1
|
Hossain A, Joti FT, Hossain MS, Al-Noman A, Thowing C, Mursona M, Islam MR, Rahman ME, Matin MN, Haque MA. Identification of Potential Inhibitors Targeting Non-Structural Proteins NS3 and NS5 of Dengue Virus Using Docking and Deep Learning Approaches. Pharmaceuticals (Basel) 2025; 18:566. [PMID: 40284001 PMCID: PMC12030398 DOI: 10.3390/ph18040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Dengue virus (DENV) is the fatal pathogenic arthropod-borne virus (arboviruses) that belongs to the Flaviviridae family, which transmits to humans through mosquito bites from infected Aedes aegypti and Aedes albopictus mosquitoes or maternal-fetal transmission. Despite antigenic differences, the four serotypes of DENV (DENV-1 to DENV-4) share 65-78% of their genome. Non-structural (NS) proteins amongst serotypes show analogous functions. Among NS proteins, NS3 and NS5 are frequently used as targets for antiviral drugs due to their multifunctional roles. Methods: To identify potential inhibitors of DENV, we created a phytochemical library of 898 compounds derived from 17 medicinal plants recognized for their medicinal and antiviral properties. The phytochemicals library has been docked against the target proteins. Phytochemicals with a docking score greater than -8.0 kcal/mol were selected for further evaluation using a machine learning approach. Further, molecular dynamics (MD) simulations were conducted to evaluate the root mean square deviation, root mean square fluctuation, solvent-accessible surface area, radius of gyration, and hydrogen bond count of the compounds. Results: From the docking results, Silibinin, Rubiadin, and Ellagic acid showed binding affinities of -8.5, -8.3, and -8.2 kcal/mol, respectively, for NS3, and NSC 640467, Bisandrographolide A, and Andrographidin A showed binding affinities of -9.3, -10.1, and -9.3 kcal/mol, respectively, for NS5 target proteins. These compounds exhibited strong interactions with target proteins. MD simulation results confirmed the stable formation of protein-ligand complexes. Further, absorption, distribution, metabolism, excretion, and toxicity (ADMET) and bioactivity predictions confirmed their pharmacological safety. Conclusions: Despite global public health concerns, DENV still lacks specific drug treatments. Our identified new drug candidates might help for developing effective antiviral inhibitors against the DENV. However, further confirmation is needed through in vivo and in vitro research.
Collapse
Affiliation(s)
- Alomgir Hossain
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Faria Tasnin Joti
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Md. Shohag Hossain
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Abdullah Al-Noman
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Chomong Thowing
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Mehjabin Mursona
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Md. Robiul Islam
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Md. Ekhtiar Rahman
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Nurul Matin
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Pham S, Zhao B, Neetu N, Sankaran B, Patil K, Ramani S, Song Y, Estes MK, Palzkill T, Prasad BVV. Conformational flexibility is a critical factor in designing broad-spectrum human norovirus protease inhibitors. J Virol 2025; 99:e0175724. [PMID: 39873493 PMCID: PMC11852804 DOI: 10.1128/jvi.01757-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/04/2025] [Indexed: 01/30/2025] Open
Abstract
Human norovirus (HuNoV) is a leading cause of gastroenteritis worldwide and is associated with significant morbidity, mortality, and economic impact. There are currently no licensed antiviral drugs for the treatment of HuNoV-associated gastroenteritis. The HuNoV protease plays a critical role in the initiation of virus replication by cleaving the polyprotein. Thus, it is an ideal target for developing antiviral small-molecule inhibitors. While rupintrivir, a potent small-molecule inhibitor of several picornavirus proteases, effectively inhibits GI.1 protease, it is an order of magnitude less effective against GII protease. Other GI.1 protease inhibitors also tend to be less effective against GII proteases. To understand the structural basis for the potency difference, we determined the crystal structures of proteases of GI.1, pandemic GII.4 (Houston and Sydney), and GII.3 in complex with rupintrivir. These structures show that the open substrate pocket in GI protease binds rupintrivir without requiring significant conformational changes, whereas, in GII proteases, the closed pocket flexibly extends, reorienting arginine-112 in the BII-CII loop to accommodate rupintrivir. Structures of R112A protease mutants with rupintrivir, coupled with enzymatic and inhibition studies, suggest R112 is involved in displacing both substrate and ligands from the active site, implying a role in the release of cleaved products during polyprotein processing. Thus, the primary determinant for differential inhibitor potency between the GI and GII proteases is the increased flexibility in the BII-CII loop of the GII proteases caused by the H-G mutation in this loop. Therefore, the inherent flexibility of the BII-CII loop in GII proteases is a critical factor to consider when developing broad-spectrum inhibitors for HuNoV proteases. IMPORTANCE Human noroviruses are a significant cause of sporadic and epidemic gastroenteritis worldwide. There are no vaccines or antiviral drugs currently available to treat infections. Our work elucidates the structural differences between GI.1 and GII proteases in response to inhibitor binding and will inform the future development of broad-spectrum norovirus protease inhibitors.
Collapse
Affiliation(s)
- Son Pham
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Boyang Zhao
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Neetu Neetu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics, and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, California, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Lang J, Dutta SK, Leuthold MM, Reichert L, Kühl N, Martina B, Klein CD. Antiviral drug discovery with an optimized biochemical dengue protease assay: Improved predictive power for antiviral efficacy. Antiviral Res 2025; 234:106053. [PMID: 39645089 DOI: 10.1016/j.antiviral.2024.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/07/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The viral NS2B-NS3 protease is a promising drug target to combat dengue virus (DENV) and other emerging flaviviruses. The discovery of novel DENV protease inhibitors with antiviral efficacy is hampered by the low predictive power of biochemical assays. We herein present a comparative evaluation of biochemical DENV protease assay conditions and their benchmarking against antiviral efficacy and a protease-specific reporter gene assay. Variations were performed with respect to pH, type of detergent, buffer, and substrate. The revised assay conditions were applied in a medicinal chemistry effort aimed at phenylglycine protease inhibitors. This validation study demonstrated a considerably improved predictive power for antiviral efficacy in comparison to previous approaches. An extensive evaluation of phenylglycine-based DENV protease inhibitors with highly diverse N-terminal caps indicates further development potential in this structural region. Furthermore, the phenylglycine moiety may be less essential than previously assumed, providing a development option towards reduced lipophilicity and thereby an improved pharmacokinetic and toxicity profile.
Collapse
Affiliation(s)
- Johannes Lang
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Sudip Kumar Dutta
- Artemis Bioservices, Molengraaffsingel 10, 2629 JD, Delft, the Netherlands
| | - Mila M Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Lisa Reichert
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Byron Martina
- Artemis Bioservices, Molengraaffsingel 10, 2629 JD, Delft, the Netherlands
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Mushtaq M, Siddiqui AR, Shafeeq S, Khalid A, Ul-Haq Z. Shifting paradigms: The promise of allosteric inhibitors against dengue virus protease. Int J Biol Macromol 2024; 282:137056. [PMID: 39488315 DOI: 10.1016/j.ijbiomac.2024.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Dengue, a mosquito-borne viral infection caused by the dengue virus (DENV), is a global health challenge. Annually, approximately 400 million cases are reported worldwide, signaling a persistent upward trend from previous years and projected a manifold increase in the future. There is a growing need for innovative and integrated approaches aimed at effective disease management. In this regard, scientific efforts are underway to find a new antiviral inhibitor that is desperately needed due to the growing prevalence of dengue, along with inadequate vector control and few vaccinations. The NS2B-NS3 protease complex within the DENV genome holds significant importance, making it an attractive target for potential interventions. Many competitive inhibitors are not clinically relevant even after extensive study, and these early hits are often not followed up to viable leads. The current focus is on exploring alternative target sites for developing effective anti-dengue compounds, resulting in the identification of various allosteric sites in recent years. While previous reviews have extensively covered active site inhibitors, this is to the best of our knowledge the first comprehensive review discussing the allosteric sites and allosteric inhibitors in greater detail. The present survey may assist researchers in understanding the key aspects and identifying new antagonists targeting the allosteric site of DENV protease.
Collapse
Affiliation(s)
- Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ali Raza Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sehrish Shafeeq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
5
|
Pham S, Zhao B, Neetu N, Sankaran B, Patil K, Ramani S, Song Y, Estes MK, Palzkill T, Prasad BV. CONFORMATIONAL FLEXIBILITY IS A CRITICAL FACTOR IN DESIGNING BROAD-SPECTRUM HUMAN NOROVIRUS PROTEASE INHIBITORS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613336. [PMID: 39345439 PMCID: PMC11430002 DOI: 10.1101/2024.09.16.613336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Human norovirus (HuNoV) infection is a global health and economic burden. Currently, there are no licensed HuNoV vaccines or antiviral drugs available. The protease encoded by the HuNoV genome plays a critical role in virus replication by cleaving the polyprotein and is, therefore, an excellent target for developing small molecule inhibitors. While rupintrivir, a potent small-molecule inhibitor of several picornavirus proteases, effectively inhibits GI.1 protease, it is an order of magnitude less effective against GII protease. Other GI.1 protease inhibitors also tend to be less effective against GII proteases. To understand the structural basis for the potency difference, we determined the crystal structures of proteases of GI.1, pandemic GII.4 (Houston and Sydney), and GII.3 in complex with rupintrivir. These structures show that the open substrate pocket in GI protease binds rupintrivir without requiring significant conformational changes, whereas, in GII proteases, the closed pocket flexibly extends, reorienting arginine-112 in the BII-CII loop to accommodate rupintrivir. Structures of R112A protease mutants with rupintrivir, coupled with enzymatic and inhibition studies, suggest R112 is involved in displacing both substrate and ligands from the active site, implying a role in the release of cleaved products during polyprotein processing. Thus, the primary determinant for differential inhibitor potency between the GI and GII proteases is the increased flexibility in the BII-CII loop of the GII proteases caused by H-G mutation in this loop. Therefore, the inherent flexibility of the BII-CII loop in GII proteases is a critical factor to consider when developing broad-spectrum inhibitors for HuNoV proteases.
Collapse
Affiliation(s)
- Son Pham
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Boyang Zhao
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Neetu Neetu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics, and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
High-Throughput Fluorescent Assay for Inhibitor Screening of Proteases from RNA Viruses. Molecules 2021; 26:molecules26133792. [PMID: 34206406 PMCID: PMC8270262 DOI: 10.3390/molecules26133792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Spanish flu, polio epidemics, and the ongoing COVID-19 pandemic are the most profound examples of severe widespread diseases caused by RNA viruses. The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demands affordable and reliable assays for testing antivirals. To test inhibitors of viral proteases, we have developed an inexpensive high-throughput assay based on fluorescent energy transfer (FRET). We assayed an array of inhibitors for papain-like protease from SARS-CoV-2 and validated it on protease from the tick-borne encephalitis virus to emphasize its versatility. The reaction progress is monitored as loss of FRET signal of the substrate. This robust and reproducible assay can be used for testing the inhibitors in 96- or 384-well plates.
Collapse
|
7
|
Crystal structures of full length DENV4 NS2B-NS3 reveal the dynamic interaction between NS2B and NS3. Antiviral Res 2020; 182:104900. [PMID: 32763315 DOI: 10.1016/j.antiviral.2020.104900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022]
Abstract
Flavivirus is a genus of the Flaviviridae family which includes significant emerging and re-emerging human disease-causing arboviruses such as dengue and Zika viruses. Flaviviral non-structural protein 3 (NS3) protease-helicase plays essential roles in viral replication and is an attractive antiviral target. A construct which connects the cytoplasmic cofactor region of NS2B and NS3 protease with an artificial glycine-rich flexible linker has been widely used for structural, biochemical and drug-screening studies. The effect of this linker on the dynamics and enzymatic activity of the protease has been studied by several biochemical and NMR methods but the findings remained inconclusive. Here, we designed and carried out a comparative study of constructs of NS2B cofactor joined to the full length DENV4 NS3 in three different ways, namely bNS2B47NS3 (bivalent), eNS2B47NS3(enzymatically cleavable) and gNS2B47NS3 (glycine-rich linker). We report the crystal structures of linked and unlinked NS2B47-NS3 constructs in their free state and in complex with bovine pancreatic trypsin inhibitor (BPTI). These structures demonstrate that the NS2B cofactor predominantly adopts a closed conformation in complex with full-length NS3. The glycine-rich linker between NS2B and NS3 may promote the open conformation which interferes with protease activity. This negative impact on the enzyme structure and function is restricted to the protease activity as the ATPase activity is not affected in vitro.
Collapse
|
8
|
Wang L, Liang R, Gao Y, Li Y, Deng X, Xiang R, Zhang Y, Ying T, Jiang S, Yu F. Development of Small-Molecule Inhibitors Against Zika Virus Infection. Front Microbiol 2019; 10:2725. [PMID: 31866959 PMCID: PMC6909824 DOI: 10.3389/fmicb.2019.02725] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years, the outbreak of infectious disease caused by Zika virus (ZIKV) has posed a major threat to global public health, calling for the development of therapeutics to treat ZIKV disease. Here, we have described the different stages of the ZIKV life cycle and summarized the latest progress in the development of small-molecule inhibitors against ZIKV infection. We have also discussed some general strategies for the discovery of small-molecule ZIKV inhibitors.
Collapse
Affiliation(s)
- Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Ruiying Liang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yanbai Li
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Rong Xiang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yina Zhang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibo Jiang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Hu Y, Sun L. Systematic Analysis of Structure Similarity between Zika Virus and Other Flaviviruses. ACS Infect Dis 2019; 5:1070-1080. [PMID: 31038920 DOI: 10.1021/acsinfecdis.9b00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) infection has caused global concern because of its association with fetal microcephaly and serious neurological complications in adults since 2016. Currently, no specific anti-ZIKV therapy is available to control ZIKV infection. During the last couple of years, the intensive investigation of ZIKV structure has provided significant information for structure-based vaccine and drug design. In this review, we summarized the research progress on the structures of ZIKV and its component proteins. We analyzed the structure identity and the differences between ZIKV and other flaviviruses. This information is crucial to guiding structure-based anti-ZIKV inhibitors and vaccine discovery.
Collapse
Affiliation(s)
- Yuxia Hu
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 20032, China
| | - Lei Sun
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 20032, China
| |
Collapse
|
10
|
Majerová T, Novotný P, Krýsová E, Konvalinka J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie 2019; 166:132-141. [PMID: 31077760 DOI: 10.1016/j.biochi.2019.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Zika and Dengue viruses have attracted substantial attention from researchers in light of recent outbreaks of Dengue fever and increases in cases of congenital microcephaly in areas with Zika incidence. This review summarizes the current state of knowledge about Zika and Dengue proteases. These enzymes have several interesting features: 1) NS3 serine protease requires the activating co-factor NS2B, which is anchored in the membrane of the endoplasmic reticulum; 2) NS2B displays extensive conformational dynamics; 3) NS3 is a multidomain protein with proteolytic, NTPase, RNA 5' triphosphatase and helicase activity and has many protein-protein interaction partners; 4) NS3 is autoproteolytically released from its precursor. Attempts to design tight-binding and specific active-site inhibitors are complicated by the facts that the substrate pocket of the NS2B-NS3 protease is flat and the active-site ligands are charged. The ionic character of potential active-site inhibitors negatively influences their cell permeability. Possibilities to block cis-autoprocessing of the protease precursor have recently been considered. Additionally, potential allosteric sites on NS2B-NS3 proteases have been identified and allosteric compounds have been designed to impair substrate binding and/or block the NS2B-NS3 interaction. Such compounds could be specific to viral proteases, without off-target effects on host serine proteases, and could have favorable pharmacokinetic profiles. This review discusses various groups of inhibitors of these proteases according to their mechanisms of action and chemical structures.
Collapse
Affiliation(s)
- Taťána Majerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic
| | - Pavel Novotný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Eliška Krýsová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic.
| |
Collapse
|
11
|
Phoo WW, Zhang Z, Wirawan M, Chew EJC, Chew ABL, Kouretova J, Steinmetzer T, Luo D. Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antiviral Res 2018; 160:17-24. [PMID: 30315877 DOI: 10.1016/j.antiviral.2018.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/01/2023]
Abstract
Zika virus NS2B-NS3 protease plays an essential role in viral replication by processing the viral polyprotein into individual proteins. The viral protease is therefore considered as an ideal antiviral drug target. To facilitate the development of protease inhibitors, we report three high-resolution co-crystal structures of bZiPro with peptidomimetic inhibitors composed of a P1-P4 segment and different P1' residues. Compounds 1 and 2 possess small P1' groups that are split off by bZiPro, which could be detected by mass spectrometry. On the other hand, the more potent compound 3 contains a bulky P1' benzylamide structure that is resistant to cleavage by bZiPro, demonstrating that presence of an uncleavable C-terminal cap contributes to a slightly improved inhibitory potency. The N-terminal phenylacetyl residue occupies a position above the P1 side chain and therefore stabilizes a horseshoe-like backbone conformation of the bound inhibitors. The P4 moieties show unique intra- and intermolecular interactions. Our work reports the detailed binding mode interactions of substrate-analogue inhibitors within the S4-S1' pockets and explains the preference of bZiPro for basic P1-P3 residues. These new structures of protease-inhibitor complexes will guide the design of more effective NS2B-NS3 protease inhibitors with improved potency and bioavailability.
Collapse
Affiliation(s)
- Wint Wint Phoo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zhenzhen Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Melissa Wirawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Edwin Jun Chen Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Alvin Bing Liang Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, RTP 02-07, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jenny Kouretova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, Marburg 35032, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, Marburg 35032, Germany.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
12
|
Pierdominici-Sottile G, Cossio-Pérez R, Da Fonseca I, Kizjakina K, Tanner JJ, Sobrado P. Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase. Biochemistry 2018; 57:3713-3721. [PMID: 29757624 DOI: 10.1021/acs.biochem.8b00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Galactose is an abundant monosaccharide found exclusively in mammals as galactopyranose (Gal p), the six-membered ring form of this sugar. In contrast, galactose appears in many pathogenic microorganisms as the five-membered ring form, galactofuranose (Gal f). Gal f biosynthesis begins with the conversion of UDP-Gal p to UDP-Gal f catalyzed by the flavoenzyme UDP-galactopyranose mutase (UGM). Because UGM is essential for the survival and proliferation of several pathogens, there is interest in understanding the catalytic mechanism to aid inhibitor development. Herein, we have used kinetic measurements and molecular dynamics simulations to explore the features of UGM that control the rate-limiting step (RLS). We show that UGM from the pathogenic fungus Aspergillus fumigatus also catalyzes the isomerization of UDP-arabinopyranose (UDP-Ara p), which differs from UDP-Gal p by lacking a -CH2-OH substituent at the C5 position of the hexose ring. Unexpectedly, the RLS changed from a chemical step for the natural substrate to product release with UDP-Ara p. This result implicated residues that contact the -CH2-OH of UDP-Gal p in controlling the mechanistic path. The mutation of one of these residues, Trp315, to Ala changed the RLS of the natural substrate to product release, similar to the wild-type enzyme with UDP-Ara p. Molecular dynamics simulations suggest that steric complementarity in the Michaelis complex is responsible for this distinct behavior. These results provide new insight into the UGM mechanism and, more generally, how steric factors in the enzyme active site control the free energy barriers along the reaction path.
Collapse
Affiliation(s)
| | - Rodrigo Cossio-Pérez
- Sci-prot. Departamento de Ciencia y Tecnología , Universidad Nacional de Quilmes , Bernal B1876BXD , Argentina
| | - Isabel Da Fonseca
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Karina Kizjakina
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - John J Tanner
- Departments of Biochemistry and Chemistry , University of Missouri-Columbia , Columbia , Missouri 65211 , United States
| | - Pablo Sobrado
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|