1
|
Arias-Aragón F, Sánchez-Hidalgo AC, Gruart A, Martinez-Mir A, Delgado-García JM, Scholl FG. Impaired synaptic plasticity in behaving mice by inactivation of presenilin and accumulation of the neurexin gamma-secretase proteolytic substrate. Exp Neurol 2025; 389:115241. [PMID: 40187476 DOI: 10.1016/j.expneurol.2025.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Mutations in presenilin (PSEN1/2) genes are the main cause of familial Alzheimer's disease (fAD). Presenilin (PS) form the active component of the gamma-secretase complex, a protease that cleaves the C-terminal fragment (CTF) of multiple membrane proteins. The generation of mice lacking Psen1/2 genes in adult forebrain and of knockin mice expressing fAD-linked PSEN1 mutations favored a loss of function mechanism for PS/gamma-secretase in AD. In vitro, inactivation of PS impairs short- and long-term plasticity, but if PS regulates synaptic plasticity in vivo is not known, nor is it known the contribution of specific gamma-secretase substrates. In this study, we performed electrophysiological recordings at medial prefrontal cortex-basolateral (mPFC-BLA) synapse of behaving mice during fear conditioning, a type of associative memory. In controls, fear-conditioning decreases paired-pulse facilitation of the mPFC-BLA synapse, likely reflecting a memory-dependent increase in release probability. In contrast, PScKOtam mice lacking Psen1/2 genes in forebrain neurons in a tamoxifen-regulated manner show decreased paired-pulse facilitation at mPFC-BLA synapse along with impaired memory. Neurexins (Nrxns) are presynaptic membrane proteins processed by PS/gamma-secretase. Importantly, paired-pulse facilitation is further decreased in PScKOtam;NrxnCTF mice expressing increased NrxnCTF levels in PS-deficient neurons. Moreover, high-frequency stimulation induces long-term potentiation (LTP) at mPFC-BLA synapse of control mice, but LTP is impaired in PScKOtam mice and fully inhibited in PScKOtam;NrxnCTF mice. These findings suggest that PS enables learning-dependent adaptations in short and long-term synaptic plasticity by, at least in part, preventing the accumulation of NrxnCTF, pointing at NrxnCTF as a relevant factor downstream of PS dysfunction in AD.
Collapse
Affiliation(s)
- Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Ana C Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain
| | | | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, Sevilla 41013, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4, Sevilla 41009, Spain.
| |
Collapse
|
2
|
Muñoz-Redondo C, Parras GG, Andreu-Sánchez C, Martín-Pascual MÁ, Delgado-García JM, Gruart A. Functional states of prelimbic and related circuits during the acquisition of a GO/noGO task in rats. Cereb Cortex 2024; 34:bhae271. [PMID: 38997210 DOI: 10.1093/cercor/bhae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
GO/noGO tasks enable assessing decision-making processes and the ability to suppress a specific action according to the context. Here, rats had to discriminate between 2 visual stimuli (GO or noGO) shown on an iPad screen. The execution (for GO) or nonexecution (for noGO) of the selected action (to touch or not the visual display) were reinforced with food. The main goal was to record and to analyze local field potentials collected from cortical and subcortical structures when the visual stimuli were shown on the touch screen and during the subsequent activities. Rats were implanted with recording electrodes in the prelimbic cortex, primary motor cortex, nucleus accumbens septi, basolateral amygdala, dorsolateral and dorsomedial striatum, hippocampal CA1, and mediodorsal thalamic nucleus. Spectral analyses of the collected data demonstrate that the prelimbic cortex was selectively involved in the cognitive and motivational processing of the learning task but not in the execution of reward-directed behaviors. In addition, the other recorded structures presented specific tendencies to be involved in these 2 types of brain activity in response to the presentation of GO or noGO stimuli. Spectral analyses, spectrograms, and coherence between the recorded brain areas indicate their specific involvement in GO vs. noGO tasks.
Collapse
Affiliation(s)
| | - Gloria G Parras
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | - Celia Andreu-Sánchez
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
- Cerdanyola del Vallès, Institut de Neurociènces, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
| | - Miguel Ángel Martín-Pascual
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
- Research and Development, Institute of Spanish Public Television (RTVE), Corporación Radio Televisión Española, Barcelona 08190, Spain
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| |
Collapse
|
3
|
Dávila-Bouziguet E, Casòliba-Melich A, Targa-Fabra G, Galera-López L, Ozaita A, Maldonado R, Ávila J, Delgado-García JM, Gruart A, Soriano E, Pascual M. Functional protection in J20/VLW mice: a model of non-demented with Alzheimer's disease neuropathology. Brain 2021; 145:729-743. [PMID: 34424282 DOI: 10.1093/brain/awab319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease comprises amyloid-β and hyperphosphorylated Tau accumulation, imbalanced neuronal activity, aberrant oscillatory rhythms, and cognitive deficits. Non-Demented with Alzheimer's disease Neuropathology (NDAN) defines a novel clinical entity with amyloid-β and Tau pathologies but preserved cognition. The mechanisms underlying such neuroprotection remain undetermined and animal models of NDAN are currently unavailable. We demonstrate that J20/VLW mice (accumulating amyloid-β and hyperphosphorylated Tau) exhibit preserved hippocampal rhythmic activity and cognition, as opposed to J20 and VLW animals, which show significant alterations. Furthermore, we show that the overexpression of mutant human Tau in coexistence with amyloid-β accumulation renders a particular hyperphosphorylated Tau signature in hippocampal interneurons. The GABAergic septohippocampal pathway, responsible for hippocampal rhythmic activity, is preserved in J20/VLW mice, in contrast to single mutants. Our data highlight J20/VLW mice as a suitable animal model in which to explore the mechanisms driving cognitive preservation in NDAN. Moreover, they suggest that a differential Tau phosphorylation pattern in hippocampal interneurons prevents the loss of GABAergic septohippocampal innervation and alterations in local field potentials, thereby avoiding cognitive deficits.
Collapse
Affiliation(s)
- Eva Dávila-Bouziguet
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| | - Arnau Casòliba-Melich
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| | - Georgina Targa-Fabra
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| | - Lorena Galera-López
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Andrés Ozaita
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, Madrid, Spain
| | - José M Delgado-García
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, Madrid, Spain.,Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | - Agnès Gruart
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, Madrid, Spain.,Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| | - Marta Pascual
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Spain
| |
Collapse
|
4
|
Lintas A, Sánchez-Campusano R, Villa AEP, Gruart A, Delgado-García JM. Operant conditioning deficits and modified local field potential activities in parvalbumin-deficient mice. Sci Rep 2021; 11:2970. [PMID: 33536607 PMCID: PMC7859233 DOI: 10.1038/s41598-021-82519-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Altered functioning of GABAergic interneurons expressing parvalbumin (PV) in the basal ganglia-thalamo-cortical circuit are likely to be involved in several human psychiatric disorders characterized by deficits in attention and sensory gating with dysfunctional decision-making behavior. However, the contribution of these interneurons in the ability to acquire demanding learning tasks remains unclear. Here, we combine an operant conditioning task with local field potentials simultaneously recorded in several nuclei involved in reward circuits of wild-type (WT) and PV-deficient (PVKO) mice, which are characterized by changes in firing activity of PV-expressing interneurons. In comparison with WT mice, PVKO animals presented significant deficits in the acquisition of the selected learning task. Recordings from prefrontal cortex, nucleus accumbens (NAc) and hippocampus showed significant decreases of the spectral power in beta and gamma bands in PVKO compared with WT mice particularly during the performance of the operant conditioning task. From the first to the last session, at all frequency bands the spectral power in NAc tended to increase in WT and to decrease in PVKO. Results indicate that PV deficiency impairs signaling necessary for instrumental learning and the recognition of natural rewards.
Collapse
Affiliation(s)
- Alessandra Lintas
- Neuroheuristic Research Group & LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015, Lausanne, Switzerland.
| | - Raudel Sánchez-Campusano
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| | - Alessandro E P Villa
- Neuroheuristic Research Group & LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015, Lausanne, Switzerland
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| | - José M Delgado-García
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| |
Collapse
|
5
|
Reus-García MM, Sánchez-Campusano R, Ledderose J, Dogbevia GK, Treviño M, Hasan MT, Gruart A, Delgado-García JM. The Claustrum is Involved in Cognitive Processes Related to the Classical Conditioning of Eyelid Responses in Behaving Rabbits. Cereb Cortex 2020; 31:281-300. [PMID: 32885230 PMCID: PMC7727357 DOI: 10.1093/cercor/bhaa225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
It is assumed that the claustrum (CL) is involved in sensorimotor integration and cognitive processes. We recorded the firing activity of identified CL neurons during classical eyeblink conditioning in rabbits, using a delay paradigm in which a tone was presented as conditioned stimulus (CS), followed by a corneal air puff as unconditioned stimulus (US). Neurons were identified by their activation from motor (MC), cingulate (CC), and medial prefrontal (mPFC) cortices. CL neurons were rarely activated by single stimuli of any modality. In contrast, their firing was significantly modulated during the first sessions of paired CS/US presentations, but not in well-trained animals. Neuron firing rates did not correlate with the kinematics of conditioned responses (CRs). CL local field potentials (LFPs) changed their spectral power across learning and presented well-differentiated CL–mPFC/CL–MC network dynamics, as shown by crossfrequency spectral measurements. CL electrical stimulation did not evoke eyelid responses, even in trained animals. Silencing of synaptic transmission of CL neurons by the vINSIST method delayed the acquisition of CRs but did not affect their presentation rate. The CL plays an important role in the acquisition of associative learning, mostly in relation to the novelty of CS/US association, but not in the expression of CRs.
Collapse
Affiliation(s)
- M Mar Reus-García
- Division of Neurosciences, Pablo de Olavide University, Seville 4103, Spain
| | | | - Julia Ledderose
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.,Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Godwin K Dogbevia
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa K1Y 4W7, Canada
| | - Mario Treviño
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara 44130, México
| | - Mazahir T Hasan
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Laboratory of Memory Circuits, Achucarro Basque Center for Neuroscience, Leioa 48940, Spain.,Ikerbasque-Basque Foundation for Science, Bilbao 48013, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 4103, Spain
| | | |
Collapse
|
6
|
Conde-Moro AR, Rocha-Almeida F, Sánchez-Campusano R, Delgado-García JM, Gruart A. The activity of the prelimbic cortex in rats is enhanced during the cooperative acquisition of an instrumental learning task. Prog Neurobiol 2019; 183:101692. [PMID: 31521703 DOI: 10.1016/j.pneurobio.2019.101692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
The objective of this study was to identify the functional properties of the prefrontal cortex that allow animals to work together to obtain a mutual reward. We induced pairs of male rats to develop a cooperative behavior in two adjacent Skinner boxes divided by a metallic grille. The experimental boxes allowed the two rats to see and to smell each other and to have limited physical contact through the grille. Rats were progressively trained to climb onto two separate platforms (and stay there simultaneously for >0.5 s) to get food pellets for both. This set-up was compatible with the in vivo recording of local field potentials (LFPs) at the prelimbic (PrL) cortex throughout the task. A dominant delta/theta activity appeared mostly during the period in which rats were located on the platforms. Spectral powers were larger when rats had to stay together on the platforms than when they jumped individually onto them. When paired together, rats presented significant differences in the power of delta and low theta bands depending if they were leading or following the joint activity. PrL cortex encodes neural commands related to the individual and joint acquisition of an operant conditioning task by behaving rats.
Collapse
Affiliation(s)
- Ana R Conde-Moro
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain
| | | | | | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain.
| |
Collapse
|
7
|
Medrano-Fernández A, Delgado-Garcia JM, Del Blanco B, Llinares M, Sánchez-Campusano R, Olivares R, Gruart A, Barco A. The Epigenetic Factor CBP Is Required for the Differentiation and Function of Medial Ganglionic Eminence-Derived Interneurons. Mol Neurobiol 2018; 56:4440-4454. [PMID: 30334186 PMCID: PMC6505511 DOI: 10.1007/s12035-018-1382-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/05/2018] [Indexed: 02/04/2023]
Abstract
The development of inhibitory circuits depends on the action of a network of transcription factors and epigenetic regulators that are critical for interneuron specification and differentiation. Although the identity of many of these transcription factors is well established, much less is known about the specific contribution of the chromatin-modifying enzymes that sculpt the interneuron epigenome. Here, we generated a mouse model in which the lysine acetyltransferase CBP is specifically removed from neural progenitors at the median ganglionic eminence (MGE), the structure where the most abundant types of cortical interneurons are born. Ablation of CBP interfered with the development of MGE-derived interneurons in both sexes, causing a reduction in the number of functionally mature interneurons in the adult forebrain. Genetic fate mapping experiments not only demonstrated that CBP ablation impacts on different interneuron classes, but also unveiled a compensatory increment of interneurons that escaped recombination and cushion the excitatory-inhibitory imbalance. Consistent with having a reduced number of interneurons, CBP-deficient mice exhibited a high incidence of spontaneous epileptic seizures, and alterations in brain rhythms and enhanced low gamma activity during status epilepticus. These perturbations led to abnormal behavior including hyperlocomotion, increased anxiety and cognitive impairments. Overall, our study demonstrates that CBP is essential for interneuron development and the proper functioning of inhibitory circuitry in vivo.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | | | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | - Marián Llinares
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | | | - Román Olivares
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain.
| |
Collapse
|
8
|
Guo Z, Liu X, Xu S, Hou H, Chen X, Zhang Z, Chen W. Abnormal changes in functional connectivity between the amygdala and frontal regions are associated with depression in Alzheimer's disease. Neuroradiology 2018; 60:1315-1322. [PMID: 30242429 DOI: 10.1007/s00234-018-2100-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of the present study was to investigate the functional connectivity (FC) of Alzheimer's disease patients with depression (D-AD) based on an amygdalar seed using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS Twenty-one non-depressed AD (nD-AD) patients and 21 D-AD patients underwent rs-fMRI. The Hamilton Depression Rating Scale and Neuropsychiatric Inventory were used to evaluate the severity of depression. The amygdala was used as the seed for FC analysis. The FC differences between the two groups were evaluated by two-sample t tests, and the correlation of FC changes with depressive severity was analyzed by Pearson correlational analysis. RESULTS Compared with the nD-AD patients, D-AD patients had increased FC values between the amygdala and orbitofrontal cortex and decreased FC values among the amygdala, medial prefrontal cortex, and inferior frontal gyrus. CONCLUSION These data suggest that abnormal amygdala-prefrontal FC may be an important characteristic of AD patients with depression.
Collapse
Affiliation(s)
- Zhongwei Guo
- Tongde Hospital of Zhejiang Provence & Zhejiang Mental Health Center, Zhejiang, 310012, Hangzhou, China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital, China-USA Neuroimaging Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Songquan Xu
- Tongde Hospital of Zhejiang Provence & Zhejiang Mental Health Center, Zhejiang, 310012, Hangzhou, China
| | - Hongtao Hou
- Tongde Hospital of Zhejiang Provence & Zhejiang Mental Health Center, Zhejiang, 310012, Hangzhou, China
| | - Xingli Chen
- Tongde Hospital of Zhejiang Provence & Zhejiang Mental Health Center, Zhejiang, 310012, Hangzhou, China
| | - Zhenzhong Zhang
- Tongde Hospital of Zhejiang Provence & Zhejiang Mental Health Center, Zhejiang, 310012, Hangzhou, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and the Collaborative Innovation Center for Brain Science, Zhejiang, 310016, Hangzhou, China. .,Key Laboratory of Medical Neurobiology of Chinese Ministry of Health, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|