1
|
Pavlik T, Konchekov E, Shimanovskii N. Antitumor progestins activity: Cytostatic effect and immune response. Steroids 2024; 210:109474. [PMID: 39048056 DOI: 10.1016/j.steroids.2024.109474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Progestins are used to treat some hormone-sensitive tumors. This review discusses the mechanisms of progestins' effects on tumor cells, the differences in the effects of progesterone and its analogs on different tumor types, and the influence of progestins on the antitumor immune response. Progestins cause a cytostatic effect, but at the same time they can suppress the antitumor immune response, and this can promote the proliferation and metastasis of tumor cells. Such progestins as dienogest, megestrol acetate and levonorgestrel increase the activity of NK-cells, which play a major role in the body's fight against tumor cells. The use of existing progestins and the development of new drugs with gestagenic activity may hold promise in oncotherapy.
Collapse
Affiliation(s)
- T Pavlik
- Pirogov Russian National Research Medical University, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia.
| | - E Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russia; Peoples Friendship University of Russia (RUDN University), Russia
| | - N Shimanovskii
- Pirogov Russian National Research Medical University, Russia
| |
Collapse
|
2
|
Li Y, Wang C, Sun Z, Xiao J, Yan X, Chen Y, Yu J, Wu Y. Simultaneous Intramuscular And Intranasal Administration Of Chitosan Nanoparticles-Adjuvanted Chlamydia Vaccine Elicits Elevated Protective Responses In The Lung. Int J Nanomedicine 2019; 14:8179-8193. [PMID: 31632026 PMCID: PMC6790120 DOI: 10.2147/ijn.s218456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background Chlamydia psittaci is a zoonotic bacteria closely associated with psittacosis/ornithosis. Vaccination has been recognized as the best way to inhibit the spread of C. psittaci due to the majority ignored of infections. The optimal Chlamydia vaccine was obstructed by the defect of single immunization route and the lack of availability of nontoxic and valid adjuvants. Methods In this study, we developed a novel immunization strategy, simultaneous (SIM) intramuscular (IM) and intranasal (IN) administration of a C. psittaci antigens (Ags) adjuvanted with chitosan nanoparticles (CNPs). And SIM-CNPs-Ags were used to determine the different types of immune response and the protective role in vivo. Results CNPs-Ags with zeta-potential values of 13.12 mV and of 276.1 nm showed excellent stability and optimal size for crossing the mucosal barrier with high 71.7% encapsulation efficiency. SIM-CPN-Ags mediated stronger humoral and mucosal responses by producing meaningfully high levels of IgG and secretory IgA (sIgA) antibodies. The SIM route also led to Ags-specific T-cell responses and increased IFN-γ, IL-2, TNF-α and IL-17A in the splenocyte supernatants. Following respiratory infection with C. psittaci, we found that SIM immunization remarkably reduced bacterial load and the degree of inflammation in the infected lungs and made for a lower level of IFN-γ, TNF-α and IL-6. Furthermore, SIM vaccination with CNPs-Ags had obviously inhibited C. psittaci disseminating to various organs in vivo. Conclusion SIM immunization with CNPs-adjuvanted C. psittaci Ags may present a novel strategy for the development of a vaccine against the C. psittaci infection.
Collapse
Affiliation(s)
- Yumeng Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Chuan Wang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Zhenjie Sun
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Jian Xiao
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Xiaoliang Yan
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Yuqing Chen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Jian Yu
- Department of Experimental Zoology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Yimou Wu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| |
Collapse
|
3
|
Berry A, Hall JV. The complexity of interactions between female sex hormones and Chlamydia trachomatis infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:67-75. [PMID: 31890462 PMCID: PMC6936955 DOI: 10.1007/s40588-019-00116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW This review focuses specifically on the mechanisms by which female sex hormones, estrogen and progesterone, affect Chlamydia trachomatis infections in vivo and in vitro. RECENT FINDINGS Recent data support previous work indicating that estrogen enhances chlamydial development via multiple mechanisms. Progesterone negatively impacts Chlamydia infections also through multiple mechanisms, particularly by altering the immune response. Conflicting data exist regarding the effect of synthetic hormones, such as those found in hormonal contraceptives, on chlamydial infections. SUMMARY Numerous studies over the years have indicated that female sex hormones affect C. trachomatis infection. However, we still do not have a clear understanding of how these hormones alter Chlamydia disease transmission and progression. The studies reviewed here indicate that there are many variables that determine the outcome of Chlamydia/hormone interactions, including: 1) the specific hormone, 2) hormone concentration, 3) cell type or area of the genital tract, 4) hormone responsiveness of cell lines, and 5) animal models.
Collapse
Affiliation(s)
- Amy Berry
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
- Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Jennifer V. Hall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
- Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| |
Collapse
|
4
|
Quispe Calla NE, Vicetti Miguel RD, Glick ME, Kwiek JJ, Gabriel JM, Cherpes TL. Exogenous oestrogen inhibits genital transmission of cell-associated HIV-1 in DMPA-treated humanized mice. J Int AIDS Soc 2019; 21. [PMID: 29334191 PMCID: PMC5810324 DOI: 10.1002/jia2.25063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction HIV affects more women than any other life‐threatening infectious agent, and most infections are sexually transmitted. HIV must breach the female genital tract mucosal barrier to establish systemic infection, and clinical studies indicate virus more easily evades this barrier in women using depot‐medroxyprogesterone acetate (DMPA) and other injectable progestins for contraception. Identifying a potential mechanism for this association, we learned DMPA promotes susceptibility of wild‐type mice to genital herpes simplex virus type 2 (HSV‐2) infection by reducing genital tissue expression of the cell‐cell adhesion molecule desmoglein‐1 (DSG‐1) and increasing genital mucosal permeability. Conversely, DMPA‐mediated increases in genital mucosal permeability and HSV‐2 susceptibility were eliminated in mice concomitantly administered exogenous oestrogen (E). To confirm and extend these findings, herein we used humanized mice to define effects of systemic DMPA and intravaginal (ivag) E administration on susceptibility to genital infection with cell‐associated HIV‐1. Methods Effects of DMPA or an intravaginal (ivag) E cream on engraftment of NOD‐scid‐IL‐2Rgcnull (NSG) mice with human peripheral blood mononuclear cells (hPBMCs) were defined with flow cytometry. Confocal microscopy was used to evaluate effects of DMPA, DMPA and E cream, or DMPA and the pharmacologically active component of the cream on vaginal tissue DSG‐1 expression and genital mucosal permeability to low molecular weight (LMW) molecules and hPBMCs. In other studies, hPBMC‐engrafted NSG mice (hPBMC‐NSG) received DMPA or DMPA and ivag E cream before genital inoculation with 106 HIV‐1‐infected hPBMCs. Mice were euthanized 10 days after infection, and plasma HIV‐1 load quantified by qRT‐PCR and splenocytes used to detect HIV‐1 p24 antigen via immunohistochemistry and infectious virus via TZM‐bl luciferase assay. Results Whereas hPBMC engraftment was unaffected by DMPA or E treatment, mice administered DMPA and E (cream or the pharmacologically active cream component) displayed greater vaginal tissue expression of DSG‐1 protein and decreased vaginal mucosal permeability to LMW molecules and hPBMCs versus DMPA‐treated mice. DMPA‐treated hPBMC‐NSG mice were also uniformly susceptible to genital transmission of cell‐associated HIV‐1, while no animal concomitantly administered DMPA and E cream acquired systemic HIV‐1 infection. Conclusion Exogenous E administration reduces susceptibility of DMPA‐treated humanized mice to genital HIV‐1 infection.
Collapse
Affiliation(s)
- Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Melissa E Glick
- The Ohio State University (OSU) College of Veterinary Medicine, Columbus, OH, USA
| | - Jesse J Kwiek
- Department of Microbiology, OSU College of Arts and Sciences, Columbus, OH, USA
| | | | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
The contraceptive medroxyprogesterone acetate, unlike norethisterone, directly increases R5 HIV-1 infection in human cervical explant tissue at physiologically relevant concentrations. Sci Rep 2019; 9:4334. [PMID: 30867477 PMCID: PMC6416361 DOI: 10.1038/s41598-019-40756-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
The intramuscular progestin-only injectable contraceptive, depo-medroxyprogesterone acetate (DMPA-IM), is more widely used in Sub-Saharan Africa than another injectable contraceptive, norethisterone enanthate (NET-EN). Epidemiological data show a significant 1.4-fold increased risk of HIV-1 acquisition for DMPA-IM usage, while no such association is shown from limited data for NET-EN. We show that MPA, unlike NET, significantly increases R5-tropic but not X4-tropic HIV-1 replication ex vivo in human endocervical and ectocervical explant tissue from pre-menopausal donors, at physiologically relevant doses. Results support a mechanism whereby MPA, unlike NET, acts via the glucocorticoid receptor (GR) to increase HIV-1 replication in cervical tissue by increasing the relative frequency of CD4+ T cells and activated monocytes. We show that MPA, unlike NET, increases mRNA expression of the CD4 HIV-1 receptor and CCR5 but not CXCR4 chemokine receptors, via the GR. However, increased density of CD4 on CD3+ cells was not observed with MPA by flow cytometry of digested tissue. Results suggest that DMPA-IM may increase HIV-1 acquisition in vivo at least in part via direct effects on cervical tissue to increase founder R5-tropic HIV-1 replication. Our findings support differential biological mechanisms and disaggregation of DMPA-IM and NET-EN regarding HIV-1 acquisition risk category for use in high risk areas.
Collapse
|
6
|
Vicetti Miguel RD, Quispe Calla NE, Cherpes TL. Levonorgestrel and Female Genital Tract Immunity: Time for a Closer Look. J Infect Dis 2018; 218:1517-1518. [PMID: 29917111 PMCID: PMC6151086 DOI: 10.1093/infdis/jiy363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/12/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, California
| | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, California
| |
Collapse
|
7
|
Hapgood JP, Kaushic C, Hel Z. Hormonal Contraception and HIV-1 Acquisition: Biological Mechanisms. Endocr Rev 2018; 39:36-78. [PMID: 29309550 PMCID: PMC5807094 DOI: 10.1210/er.2017-00103] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Access to effective affordable contraception is critical for individual and public health. A wide range of hormonal contraceptives (HCs), which differ in composition, concentration of the progestin component, frequency of dosage, and method of administration, is currently available globally. However, the options are rather limited in settings with restricted economic resources that frequently overlap with areas of high HIV-1 prevalence. The predominant contraceptive used in sub-Saharan Africa is the progestin-only three-monthly injectable depot medroxyprogesterone acetate. Determination of whether HCs affect HIV-1 acquisition has been hampered by behavioral differences potentially confounding clinical observational data. Meta-analysis of these studies shows a significant association between depot medroxyprogesterone acetate use and increased risk of HIV-1 acquisition, raising important concerns. No association was found for combined oral contraceptives containing levonorgestrel, nor for the two-monthly injectable contraceptive norethisterone enanthate, although data for norethisterone enanthate are limited. Susceptibility to HIV-1 and other sexually transmitted infections may, however, be dependent on the type of progestin present in the formulation. Several underlying biological mechanisms that may mediate the effect of HCs on HIV-1 and other sexually transmitted infection acquisition have been identified in clinical, animal, and ex vivo studies. A substantial gap exists in the translation of basic research into clinical practice and public health policy. To bridge this gap, we review the current knowledge of underlying mechanisms and biological effects of commonly used progestins. The review sheds light on issues critical for an informed choice of progestins for the identification of safe, effective, acceptable, and affordable contraceptive methods.
Collapse
Affiliation(s)
- Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Charu Kaushic
- Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Polis CB, Achilles SL, Hel Z, Hapgood JP. Is a lower-dose, subcutaneous contraceptive injectable containing depot medroxyprogesterone acetate likely to impact women's risk of HIV? Contraception 2017; 97:191-197. [PMID: 29242082 DOI: 10.1016/j.contraception.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/18/2017] [Accepted: 12/02/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Chelsea B Polis
- Guttmacher Institute, New York, NY, USA; Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, MD, USA.
| | - Sharon L Achilles
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zdenek Hel
- Department of Pathology, Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janet P Hapgood
- Department of Molecular and Cell Biology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|