 19, 7000, Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons, Avenue Victor Maistriau, 19, 7000, Mons, Belgium
| | - Sandrine Rorive
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland, 8, 6041, Charleroi, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, University of Mons, Avenue du Champ de Mars, 6, 7000, Mons, Belgium
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, University of Mons, Avenue Victor Maistriau 19, 7000, Mons, Belgium.
| |
Collapse
|
38
|
Kurcinski M, Blaszczyk M, Ciemny MP, Kolinski A, Kmiecik S. A protocol for CABS-dock protein-peptide docking driven by side-chain contact information. Biomed Eng Online 2017; 16:73. [PMID: 28830545 PMCID: PMC5568604 DOI: 10.1186/s12938-017-0363-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background The characterization of protein–peptide interactions is a challenge for computational molecular docking. Protein–peptide docking tools face at least two major difficulties: (1) efficient sampling of large-scale conformational changes induced by binding and (2) selection of the best models from a large set of predicted structures. In this paper, we merge an efficient sampling technique with external information about side-chain contacts to sample and select the best possible models. Methods In this paper we test a new protocol that uses information about side-chain contacts in CABS-dock protein–peptide docking. As shown in our recent studies, CABS-dock enables efficient modeling of large-scale conformational changes without knowledge about the binding site. However, the resulting set of binding sites and poses is in many cases highly diverse and difficult to score. Results As we demonstrate here, information about a single side-chain contact can significantly improve the prediction accuracy. Importantly, the imposed constraints for side-chain contacts are quite soft. Therefore, the developed protocol does not require precise contact information and ensures large-scale peptide flexibility in the broad contact area. Conclusions The demonstrated protocol provides the extension of the CABS-dock method that can be practically used in the structure prediction of protein–peptide complexes guided by the knowledge of the binding interface.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Maciej Blaszczyk
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Maciej Pawel Ciemny
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.,Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Andrzej Kolinski
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
39
|
Ciemny MP, Kurcinski M, Blaszczyk M, Kolinski A, Kmiecik S. Modeling EphB4-EphrinB2 protein-protein interaction using flexible docking of a short linear motif. Biomed Eng Online 2017; 16:71. [PMID: 28830442 PMCID: PMC5568603 DOI: 10.1186/s12938-017-0362-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Many protein–protein interactions are mediated by a short linear motif. Usually, amino acid sequences of those motifs are known or can be predicted. It is much harder to experimentally characterize or predict their structure in the bound form. In this work, we test a possibility of using flexible docking of a short linear motif to predict the interaction interface of the EphB4-EphrinB2 complex (a system extensively studied for its significance in tumor progression). Methods In the modeling, we only use knowledge about the motif sequence and experimental structures of EphB4-EphrinB2 complex partners. The proposed protocol enables efficient modeling of significant conformational changes in the short linear motif fragment during molecular docking simulation. For the docking simulations, we use the CABS-dock method for docking fully flexible peptides to flexible protein receptors (available as a server at http://biocomp.chem.uw.edu.pl/CABSdock/). Based on the docking result, the protein–protein complex is reconstructed and refined. Results Using this novel protocol, we obtained an accurate EphB4-EphrinB2 interaction model. Conclusions The results show that the CABS-dock method may be useful as the primary docking tool in specific protein–protein docking cases similar to EphB4-EphrinB2 complex—that is, where a short linear motif fragment can be identified.
Collapse
Affiliation(s)
- Maciej Pawel Ciemny
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.,Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, Poland
| | - Mateusz Kurcinski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Maciej Blaszczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Andrzej Kolinski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Sebastian Kmiecik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
40
|
Ciemny MP, Kurcinski M, Kozak KJ, Kolinski A, Kmiecik S. Highly Flexible Protein-Peptide Docking Using CABS-Dock. Methods Mol Biol 2017; 1561:69-94. [PMID: 28236234 DOI: 10.1007/978-1-4939-6798-8_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-peptide molecular docking is a difficult modeling problem. It is even more challenging when significant conformational changes that may occur during the binding process need to be predicted. In this chapter, we demonstrate the capabilities and features of the CABS-dock server for flexible protein-peptide docking. CABS-dock allows highly efficient modeling of full peptide flexibility and significant flexibility of a protein receptor. During CABS-dock docking, the peptide folding and binding process is explicitly simulated and no information about the peptide binding site or its structure is used. This chapter presents a successful CABS-dock use for docking a potentially therapeutic peptide to a protein target. Moreover, simulation contact maps, a new CABS-dock feature, are described and applied to the docking test case. Finally, a tutorial for running CABS-dock from the command line or command line scripts is provided. The CABS-dock web server is available from http://biocomp.chem.uw.edu.pl/CABSdock/ .
Collapse
Affiliation(s)
- Maciej Paweł Ciemny
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Mateusz Kurcinski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Konrad Jakub Kozak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Andrzej Kolinski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Sebastian Kmiecik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|