1
|
Ansari MF, Khan HY, Tabassum S, Arjmand F. Advances in anticancer alkaloid-derived metallo-chemotherapeutic agents in the last decade: Mechanism of action and future prospects. Pharmacol Ther 2023; 241:108335. [PMID: 36567056 DOI: 10.1016/j.pharmthera.2022.108335] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Metal-based complexes have occupied a pioneering niche in the treatment of many chronic diseases, including various types of cancers. Despite the phenomenal success of cisplatin for the treatment of many solid malignancies, a limited number of metallo-drugs are in clinical use against cancer chemotherapy till date. While many other prominent platinum and non‑platinum- based metallo-drugs (e.g. NAMI-A, KP1019, carboplatin, oxaliplatin, titanocene dichloride, casiopeinas® etc) have entered clinical trials, many have failed at later stages of R&D due to deleterious toxic effects, intrinsic resistance and poor pharmacokinetic response and low therapeutic efficacy. Nonetheless, research in the area of medicinal inorganic chemistry has been increasing exponentially over the years, employing novel target based drug design strategies aimed at improving pharmacological outcomes and at the same time mitigating the side-effects of these drug entities. Over the last few decades, natural products became one of the key structural motifs in the anticancer drug development. Many eminent researchers in the area of medicinal chemistry are devoted to develop new 3d-transition metal-based anticancer drugs/repurpose the existing bioactive compounds derived from myriad pharmacophores such as coumarins, flavonoids, chromones, alkaloids etc. Metal complexes of natural alkaloids and their analogs such as luotonin A, jatrorrhizine, berberine, oxoaporphine, 8-oxychinoline etc. have gained prominence in the anticancer drug development process as the naturally occurring alkaloids can be anti-proliferative, induce apoptosis and exhibit inhibition of angiogenesis with better healing effect. While some of them are inhibitors of ERK signal-regulated kinases, others show activity based on cyclooxygenases-2 (COX-2) and telomerase inhibition. However, the targets of these alkaloid complexes are still unclear, though it is well-established that they demonstrate anticancer potency by interfering with multiple pathways of tumorigenesis and tumor progression both in vitro and in vivo. Over the last decade, many significant advances have been made towards the development of natural alkaloid-based metallo-drug therapeutics for intervention in cancer chemotherapy that have been summarized below and reviewed in this article.
Collapse
Affiliation(s)
| | - Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
2
|
Xu Q, Ji Y, Chen M, Shao X. 4-Hydroxyl-oxoisoaporphine, one small molecule as theranostic agent for simultaneous fluorescence imaging and photodynamic therapy as type II photosensitizer. Photochem Photobiol Sci 2021; 20:501-512. [PMID: 33743176 DOI: 10.1007/s43630-021-00030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/17/2021] [Indexed: 12/30/2022]
Abstract
Oxoisoaporphine (OA) is a plant phototoxin isolated from Menispermaceae, however, its weak fluorescence and low water solubility impede it for theranostics. We developed here 4-hydroxyl-oxoisoaporphine (OHOA), which has good singlet oxygen-generating ability (0.06), strong fluorescence (0.72) and improved water solubility. OHOA displays excellent fluorescence for cell imaging and exhibits light-induced cytotoxicity against cancer cell. In vitro model of human cervical carcinoma (HeLa) cell proved that singlet oxygen generated by OHOA triggered photosensitized oxidation reactions and exert toxic effect on tumor cells. The MTT assay using HeLa cells verified the low cytotoxicity of OHOA in the dark and high phototoxicity. Confocal experiment indicates that OHOA mainly distributes in mitochondria and western blotting demonstrated that OHOA induces cell apoptosis via the mitochondrial pathway in the presence of light. Our molecule provides an alternative choice as a theranostic agent against cancer cells which usually are in conflict with each other for most traditional theranostic agents.
Collapse
Affiliation(s)
- Qi Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunfan Ji
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Meijun Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China. .,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Rodríguez-Arce E, Cancino P, Arias-Calderón M, Silva-Matus P, Saldías M. Oxoisoaporphines and Aporphines: Versatile Molecules with Anticancer Effects. Molecules 2019; 25:E108. [PMID: 31892146 PMCID: PMC6983244 DOI: 10.3390/molecules25010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease that involves impaired genome stability with a high mortality index globally. Since its discovery, many have searched for effective treatment, assessing different molecules for their anticancer activity. One of the most studied sources for anticancer therapy is natural compounds and their derivates, like alkaloids, which are organic molecules containing nitrogen atoms in their structure. Among them, oxoisoaporphine and sampangine compounds are receiving increased attention due to their potential anticancer effects. Boldine has also been tested as an anticancer molecule. Boldine is the primary alkaloid extract from boldo, an endemic tree in Chile. These compounds and their derivatives have unique structural properties that potentially have an anticancer mechanism. Different studies showed that this molecule can target cancer cells through several mechanisms, including reactive oxygen species generation, DNA binding, and telomerase enzyme inhibition. In this review, we summarize the state-of-art research related to oxoisoaporphine, sampangine, and boldine, with emphasis on their structural characteristics and the relationship between structure, activity, methods of extraction or synthesis, and anticancer mechanism. With an effective cancer therapy still lacking, these three compounds are good candidates for new anticancer research.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| | - Patricio Cancino
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile;
| | - Manuel Arias-Calderón
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Paul Silva-Matus
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile;
| | - Marianela Saldías
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| |
Collapse
|
4
|
Qin QP, Wang SL, Tan MX, Liu YC, Meng T, Zou BQ, Liang H. Synthesis of two platinum(II) complexes with 2-methyl-8-quinolinol derivatives as ligands and study of their antitumor activities. Eur J Med Chem 2019; 161:334-342. [DOI: 10.1016/j.ejmech.2018.10.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/01/2018] [Accepted: 10/20/2018] [Indexed: 01/31/2023]
|
5
|
Qin QP, Zou BQ, Tan MX, Luo DM, Wang ZF, Wang SL, Liu YC. High in vitro anticancer activity of a dinuclear palladium(II) complex with a 2‑phenylpyridine ligand. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Zou BQ, Wang SL, Qin QP, Bai YX, Tan MX. Synthesis, Characterization, and Cytotoxicity of the Cobalt (III) Complex with N,N-Diethyl-4-(2,2':6',2''-terpyridin-4'-yl)aniline. Chem Biodivers 2018; 15:e1800215. [PMID: 30027551 DOI: 10.1002/cbdv.201800215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/18/2018] [Indexed: 12/29/2022]
Abstract
A cobalt(III) complex, [Co(L)2 ](ClO4 )3 (1), in which the ligand L was N,N-diethyl-4-(2,2':6',2''-terpyridin-4'-yl)aniline (L), was synthesized and fully characterized. This new cobalt(III) complex 1 exhibited selective cytotoxicity against HeLa, T-24, A549, MGC80-3, HepG2, and SK-OV-3 cells with IC50 values in the micromolar range (0.52 - 4.33 μm), and it exhibited low cytotoxicity against normal HL-7702 cells. The complex 1 was the most potent against the T-24 cells. It was found that 1 could cause the cell cycle arrest in G1 phase, and it exerted its antitumor activity mainly via disruption of mitochondrial function.
Collapse
Affiliation(s)
- Bi-Qun Zou
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, P. R. China.,Department of Chemistry, Guilin Normal College, 21 Xinyi Road, Guilin, 541001, P. R. China
| | - Shu-Long Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, P. R. China
| | - Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, P. R. China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Yu-Xia Bai
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin, 537000, P. R. China.,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, P. R. China
| |
Collapse
|
7
|
Yang QY, Cao QQ, Qin QP, Deng CX, Liang H, Chen ZF. Syntheses, Crystal Structures, and Antitumor Activities of Copper(II) and Nickel(II) Complexes with 2-((2-(Pyridin-2-yl)hydrazono)methyl)quinolin-8-ol. Int J Mol Sci 2018; 19:E1874. [PMID: 29949884 PMCID: PMC6073241 DOI: 10.3390/ijms19071874] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023] Open
Abstract
Two transition metal complexes with 2-((2-(pyridin-2-yl)hydrazono)methyl)quinolin-8-ol (L), [Cu(L)Cl₂]₂ (1) and [Ni(L)Cl₂]·CH₂Cl₂ (2), were synthesized and fully characterized. Complex 1 exhibited high in vitro antitumor activity against SK-OV-3, MGC80-3 and HeLa cells with IC50 values of 3.69 ± 0.16, 2.60 ± 0.17, and 3.62 ± 0.12 μM, respectively. In addition, complex 1 caused cell arrest in the S phase, which led to the down-regulation of Cdc25 A, Cyclin B, Cyclin A, and CDK2, and the up-regulation of p27, p21, and p53 proteins in MGC80-3 cells. Complex 1 induced MGC80-3 cell apoptosis via a mitochondrial dysfunction pathway, as shown by the significantly decreased level of bcl-2 protein and the loss of Δψ, as well as increased levels of reactive oxygen species (ROS), intracellular Ca2+, cytochrome C, apaf-1, caspase-3, and caspase-9 proteins in MGC80-3 cells.
Collapse
Affiliation(s)
- Qi-Yuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Qian-Qian Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Cai-Xing Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China.
| |
Collapse
|
8
|
Zhang J, Chen L, Sun J. Oxoisoaporphine Alkaloids: Prospective Anti-Alzheimer's Disease, Anticancer, and Antidepressant Agents. ChemMedChem 2018; 13:1262-1274. [PMID: 29696800 DOI: 10.1002/cmdc.201800196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/22/2018] [Indexed: 12/30/2022]
Abstract
Oxoisoaporphine alkaloids are a family of oxoisoquinoline-derived alkaloids that were first isolated from the rhizome of Menispermum dauricum DC. (Menispermaceae). It has been demonstrated that oxoisoaporphine alkaloids possess various biological properties, such as cholinesterase and β-amyloid inhibition, acting as a topoisomerase intercalator, monoamine oxidase A inhibition, and are expected to become anti-Alzheimer's disease, anticancer, and antidepressant drugs. This review provides an overview of natural sources, synthetic routes, bioactivities, structure-function relationship, and modification investigations into oxoisoaporphine alkaloids, with the aim of providing references to the structure-activity relationships for the design and development of oxoisoaporphine derivatives with higher efficacy and therapeutic potential.
Collapse
Affiliation(s)
- Jiayao Zhang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, P.R. China
| | - Li Chen
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, P.R. China
| | - Jianbo Sun
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, P.R. China
| |
Collapse
|
9
|
Qin QP, Meng T, Tan MX, Liu YC, Wang SL, Zou BQ, Liang H. Synthesis, characterization and biological evaluation of six highly cytotoxic ruthenium(ii) complexes with 4'-substituted-2,2':6',2''-terpyridine. MEDCHEMCOMM 2018; 9:525-533. [PMID: 30108943 PMCID: PMC6072480 DOI: 10.1039/c7md00532f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022]
Abstract
Herein, six ruthenium(ii) terpyridine complexes, i.e. [RuCl2(4-EtN-Phtpy)(DMSO)] (Ru1), [RuCl2(4-MeO-Phtpy)(DMSO)] (Ru2), [RuCl2(2-MeO-Phtpy)(DMSO)] (Ru3), [RuCl2(3-MeO-Phtpy)(DMSO)] (Ru4), [RuCl2(1-Bip-Phtpy)(DMSO)] (Ru5), and [RuCl2(1-Pyr-Phtpy)(DMSO)] (Ru6) with 4'-(4-diethylaminophenyl)-2,2':6',2''-terpyridine (4-EtN-Phtpy), 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (4-MeO-Phtpy), 4'-(2-methoxyphenyl)-2,2':6',2''-terpyridine (2-MeO-Phtpy), 4'-(3-methoxyphenyl)-2,2':6',2''-terpyridine (3-MeO-Phtpy), 4'-(1-biphenylene)-2,2':6',2''-terpyridine (1-Bip-Phtpy), and 4'-(1-pyrene)-2,2':6',2''-terpyridine (1-Pyr-Phtpy), respectively, were synthesized and fully characterized. The MTT assay demonstrates that the in vitro anticancer activity of Ru1 is higher than that of Ru2-Ru6 and more selective for Hep-G2 cells than for normal HL-7702 cells. In addition, various biological assays show that Ru1 and Ru6, especially the Ru1 complex, are telomerase inhibitors targeting c-myc G4 DNA and also cause apoptosis of Hep-G2 cells. With the same Ru center, the in vitro antitumor activity and cellular uptake ability of the 4-EtN-Phtpy and 1-Bip-Phtpy ligands follow the order 4-EtN-Phtpy > 1-Bip-Phtpy.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ting Meng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ming-Xiong Tan
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Shu-Long Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Bi-Qun Zou
- Department of Chemistry , Guilin Normal College , 21 Xinyi Road , Gulin 541001 , PR China .
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| |
Collapse
|
10
|
Wei ZZ, Qin QP, Meng T, Deng CX, Liang H, Chen ZF. 5-Bromo-oxoisoaporphine platinum(II) complexes exhibit tumor cell cytotoxcicity via inhibition of telomerase activity and disruption of c-myc G-quadruplex DNA and mitochondrial functions. Eur J Med Chem 2018; 145:360-369. [DOI: 10.1016/j.ejmech.2017.12.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/20/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023]
|
11
|
Qin JL, Meng T, Chen ZF, Xie XL, Qin QP, He XJ, Huang KB, Liang H. Facile total synthesis of lysicamine and the anticancer activities of the Ru II, Rh III, Mn II and Zn II complexes of lysicamine. Oncotarget 2017; 8:59359-59375. [PMID: 28938642 PMCID: PMC5601738 DOI: 10.18632/oncotarget.19584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Lysicamine is a natural oxoaporphine alkaloid, which isolated from traditional Chinese medicine (TCM) herbs and has been shown to possess cytotoxicity to hepatocarcinoma cell lines. Reports on its antitumor activity are scarce because lysicamine occurs in plants at a low content. In this work, we demonstrate a facile concise total synthesis of lysicamine from simple raw materials under mild reaction conditions, and the preparation of the Ru(II), Rh(III), Mn(II) and Zn(II) complexes 1–4 of lysicamine (LY). All the compounds were fully characterized by elemental analysis, IR, ESI-MS, 1H and 13C NMR, as well as single-crystal X-ray diffraction analysis. Compared with the free ligand LY, complexes 2 and 3 exhibited superior in vitro cytotoxicity against HepG2 and NCI-H460. Mechanistic studies indicated that 2 and 3 blocked the cell cycle in the S phase by decreasing of cyclins A2/B1/D1/E1, CDK 2/6, and PCNA levels and increasing levels of p21, p27, p53 and CDC25A proteins. In addition, 2 and 3 induced cell apoptosis via both the caspase-dependent mitochondrial pathway and the death receptor pathway. in vivo study showed that 2 inhibited HepG2 tumor growth at 1/3 maximum tolerated dose (MTD) and had a better safety profile than cisplatin.
Collapse
Affiliation(s)
- Jiao-Lan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiao-Li Xie
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiao-Ju He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
12
|
Oxoaporphine Metal Complexes (Co II, Ni II, Zn II) with High Antitumor Activity by Inducing Mitochondria-Mediated Apoptosis and S-phase Arrest in HepG2. Sci Rep 2017; 7:46056. [PMID: 28436418 PMCID: PMC5402304 DOI: 10.1038/srep46056] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Three new oxoaporphine Co(II), Ni(II) and Zn(II) complexes 1–3 have been synthesized and fully characterized. 1–3 have similar mononuclear structures with the metal and ligand ratio of 1:2. 1–3 exhibited higher cytotoxicity than the OD ligand and cisplatin against HepG2, T-24, BEL-7404, MGC80–3 and SK-OV-3/DDP cells, with IC50 value of 0.23−4.31 μM. Interestingly, 0.5 μM 1–3 significantly caused HepG2 arrest at S-phase, which was associated with the up-regulation of p53, p21, p27, Chk1 and Chk2 proteins, and decrease in cyclin A, CDK2, Cdc25A, PCNA proteins. In addition, 1–3 induced HepG2 apoptosis via a caspase-dependent mitochondrion pathway as evidenced by p53 activation, ROS production, Bax up-regulation and Bcl-2 down-regulation, mitochondrial dysfunction, cytochrome c release, caspase activation and PARP cleavage. Furthermore, 3 inhibited tumor growth in HepG2 xenograft model, and displayed more safety profile in vivo than cisplatin.
Collapse
|
13
|
Zou BQ, Qin QP, Bai YX, Cao QQ, Zhang Y, Liu YC, Chen ZF, Liang H. Synthesis and antitumor mechanism of a new iron(iii) complex with 5,7-dichloro-2-methyl-8-quinolinol as ligands. MEDCHEMCOMM 2017; 8:633-639. [PMID: 30108780 PMCID: PMC6072324 DOI: 10.1039/c6md00644b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/26/2017] [Indexed: 11/21/2022]
Abstract
A new iron(iii) complex with 5,7-dichloro-2-methyl-8-quinolinol (HClMQ) as ligands, i.e., [Fe(ClMQ)2Cl] (1), was synthesized and evaluated for its anticancer activity. Compared to the HClMQ ligand, complex 1 showed a higher cytotoxicity towards a series of tumor cell lines, including Hep-G2, BEL-7404, NCI-H460, A549, and T-24, with IC50 values in the range of 5.04-14.35 μM. Notably, the Hep-G2 cell line was the most sensitive to complex 1. Mechanistic studies indicated that complex 1 is a telomerase inhibitor targeting c-myc G-quadruplex DNA and can trigger cell apoptosis via inducing cell cycle arrest and DNA damage.
Collapse
Affiliation(s)
- Bi-Qun Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
- Department of Chemistry , Guilin Normal College , Guilin , Guangxi 541001 , P. R. China
| | - Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Yu-Xia Bai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Qian-Qian Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Ye Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
- Department of Chemistry , Guilin Normal College , Guilin , Guangxi 541001 , P. R. China
- College of Pharmacy , Guilin Medical University , North Ring 2rd Road 109 , Guilin 541004 , P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , Guilin , Guangxi 541004 , P. R. China . ; ; ; ; Tel: +86 773 2120958
| |
Collapse
|
14
|
Zou BQ, Lu X, Qin QP, Bai YX, Zhang Y, Wang M, Liu YC, Chen ZF, Liang H. Three novel transition metal complexes of 6-methyl-2-oxo-quinoline-3-carbaldehyde thiosemicarbazone: synthesis, crystal structure, cytotoxicity, and mechanism of action. RSC Adv 2017. [DOI: 10.1039/c7ra00826k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Complex 1 was more selective for MGC80-3 tumor cells versus normal cells (HL-7702). Importantly, 1 triggered MGC80-3 cells apoptosis via a mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Bi-Qun Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Xing Lu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yu-Xia Bai
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Ye Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|